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Traveling Salesman Problem

Author:  Arthur M. Hobbs, Department of Mathematics, Texas A&M Uni-
versity.

Prerequisites:  The prerequisites for this chapter are graphs and trees. See
Sections 2.2, 9.1, 9.2, and 9.5, and Chapter 10 of Discrete Mathematics and Its
Applications.

Introduction

In the traveling salesman problem, we are given a list of cities including our own,
and we are asked to find a route using existing roads that visits each city exactly
once, returns to our home city, and is as short as possible. However, it is useful
to formalize the problem, thus allowing other problems to be interpreted in
terms of the traveling salesman problem. Thus we have the following definition.

Definition 1 Given a graph G in which the edges may be directed, undi-
rected, or some of each, and in which a weight is assigned to each edge, the
traveling salesman problem, denoted TSP, is the problem of finding a Hamilton
circuit in G with minimum total weight, where the weight of a circuit is the
sum of the weights of the edges in the circuit. Depending on the application,
the weights on the edges will be called lengths or costs. O
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264 Applications of Discrete Mathematics

Notice that the Hamilton circuit problem, to determine whether or not a
given graph has a Hamilton circuit and to find one if it exists, is the special case
of the TSP in which each of the edge weights is 1. Also, the feature that most
distinguishes the TSP from the shortest path problem solved in Section 9.6 of
Discrete Mathematics and Its Applications is the requirement in the TSP that
every vertex of the graph must be included in the solution to the T'SP.

We want to emphasize that the TSP calls for a Hamilton circuit, not a
Hamilton path. Some applications would be more naturally stated in terms of
Hamilton paths, but they can be translated into circuit problems (and this is
done in the examples). For theoretical purposes, it is much better to have the
symmetry that a Hamilton circuit allows, rather than having a pair of special
vertices serving as the ends of a Hamilton path. Also, there is a forward-looking
reason for favoring Hamilton circuits. The TSP is not solved, and any future
complete or partial solutions of the TSP will be stated in terms of Hamilton
circuits, rather than Hamilton paths. Thus it is better that our work now
should be stated in terms of Hamilton circuits, so that future solutions can be
immediately applied to it.

Example 1 Solve the TSP by finding all Hamilton circuits in the graph G
of Figure 1.

Figure 1. Graph G;.

Solution: Since G is complete, any ordering of the vertices corresponds
to a Hamilton circuit. By the nature of a circuit, we may suppose that all
of the Hamilton circuits begin on the same vertex, e.g., vertex a. There are
(5 — 1)! = 24 permutations of the vertices starting with a. But each Hamilton
circuit is described by two of these permutations (see Exercise 5). Thus, there
are %(4!) = 12 Hamilton circuits. These circuits and lengths are:

Permutation Length Permutation Length
a,b,e,d,e,a 19 a,d,e,c,b,a 19
a,b,d,c,e,a 17 a,b,d,e,c,a 19
a,d,c,e,b,a 20 a,bye,d,c,a 22
a,c,b,d, e, a 18 a,c,b,e,d,a 21
a,c,d,b,e,a 19 a,c,e,b,d,a 19
a,d,b,c,e,a 16 a,d,c,b,e,a 19

Thus the shortest Hamilton circuit, and hence the solution to the TSP in Gy,
is given by the vertex sequence a,d, b, ¢, e, a with a total length of 16. O
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A variant of this procedure can be used when not all of the possible edges
are present or when some edges are directed and circuits are constrained to pass
through them in only the given direction. We may examine all the permutations,
casting out those which do not correspond to Hamilton circuits. This is useful
if the graph is nearly complete. If many edges are not present, however, we may
do a depth-first search on paths starting at a, looking for those that extend to
Hamilton circuits. The following example illustrates the first possibility.

Example 2 Solve the TSP for the graph of Figure 2.

Figure 2. Graph Go.

Solution:  This graph has five vertices, but one edge of the complete graph is
omitted. We again list all of the permutations of the vertices starting with a,
but for some of the permutations, we note that the corresponding circuit does
not exist in the graph:

Permutation Length Permutation Length
a,b,c,d, e, a 14 a,d,e,c,b,a 11
a,b,d,c,e,a 12 a,b,d,e,c,a 11
a,d,c,e,b,a  does not exist a,b,e,d,c,a  does not exist
a,c,b,d,e,a 9 a,c,b,e,d,a  does not exist
a,c,d,b,e,a  does not exist a,c,e,b,d,a  does not exist
a,d,b,c,e,a 7 a,d,c,b,e,a  does not exist

Examining the six cases of sequences which do correspond to Hamilton circuits
in G, we find the shortest is a,d, b, ¢, e, a with total length 7. O

These examples illustrate the most simple-minded algorithm for solving
the traveling salesman problem: Just list all possible orderings of the vertices
with one fixed beginning vertex, cast out orderings that fail to correspond to
Hamilton circuits, and find the lengths of the rest, choosing the shortest. If
there are n vertices, then there are %(n — 1)! orderings to examine. If no
Hamilton circuit exists, the algorithm terminates, and the T'SP has no solution
in the graph. Otherwise, a shortest circuit is found, and its length is known.
Because we must examine %(n —1)! orderings of the vertices, this algorithm has
complexity at least O((n—1)!); such complexity is much worse than exponential
complexity.
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History

The roots of the traveling salesman problem problem are in the studies of
knight’s tours in chess and of Hamilton circuits. A knight’s tour is a sequence
of moves taken by a knight on a chessboard, that begins and ends on a fixed
square a and visits all other squares, each exactly once. This can be seen as a
Hamilton circuit in a graph in which each square of the board is a vertex and
two vertices are joined by an edge if and only if a knight’s move connects the
corresponding squares. A solution of the knight’s tour problem was given by
Leonhard Euler [2].

The more general problem of Hamilton circuits apparently was first studied
in 1856 by T. P. Kirkman; he was particularly interested in Hamilton circuits
on the edges and vertices of certain kinds of geometric solids [5].

However, it was William Rowan Hamilton who exhibited “The Icosian
Game” in 1857 (the game was marketed in 1859) and thus gained so much
publicity for the problem that the problem was named for him. “The Icosian
Game” provided a 20-vertex graph drawn on a board and 20 numbered pegs to
place at the vertices; the object was to place the pegs in the order of a Hamilton
circuit through the vertices of the graph. As a game “The Icosian Game” failed,
but as publicity for a mathematical problem, however unintentionally, it was
very effective. (One of the sources of mathematical interest in this game was
that it serves as a model of a non-commutative algebra (“the Icosian calculus”)
and thus can be viewed as part of “the origin of group theory” [1], an important
part of modern mathematics.)

The traveling salesman problem appears to have been first described some-
time in the 1930s.* The problem became important during the late 1930s, just
as the modern explosive growth of interest in combinatorics began. It was
popularized by Merrill Flood of the RAND Corporation during the next two
decades. The first important paper on the subject appeared in 1954 [1]; in it
the authors George Dantzig, Ray Fulkerson, and Selmer Johnson of the RAND
Corp. showed “that a certain tour of 49 cities, one in each of the [contiguous] 48
states and Washington, D. C., has the shortest road distance” [1]. The work
was carried out using an ingenious combination of linear programming, graph
theory, and map readings.

The study of the TSP has grown enormously since then; a monograph
published in 1985 summarized the subject in 465 pages [6]. The literature on
the problem is still growing rapidly.

* This was perhaps done in a seminar conducted by Hassler Whitney in 1934 [1,3],
although he did not remember the event [1].
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Applications

Even if there were no applications for a solution to the TSP, this problem would
be important. It is an archetypical combinatorial problem: Other difficult
combinatorial problems, such as the problem of finding the size of a smallest
set .S of vertices in a graph G such that every vertex in G is adjacent to a vertex
in S, would be already solved if we could find a solution to the TSP [7]. There
are literally hundreds of such problems [4], and their study has become a huge
mathematical industry.

But there are important applications. We present three of them here.
Others appear in Exercises 10-13, and still more appear in [6, Chapter 2].

Example 3 Schoolbus Routing One of the earliest applications of the
TSP was to the routing of school busses. In 1937, Merrill Flood studied this
problem [1]: Suppose we have decided that a given school bus will pick up the
children in a certain part of the city. What route will allow the bus to visit
each child’s home just once each morning and do so as cheaply as possible?
This is just a restatement of the TSP in terms of a school bus, with children’s
homes for vertices and roads for edges. Its solution may save a school district
thousands of dollars per year. O

Example 4 Electronics In electrical circuit design, it is common for sev-
eral components to be connected electrically to the same terminal (for example,
to the ground terminal). Further, it is common for the components (memory
chips, cpu’s, sockets, etc.) to be placed before the wiring diagram is completed.
For example, memory chips on a computer’s motherboard are generally neatly
aligned in rows and columns on a certain area of the board. Once such compo-
nents are placed on the board, we have a subset of the pins of these components
that must be electrically connected. Now, electricity flows easily in both direc-
tions through a wire, so a tree of wires will serve for the connections, the pins
acting as vertices and the wires as edges. Because the pins on the components
are small and because of the limited space available for printed wires, at most
two printed wires can be connected to each pin. But then the degree of each
vertex is at most two; thus the tree will be a path. Circuit boards are crowded
with wires, so minimizing the total length of wire is necessary both to allow all
of the wires to fit and to keep down the signal transfer time. Thus, in the com-
plete graph on the pins to be connected together, we wish to find a Hamilton
path of shortest length.

This problem can easily be converted into the form of a TSP. Add one new
vertex to the graph, and join it to every other vertex by an edge of length 0.
Then the Hamilton circuits in this augmented graph correspond one-to-one with
Hamilton paths in the complete graph, and a Hamilton circuit in the augmented
graph is shortest if and only if the corresponding Hamilton path in the complete
graph is shortest. (For further information, see Section 2.2 of [6].) O
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Array Clustering

Our third example involves a much more subtle use of the traveling salesman
problem. But we must develop the problem quite far before we can get to the
TSP. (See Section 2.5 of [6] for a more detailed treatment.)

Suppose that both Joe’s Garage and Melissa’s Shop rebuild both engines
and carburetors but do no upholstery work, while Sam’s Repairs and Anne’s
Annex reupholster auto seats and replace headliners but do no engine work. If
we let the first capital letter of each of these companies stand for the company,
and let a stand for engine rebuilding, b for carburetor rebuilding, ¢ for reuphol-
stering auto seats, and d for replacing headliners, we can represent the activities
of these companies in the form of a matrix whose entries are Os and 1s: Each
row corresponds to a company, and each column to a possible activity of the
company. A 1 is in a given row and column if the company carries out that
activity; otherwise a 0 appears there. Then the activities of these companies
are represented by both matrices X; and Xz, using different orderings of the
rows and columns.

a b ¢ d
J /1 1 0 0
M[1 10 0
Xi=g o011
A\N0O 0 1 1
a ¢ b d
J /1 010
S 1o 10 1
X2*M1010
A\N0O 1 0 1

Clearly the representation by matrix Xy is better in that it groups the com-
panies by their activities, or by industry. But matrix Xs is obtained from X3
by merely permuting the rows and columns of X;. If we are to use a matrix
representation such as that shown here, our problem is that of ordering the com-
panies and the activities they might engage in so that we get a matrix like X4
instead of one like X5. This is not hard if there are only a few companies and
activities involved, like we have here. But what if there are hundreds of each?
That is the situation an economist studying the industries of the United States
would face.

In general, let A = [a;;] be an m X n matrix, where each row represents
a company, each column represents a possible activity of a company, a;; = 1 if
company ¢ has experience carrying out activity j, and a;; = 0 if the company
does not have such experience. The matrix A is called a relationship matrix.

In a complex economy, we may set up a relationship matrix and yet find
that, like matrix Xg, it shows very little of the natural clusters, or industries,



Chapter 15 Traveling Salesman Problem 269

that are present. Could we introduce a function which would give a value to
such matrices and which would show, for example, that X; is better than X7
The answer is “yes.” In matrices X3 and Xz, notice that if we go along each
of rows 1, 2, and 3, multiply each entry by the entry immediately below it,
and add all the products, then in X3 we get a sum of 4 while in X we get a
sum of 0. The reason we get a larger value from X; is that the 1s are bunched
together there. The same thing happens if we go down columns 1, 2, and 3,
multiply each entry by the entry to its immediate right, and add the products.
For a general 0, 1-matrix A = [a;;] with m rows and n columns, the obser-
vations of the previous paragraph lead us to the function f(A) given by

m—1 n n—1 m

FA) =" agairi; + > ) aiai .

i=1 j=1 j=1i=1

Notice that f(X1) = [1-141:140-040-0+1-041-040-1+0-140-0+0-0+1-
1+1-1)+[1-14+1-140-0+0-0+1-0+1-04+0-14+0-140-0+0-0+1-14+1-1] =8
while similarly f(Xg2) = 0. Further, if M is the set of all matrices obtainable
from a given matrix M by a mixture of row and column permutations, then we
want to find a matrix M* in M such that f(M*) > f(M') for every M’ € M.
Note: There may be more than one M* that will suffice here. For example,
f(X3) =8 = f(Xy) for the following matrix Xs.

a b ¢ d
S /0 0 1 1
Alo o 1 1
Xs=71110 0
M\1 1 0 0

It is possible to show that the result of any mixture of row and column
permutations of a matrix can be produced by doing a single row permutation
followed by a single column permutation. Further, permuting the rows does not
affect which column a given entry is in. Thus, for example, if

_(a b , _(c d
X_<c d) and X_<a b)’

the interchange of rows 1 and 2 in going from X to X’ leaves a and ¢ in column 1
and b and d in column 2. Likewise, permuting the columns does not affect which
row a given entry is in. Thus, if we can maximize each of

m—1 n

S1(A) =" aijai;

i=1 j=1
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and
n—1 m

=D aiaiger,

j=1i=1

separately, we will maximize f(A).
Now we come to the traveling salesman problem; we will use it as a tool,
and we will use it twice. First, to maximize S, it suffices to minimize

-1 n

m
—S1= ) Y —aiait1y.

i=1 j=1

(This is needed because the TSP asks for a minimum.) Now, given matrix A,
for each row 7 we introduce a vertex . For any two rows k£ and [, we join them
by an undirected edge with weight

n
Cil = E —Ak;al,;-
Jj=1

In the resulting undirected graph G%, each Hamilton path h describes a per-
mutation of the rows of A. Further, if A" = [a},] is formed from A by carrying
out this permutation of the rows for a minimum weight Hamilton path, then

m—1 n

Z Z —0;11

=1 =

is precisely the sum of the weights along h. Since h is a minimum weight
Hamilton path in G%, this means that

m—1

n
/ /
E Qi Qiy1,5

i=1 j=1

is largest among all possible orderings of the rows of A.

Thus the maximum value of this half of f(A) is found by finding a minimum
weight Hamilton path in G%. To convert this method to the TSP (for possible
future solutions of the TSP as discussed before), add one more vertex 0 to G
and join 0 to each other vertex by an edge of weight 0, thus forming graph Gs.
A solution of the TSP in G3 corresponds to a permutation of the rows of A
that maximizes S;. A graph Gj3 for the matrix Xz is shown in Figure 3, with
a Hamilton circuit corresponding to the row ordering of matrix X; shown by
the bold edges. This circuit is read in the order J, M, S, A.
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Figure 3. Graph G35 for the rows of matrix Xa.

We can do a similar thing with Sy, using a graph G4 and starting with
the columns of A for vertices (see Exercise 6). A graph G4 for the matrix Xz
is shown in Figure 4, with a Hamilton circuit corresponding to the column
ordering of matrix X3 shown by the bold edges. This circuit is read in the
order a, b, ¢,d to obtain Xj.

Figure 4. Graph G, for the columns of matrix X,.

Thus the data array rearrangement problem becomes a pair of TSPs.

Example 5 Suppose in polling companies, we obtained the 5 x 6 relationship
matrix Y shown here.

a b c d e f

A/f1 0 0 0 1 0
Bl0O 1 01 0 1
Y=C|1 01 0 1 0
DO 1 0 1 0 1
E\X1 01 0 1 O

Find clusters for the five companies.

Solution:  Following the procedure just described, we form the graph G5 with
vertices 0, A, B, C, D, and E, as shown in Figure 5. Solving the TSP there, we
find the shortest Hamilton circuit shown by the bold edges in Figure 5. This
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corresponds to the ordering B, D, E,C, A of the rows of Y. Reordering the
rows of Y in this way produces Y’.

%

Figure 5. Graph G5 for the rows of matrix Y.

a b c d e f

B/0 1 0 1 0 1

D|IO0O 1 0 1 0 1
Y=FE|1 01 010
c{1 01 010

A\1 0 0 O 1 O

Next, we form the graph Gg with vertices 0,a,b,c,d,e, f, as shown in
Figure 6. Solving the TSP here, we find the shortest Hamilton circuit shown
by the bold edges, corresponding to the ordering f,b,d, e, a,c of the columns
of Y’ as well as of Y. Carrying out this reordering, we get Y.

Y/I _

QoW
SO O ===
[=Nelell )
OO O~ = Q,
— = _0 O 0
e = =R~
O = OO O

Thus we see that companies B and D belong together in an industry car-
rying out activities b, d, and f, while companies A, C, and E belong in another
industry which specializes in activities a, ¢, and e (although company A does
not do activity ¢). Note that f(Y) = 0 while f(Y") = 17. O
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Figure 6. Graph G¢ for the columns of matrix Y.

Reductions

No algorithm is known that has polynomial complexity and solves the TSP.
Worse, it is strongly suspected that no TSP algorithm with polynomial com-
plexity exists. Now, suppose we have selected an algorithm for solving the TSP
and have programmed it for our computer. Since the algorithm does not have
polynomial complexity, even a small reduction in the number of vertices in a
graph we give it could result in a substantial reduction in the time our computer
requires to solve the TSP.

One reduction which is easy to make, although it is not commonly possible,
occurs when the graph G contains a subgraph H as shown in Figure 7, where
vertices a and ¢ may be incident with more edges than those shown, but the
vertices b; with i € {1,2,...,k} meet only the edges shown in the figure.

k Ik+1

Figure 7. A subgraph subject to a Type I reduction.

Then any Hamilton circuit in G contains exactly one of the two paths
a,by,ba, ..., bk_1,bg,cor ¢, b, br_1,...,b2,b1,a. Therefore, we can reduce the
graph G to a graph G’ by replacing the subgraph H with the subgraph H’
shown in Figure 8, where the vertices a and ¢ are as before, but the other
vertices and the edges of H have been replaced by a single vertex ' and the
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four edges shown.

Figure 8. Replacement subgraph produced by the Type I
reduction from Figure 7.

The edge lengths in H' are as follows: edge (a,b’) has length I + s + ... + I,
edge (', ¢) has length I 11, edge (¢, ') has length my, and edge (b, a) has length
mo+mg—+...+mgr1. When a shortest Hamilton circuit has been found in G/,
exactly one of the two paths a,b’, c or ¢,b’, a must be in it, and we can replace
that path by a,b1,b2,...,bx_1,bx,c or ¢, b, bp_1,...,bs,b1,a, respectively, to
obtain a shortest Hamilton circuit in G. Hereafter we will call the reduction of
replacing H with H' a Type I reduction.

Type I reductions are also available in the undirected case, as illustrated
in the following example.

Example 6 Solve the TSP in the 8-vertex graph G7 shown in Figure 9.

Figure 9. Graph G7 subject to a Type I reduction.

Solution:  We can use a Type I reduction to replace the path a, b, ¢, d, e, f with
the path a,b’, f in which the edge {a,b’} is given weight 2 and the edge {¥’, f}
is given weight 1 4+ 3 + 2 + 2 = 8. The result Gg is shown in Figure 10. In Gg,
it is easy to see that there are only two Hamilton circuits, namely a,b’, f, g, h, a
and a,b’, f,h,g,a. Since the first of these has length 25 while the second one
has length 22, the second is clearly the solution to the TSP in Gg. Returning
to Figure 9, b’ is replaced by b,c,d,e to give the shortest Hamilton circuit
a,b,c,d,e, f, h,g,a, having length 22 in G7. O
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Figure 10. Graph Gg obtained from G; by a Type I reduction.

For a second reduction, as illustrated in Figure 11, suppose there is a
subset A of V(G) such that only one edge e = (b,a) is directed from b €
V(G) — A and toward a € A; every other edge joining a vertex in A with a
vertex in V(G) — A is directed toward V(G) — A.

Figure 11. Edge ¢ must be in any Hamilton circuit of G.

Then any Hamilton circuit in G must include edge e since the Hamilton
circuit must cross from V(G) — A to A and only e is available. Hence no edge
incident with b and directed away from b and no edge incident with a and
directed toward a can be in any Hamilton circuit in G. These edges are marked
with an “z” in Figure 11. Since these edges cannot be in a Hamilton circuit
in G, there is no reason to leave them in G. Deleting them from the graph
reduces it; indeed the reduced graph may have a new subset A’ of the same
type. We will call the deletion of unnecessary edges as described here a Type II
reduction.

Example 7 Use reductions of Types I and II to find a Hamilton circuit in
the graph of Figure 12.

Solution:  In Figure 12, we find that we can replace vertices by, ba, and b3
with the single vertex b’ by a Type I reduction, obtaining the graph shown in
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Figure 12. Graph which allows reductions of both Types I
and II.

Figure 13. In Figure 13, we notice four occurrences of a set A suited to a Type II
reduction: A; = {e}, As = {h}, A3 = {i}, and Ay = {a,¥’,c}. In Figures 13
and 14, for set A;, circled by dashed lines, we label the edge uniquely directed
toward or away from A; by e;, and we label all edges deletable by a Type II
reduction as a result of e; by x;.

Figure 13. Graph obtained from Figure 12 by one Type I
reduction.
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After applying Type II reductions to the graph of Figure 13, we get the
graph shown in Figure 14.

ey

Figure 14. Graph obtained from Figure 13 by four Type II
reductions. Vertices d, f, and j yield two required edges, but
Ag and Ag do not result in any edges removed.

There we see three new sets, A5 = {f}, As = {g}, and A7 = {b'}. Each of
these leads to the deletion of one or more further edges, resulting in the unique
Hamilton circuit of Figure 15.

It follows that the graph of Figure 12 has the unique Hamilton circuit

avdv h,g,i,j,e,f, c, b3;b2;b17aa

which is thus the solution of the TSP for this graph no matter what weights
are placed on the edges. O

Approximation Algorithms

Reductions do not always exist in a graph, and even when they do, they may
not reduce the problem enough to make it solvable in a reasonable amount of
time. When a solution must be found in spite of this problem, we may decide
that a good approximation to the minimum solution will suffice.
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b

i
Figure 15. Graph obtained from Figure 14 by 3 Type II
reductions, and a Hamilton circuit in the graph of Figure 13.

Consider, for example, a package delivery company. Whenever the com-
pany has a truck load of packages to send out, the dispatcher has several choices
of routing directions he could give. He could say simply, “Go out and deliver
these packages,” leaving it to the driver of the truck to find the best route to
follow. But the driver might not know the city well, and so he might waste much
time and money going out of the way to make deliveries that could have been
made more efficiently. The dispatcher might instead give the driver a prepared
route to follow. But who will prepare the route, and how? The dispatcher,
at a time when he is directing the movements of 50 other trucks as well? No,
the company provides the dispatcher with a computer programmed to solve the
TSP for each truck that is sent out.

But even now there is a problem. One truck might well have packages to
deliver to more than 100 different addresses. Thus we seem to be asking the
computer to solve the TSP 50 or more times per day on graphs with 100 or
more vertices each. As said before, in general we do not know how to solve this
problem in less than many years per graph. An acceptable compromise would
be to program the computer to spend just a few seconds to find a good, though
not necessarily the best, route. But what does the term “good” mean in this
context? One answer is that, if a shortest route has length k, a route is good
if its length is at most 2k, or some other small constant times k. Formally, we
say we have a performance guarantee in this case.

Definition 2 A performance guarantee for an algorithm A is a theorem
stating that there is a constant ¢ such that, given a graph G with weighted
edges and having a minimum Hamilton circuit of length k, the algorithm A will
find a Hamilton circuit of length at most ck. O
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We have such an approximation algorithm in the case of graphs that satisfy
the triangle inequality.

Definition 3 Let undirected graph G with vertices labeled 1,2, ..., n have
weight ¢;; on edge {i,j} for all adjacent ¢ and j. We say that G satisfies the
triangle inequality if c;; < ¢; + cg; for every choice of 4, j, and k. O

We call this the “triangle inequality” because it is the inequality satisfied
by the lengths of the three edges of a triangle in geometry. Its usefulness comes
from the fact that, if we have a path a, b, c in a complete graph and if the vertex b
is not needed in that path, there is a path of no greater length consisting of the
edge {a,c}

One method of checking a graph to see if it satisfies the triangle inequality
is to find all triangles in the graph, and then to check the sum of the lengths of
each of the pairs of edges of each triangle against the length of the third side.
Doing this in the four triangles a, b, c; a,b,d; a,c,d; and b, ¢, d of the graphs in
Figures 16 and 17, we see that the graph Gy of Figure 16 and graph Gi; of
Figure 17 do satisfy the triangle inequality, while graph G1¢ of Figure 17 does
not (1+ 2 < 6 in triangle a, b, c).

Figure 16. Graph Gy satisfies the triangle inequality.

Figure 17. Graph Gy does not satisfy the triangle inequal-
ity. Graph G1;, obtained from Giy by adding 6 to the weight
of each edge, does satisfy the triangle inequality.



280 Applications of Discrete Mathematics

If G is a graph with finite nonnegative lengths ¢;; on each edge {¢, j}, then
we can form a related graph G’ which satisfies the triangle inequality. To do
this, first let M be a constant such that M > ¢;; for all 7 and j. Then add M
to every edge length in G to form G’. The triangle inequality is satisfied in G’
since

cij + M <M+M<cpp +MA+cpj +M

for every choice of 7, j, and k. Further, not only does G’ satisfy the triangle
inequality, but we do not have to find many triangles and verify the inequality
on each to know that G’ satisfies it.

But the process described in the previous paragraph increases the length
of every Hamilton circuit of G by exactly nM, where n = |V(G)|, so a shortest
Hamilton circuit in G’ has the same edges in the same order as a shortest
Hamilton circuit in G. Hence solving the TSP in G’ solves it in G.

Example 8 For the graph G1g of Figure 17 we can let M = 6. Adding 6 to
the length of each edge of G1g yields the graph G171, thus converting a graph
which does not satisfy the triangle inequality into one that does. The three
Hamilton circuits of G1; and their lengths are

Circuit  Length
a,b,c,d,a 35
a,b,d,c,a 32
a,c,b,d,a 37

The shortest of these is a, b, d, c,a with length 32. Returning to Gig, we see
that Hamilton circuit a, b, d, ¢, a there has length 8 = 32 — 4(6) and it is easy
to check that this is shortest. O

Of course, we have no need for the triangle inequality if we are going to
list all of the Hamilton circuits in the graph and find the shortest one. But
in a complete weighted graph satisfying the triangle inequality, we can find a
Hamilton circuit by a fast algorithm which has a performance guarantee that
the circuit found will be no more than twice the length of a shortest Hamilton
circuit.

Let us denote the weight ¢;; of edge {i,5} by I({¢,7}). Then for any
subgraph H of weighted graph G, we let I(H) =3_ cp s l(€).

Let G be an undirected complete graph with a length ¢;; on each edge.
Suppose these lengths satisfy the triangle inequality. Let T be a minimal span-
ning tree of G (found by using Prim’s algorithm, as described in Section 10.5
of Discrete Mathematics and Its Applications). We will use T' and the triangle
inequality to find a Hamilton circuit C' in G such that [(C) < 2I(T).

In the algorithm Short Circuit, presented next, we begin with a circuit
which includes all of the vertices and which has total length 2I(T) because
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it includes each edge of T' exactly twice. Listing this circuit as a sequence of
vertices, one at a time we delete second occurrences v of vertices, replacing each
with the edge from the vertex immediately before v to the vertex immediately
after v in the sequence. Each time, the circuit length stays the same or is
reduced because the graph satisfies the triangle inequality. For example, for the
graph Gio of Figure 18, we start with the vertex sequence a,b, ¢, b, a. Noting
the presence of a second occurrence of b, we replace it with the edge {c,a}, thus
obtaining the vertex sequence a, b, ¢, a which describes a Hamilton circuit.

a

b 1 ¢

Figure 18. Graph Gi5. T is indicated by bold edges.

ALGORITHM 1 Short Circuit.

procedure Short Circuit(G: weighted complete undirected
graph with n > 3 vertices; T: minimal spanning tree in G)

T’ := graph formed from T by replacing each edge of T' with
two parallel edges
vy := vertex of degree 2 in T”
C := the vertex sequence of an Euler circuit in 7" beginning
at vp
while a vertex other than vy is repeated in C
begin
v := the second occurrence of a vertex other that v in C'
C := C with v omitted
end
end {C is a Hamilton circuit in G and I(C) < 2I(T")}

Example 9 Use the Short Circuit algorithm to find a Hamilton circuit in
the graph G13 of Figure 19.

Solution: Note that Gp3 satisfies the triangle inequality. The edges of a
minimal spanning tree are drawn bold in Figure 19. The circuit C described
in the algorithm is a,b,¢,d,¢,b,a, and [(C) = 2+3+3+3+3+2 = 16.
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Figure 19. Graph Gi3. T is indicated by bold edges.

In this circuit, ¢ is the first vertex that is repeated, so the circuit C' becomes
a,b,c,d,b,a, and then has length 16. Next b is repeated, so the circuit C
becomes a, b, ¢, d, a, having length 12. Note that C is now a Hamilton circuit
in G13. This graph is small enough that we can list all of the Hamilton circuits
in the graph (there are only three) and determine which is shortest. These three
circuits have lengths 12,16, and 18; the one we found is shortest. O

Example 10 Use the Short Circuit algorithm to find a Hamilton circuit in
the graph G; of Figure 1.

Solution:  Since 1 + 2 < 4 in triangle a, b, ¢, this graph does not satisfy the
triangle inequality. So we add M = 7, the largest edge length, to the length of
each edge, obtaining the graph Gi4 of Figure 20. A minimal tree T is shown
in Figure 20 with bold edges. Starting at d, we obtain C' = d, b, c,b,a,e,a,b,d.
Now b is the first repeated vertex, so we change C' into d, b, c,a, e, a,b,d. Next a
is the first repeated vertex, so C' becomes d, b, ¢, a, e, b, d. Finally, b is repeated
again, causing us to change C to d,b,c,a,e,d. This sequence corresponds to
the same Hamilton circuit as the sequence a,c,b,d, e,a of Example 1, having
length 18. While this is not the shortest Hamilton circuit in Gy, it is not bad
and it was quicklv found. O

Figure 20. Graph G4 obtained from graph G; of Figure 1
by adding 7 to the weight of each edge.

Notice in this last example that we did not use the new lengths shown in
Figure 20; even T would use the same edges in G as it does in Gy4. In fact,
for the purposes of algorithm Short Circuit, it is enough to know that the new
lengths can be found, without bothering to actually find them. The real reason
for the requirement that the lengths must satisfy the triangle inequality is to
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allow the proof of the next theorem, which is the performance guarantee for the
algorithm Short Circuit.

Theorem 1 Let G be a weighted complete undirected graph in which the
triangle inequality holds and in which all weights are nonnegative. Let C' be a
circuit obtained by the algorithm Short Circuit. If the minimum length Hamil-
ton circuit in G has length k, then [(C) < 2k.

Proof: Let C’ be a shortest Hamilton circuit in G, and let e be an edge of C’.
Let P = C'—e. Then P is a spanning tree of G. Since T is a minimum spanning
tree of G, we have I(T) < [(P). Hence

1(C) < 2U(T) < 2(P) < 2k. n

Other approximation algorithms that have performance guarantees are de-
scribed in Section 3 of Chapter 5 of [6]. The best of these (Christofides’ algo-
rithm) achieves a constant ¢ = 3/2 as the multiplier of the minimum length &
in the performance guarantee.
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Exercises

1. Solve the traveling salesman problem by listing all of the possible Hamilton
circuits and then choosing the shortest one. Notice sequences of vertices
such as those forced by vertices of degree two; they can be used to reduce
the number of possibilities. Also, use reductions when possible.
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Hint for g) and h): Try working from the two different possible directions
along a, b, ¢, d.
g) h)

2. Use the method shown in this chapter to permute the rows and columns of
the given matrix and thus show the industrial groupings of the companies
and their activities.

A/ 1000 0 b ocd
Af1 100 1
Blo o1 0 1
Bl1 00 11
a) C|0 10 1 0 D el 111 0
Dlo o101 plo 110 0
E\O 1010

3. Use procedure Short Circuit on the following graphs.
a) b)

a

&7
b D ¢
5
*4. Find a minimum cost Hamilton circuit in the following graph. What strat-

egy did you follow? Discuss the weaknesses of your strategy when applied
to large examples.
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*9.

Applications of Discrete Mathematics

. Show that each Hamilton circuit starting at a vertex a in a complete graph

is described by two different permutations of the vertices.

. In array clustering, show how the solution of a TSP in a graph G4 can be

used to find the maximum value of Ss.

. How many different Hamilton circuits are there in K7? One answer, 6!/2,

is given in Discrete Mathematics and Its Applications (see Section 9.5).
Give at least two other answers, discussing how the meaning of the word
“different” changes from one answer to another. Why is the text’s choice
of the meaning of “different” best, or is it?

. Apply procedure Short Circuit to the following graph. Does anything go

wrong? Why?

The following figure shows a different sort of reducible graph, in which C
and D are subgraphs of several vertices each, and a, b, ¢, d are four distinct
vertices. Describe a reduction which will help solve the TSP in this graph
and state how you can use the solution(s) in the reduced graph(s) to find
a solution in the original graph.

In Exercises 10-13, describe the vertices, edges, and edge weights that will
convert the problem into a TSP.

10.

An armored car must visit its list of banks as quickly as possible using
routes thought to be safe.
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11. A rail line from New York to San Francisco must pass through many spec-
ified cities at a minimum cost.

12. A package delivery company with many trucks clusters the deliveries and
assigns a truck to each cluster. Each truck should make its deliveries in
minimum time. Note: In this exercise, we see the TSP as a subproblem of
a larger, even more difficult problem.

13. A commander needs to visit his front line units by the safest possible routes.
Hint: Assign the degree of safety of a route a numerical value.

Computer Projects

1. Write a computer program to find all Type I reductions in a directed graph.
2. Write a computer program to find all Type II reductions in a directed graph.

3. Write a computer program calling on the procedures of Computer Projects
1 and 2 to exactly solve the TSP in a directed graph of at most 50 vertices.



