‘ chl2web Rosen-23111T Rosenweb.cls Aprl 12, 2012 17/:44

Boolean Algebra

1 Boolean T he circuits in computers and other electronic devices have inputs, each of which is either

Functions a0 or a 1, and produce outputs that are also Os and 1s. Circuits can be constructed using
any basic element that has two different states. Such elements include switches that can be
in either the on or the off position and optical devices that can be either lit or unlit. In 1938
Claude Shannon showed how the basic rules of logic, first given by George Boole in 1854 in his
The Laws of Thought, could be used to design circuits. These rules form the basis for Boolean
3 Logic Gates algebra. In this chapter we develop the basic properties of Boolean algebra. The operation of a
circuitis defined by a Boolean function that specifies the value of an output for each set of inputs.
The first step in constructing a circuit is to represent its Boolean function by an expression built
up using the basic operations of Boolean algebra. We will provide an algorithm for producing
such expressions. The expression that we obtain may contain many more operations than are
necessary to represent the function. Later in the chapter we will describe methods for finding an
expression with the minimum number of sums and products that represents a Boolean function.
The procedures that we will develop, Karnaugh maps and the Quine-McCluskey method, are
important in the design of efficient circuits.

2 Representing
Boolean
Functions

4 Minimization
of Circuits

Boolean Functions

Introduction

Boolean algebra provides the operations and the rules for working with the set {0, 1}. Electronic
and optical switches can be studied using this set and the rules of Boolean algebra. The three
operations in Boolean algebra that we will use most are complementation, the Boolean sum, and
the Boolean product. The complement of an element, denoted with a bar, is defined by 0=1
and 1 = 0. The Boolean sum, denoted by + or by OR, has the following values:

I1+1=1, 1+0=1, 0O+1=1, 0+0=0.
The Boolean product, denoted by - or by AND, has the following values:
1-1=1, 1-0=0, 0-1=0, 0-0=0.

When there is no danger of confusion, the symbol - can be deleted, just as in writing algebraic
products. Unless parentheses are used, the rules of precedence for Boolean operators are: first,
all complements are computed, followed by all Boolean products, followed by all Boolean sums.
This is illustrated in Example 1.

EXAMPLE 1 Find the value of 1 - 0+ (0 + 1).

Solution: Using the definitions of complementation, the Boolean sum, and the Boolean product,
it follows that

1-0+0+1)=0+1
=0+0
=0.

‘ chl2web

Rosen-23111" Rosenweb.cls

2 Boolean Algebra

EXAMPLE 2

EXAMPLE 3

Links

April 12,2012 1'7:44

The complement, Boolean sum, and Boolean product correspond to the logical operators,
—, V, and A, respectively, where 0 corresponds to F (false) and 1 corresponds to T (true). Equal-
ities in Boolean algebra can be directly translated into equivalences of compound propositions.
Conversely, equivalences of compound propositions can be translated into equalities in Boolean
algebra. We will see later in this section why these translations yield valid logical equivalences
and identities in Boolean algebra. Example 2 illustrates the translation from Boolean algebra to
propositional logic.

Translate 1 - 0 + (0 + 1) = 0, the equality found in Example 1, into a logical equivalence.
Solution: We obtain a logical equivalence when we translate each 1 into a T, each O into

an F, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each
complementation into a negation. We obtain

(TAF)Vv—(TVF)=F. <

Example 3 illustrates the translation from propositional logic to Boolean algebra.

Translate the logical equivalence (T A T) v —F = T into an identity in Boolean algebra.
Solution: We obtain an identity in Boolean algebra when we translate each T into a 1, each F

into a 0, each disjunction into a Boolean sum, each conjunction into a Boolean product, and
each negation into a complementation. We obtain

1-HD+0=1. <

Boolean Expressions and Boolean Functions

Let B = {0, 1}. Then B" = {(x1, x2,...,x,) | x; € B for 1 <i < n} is the set of all possible
n-tuples of Os and 1s. The variable x is called a Boolean variable if it assumes values only
from B, that is, if its only possible values are 0 and 1. A function from B” to B is called a
Boolean function of degree n.

g CLAUDE ELWOOD SHANNON (1916-2001) Claude Shannon was born in Petoskey, Michigan, and grew up

in Gaylord, Michigan. His father was a businessman and a probate judge, and his mother was a language teacher
and a high school principal. Shannon attended the University of Michigan, graduating in 1936. He continued
his studies at M.I.T., where he took the job of maintaining the differential analyzer, a mechanical computing
device consisting of shafts and gears built by his professor, Vannevar Bush. Shannon’s master’s thesis, written
in 1936, studied the logical aspects of the differential analyzer. This master’s thesis presents the first application
of Boolean algebra to the design of switching circuits; it is perhaps the most famous master’s thesis of the
twentieth century. He received his Ph.D. from M.LT. in 1940. Shannon joined Bell Laboratories in 1940, where
he worked on transmitting data efficiently. He was one of the first people to use bits to represent information. At

Bell Laboratories he worked on determining the amount of traffic that telephone lines can carry. Shannon made many fundamental
contributions to information theory. In the early 1950s he was one of the founders of the study of artificial intelligence. He joined
the MLL.T. faculty in 1956, where he continued his study of information theory.

Shannon had an unconventional side. He is credited with inventing the rocket-powered Frisbee. He is also famous for riding a
unicycle down the hallways of Bell Laboratories while juggling four balls. Shannon retired when he was 50 years old, publishing
papers sporadically over the following 10 years. In his later years he concentrated on some pet projects, such as building a motorized
pogo stick. One interesting quote from Shannon, published in Omni Magazine in 1987, is “I visualize a time when we will be to
robots what dogs are to humans. And I am rooting for the machines.”

‘ch12

web Rosen-23111" Rosenweb.cls

Aprl 12, 2012 1'7:44

EXAMPLE 4

TABLE 1

=
<

F(x,y)

S O = =
S = O =

[

EXAMPLE 5

EXAMPLE 6

110

111

100 101

010

000 001

FIGURE 1

011

1 Boolean Functions 3

The function F(x, y) = xy from the set of ordered pairs of Boolean variables to the set {0, 1} is
a Boolean function of degree 2 with F'(1,1) =0, F(1,0) =1, F(0,1) =0, and F(0,0) = 0.

We display these values of F' in Table 1. <
Boolean functions can be represented using expressions made up from variables and Boolean
operations. The Boolean expressions in the variables x1, x2, ..., x, are defined recursively as
0,1, x1, x2, ..., x, are Boolean expressions;
if E1 and E; are Boolean expressions, then £, (E{E>), and (E| + E3) are Boolean ex-
pressions.

Each Boolean expression represents a Boolean function. The values of this function are obtained
by substituting 0 and 1 for the variables in the expression. In Section 12.2 we will show that
every Boolean function can be represented by a Boolean expression.

Find the values of the Boolean function represented by F(x, y, z) = xy + Z.

Solution: The values of this function are displayed in Table 2. <
TABLE 2
X y z Xy z F(x,y,z2) =xy+2z

S oo O = = = =
S o= = OO = =
S = O = O = O =
S O O O O O = =
—_ 0 = O = O = O
—_ O = O = O = =

Note that we can represent a Boolean function graphically by distinguishing the vertices of
the n-cube that correspond to the n-tuples of bits where the function has value 1.

The function F(x, y, z) = xy + Z from B> to B from Example 5 can be represented by distin-
guishing the vertices that correspond to the five 3-tuples (1, 1, 1), (1, 1, 0), (1,0, 0), (0, 1, 0),
and (0, 0, 0), where F(x, y, z) = 1, as shown in Figure 1. These vertices are displayed using
solid black circles.

Boolean functions F and G of n variables are equal if and only if F (b1, b2, ..., by) =
G(by, by, ..., b,)wheneverby, by, ..., b, belong to B. Two different Boolean expressions that
represent the same function are called equivalent. For instance, the Boolean expressions xy,
xy 4+ 0,and xy - 1 are equivalent. The complement of the Boolean function F is the function F,
where F(x1,...,x,) = F(x1,...,x,). Let F and G be Boolean functions of degree n. The
Boolean sum F + G and the Boolean product F'G are defined by

(F4+G)(x1,...,xp) = F(x1, ..., x0) + G(x1, ..., x3),
(FG)(x1, ..., xp) =F(xt, ..., x0)G(x1, ..., Xp).

A Boolean function of degree two is a function from a set with four elements, namely,
pairs of elements from B = {0, 1}, to B, a set with two elements. Hence, there are 16 different
Boolean functions of degree two. In Table 3 we display the values of the 16 different Boolean
functions of degree two, labeled Fy, F2, ..., Fie.

‘ chl2web

Rosen-23111" Rosenweb.cls

4 Boolean Algebra

Aprl 12, 2012 1'7:44

TABLE 3 The 16 Boolean Functions of Degree Two.
x|y |F | F, | F3 | Fy|Fs | Fg | Fp | Fg| Fy| Fo| Fuiu | Fio | Fi3 | Fua | Fis | Fis
11 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
110 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0|1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
010 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
EXAMPLE 7 How many different Boolean functions of degree n are there?
Solution: From the product rule for counting, it follows that there are 2" different n-tuples
of Os and 1s. Because a Boolean function is an assignment of O or 1 to each of these 2" different
n-tuples, the product rule shows that there are 2% different Boolean functions of degree n. 4
Table 4 displays the number of different Boolean functions of degrees one through six. The
number of such functions grows extremely rapidly.
TABLE 4 The Number of Boolean
Functions of Degree n.
Degree Number
1 4
2 16
3 256
4 65,536
5 4,294,967,296
6 18,446,744,073,709,551,616
Identities of Boolean Algebra
There are many identities in Boolean algebra. The most important of these are displayed in
Table 5. These identities are particularly useful in simplifying the design of circuits. Each of
the identities in Table 5 can be proved using a table. We will prove one of the distributive laws
in this way in Example 8. The proofs of the remaining properties are left as exercises for the
reader.
EXAMPLE 8 Show that the distributive law x(y + z) = xy + xz is valid.

Solution: The verification of this identity is shown in Table 6. The identity holds because the
last two columns of the table agree. <

The reader should compare the Boolean identities in Table 5 to the logical equivalences
in Table 6 of Section 1.3 and the set identities in Table 1 in Section 2.2. All are special cases
of the same set of identities in a more abstract structure. Each collection of identities can
be obtained by making the appropriate translations. For example, we can transform each of
the identities in Table 5 into a logical equivalence by changing each Boolean variable into a
propositional variable, each O into a F, each 1 into a T, each Boolean sum into a disjunction, each
Boolean product into a conjunction, and each complementation into a negation, as we illustrate
in Example 9.

‘ chl2web Rosen-23111" Rosenweb.cls

Compare these Boolean
identities with the logical
equivalences in Section
1.3 and the set identities
in Section 2.2.

EXAMPLE 9

Aprl 12,2012

1'7:44

TABLE 5 Boolean Identities.

Identity Name

X=x Law of the double complement
x+x=x Idempotent laws

X-x=x

x+0=x Identity laws

x-1=x

x+1=1 Domination laws

x-0=0

x+y=y+x Commutative laws

Xy = yx

x+Q+a=x+y) +z
x(yz) = (xy)z

Associative laws

Y+yz=0+y)x+2)
x(y+2) =xy+az

Distributive laws

(xy)=x+7Yy De Morgan’s laws
x+y)=xy

xX+xy=x Absorption laws
x(x+y)=x

x+x=1 Unit property
xx=0 Zero property

Translate the distributive law x 4+ yz = (x 4+ y)(x + z) in Table 5 into a logical equivalence.

1 Boolean Functions

5

Solution: To translate a Boolean identity into a logical equivalence, we change each Boolean
variable into a propositional variable. Here we will change the Boolean variables x, y, and z into
the propositional variables p, g, and r. Next, we change each Boolean sum into a disjunction and
each Boolean product into a conjunction. (Note that O and 1 do not appear in this identity and

TABLE 6 Verifying One of the Distributive Laws.

x y z y+z xy xz x(y+2) xy+xz
1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

‘ chl2web

Rosen-23111" Rosenweb.cls

6 Boolean Algebra

EXAMPLE 10

Extra
Examples <

EXAMPLE 11

EXAMPLE 12

Aprl 12, 2012 1'7:44

complementation also does not appear.) This transforms the Boolean identity into the logical
equivalence

pV@@Ar)=(pVag) AN(pVr).

This logical equivalence is one of the distributive laws for propositional logic in Table 6 in
Section 1.3. <

Identities in Boolean algebra can be used to prove further identities. We demonstrate this
in Example 10.

Prove the absorption law x (x 4 y) = x using the other identities of Boolean algebra shown in
Table 5. (This is called an absorption law because absorbing x + y into x leaves x unchanged.)

Solution: We display steps used to derive this identity and the law used in each step:

x(x+y)=(x—+0)(x 4+ y) Identity law for the Boolean sum

=x+0-y Distributive law of the Boolean sum over the
Boolean product

=x+y-0 Commutative law for the Boolean product
=x-+0 Domination law for the Boolean product
=X Identity law for the Boolean sum. <

Duality

The identities in Table 5 come in pairs (except for the law of the double complement and the unit
and zero properties). To explain the relationship between the two identities in each pair we use
the concept of a dual. The dual of a Boolean expression is obtained by interchanging Boolean
sums and Boolean products and interchanging Os and 1s.

Find the duals of x(y +0) and x - 1 4+ (y + 2).

Solution: Interchanging - signs and + signs and interchanging Os and Is in these expressions
produces their duals. The duals are x + (y - 1) and (x + 0)(¥z), respectively. <

The dual of a Boolean function F represented by a Boolean expression is the function
represented by the dual of this expression. This dual function, denoted by F¢, does not depend on
the particular Boolean expression used to represent F'. Anidentity between functions represented
by Boolean expressions remains valid when the duals of both sides of the identity are taken.
(See Exercise 30 for the reason why this is true.) This result, called the duality principle, is
useful for obtaining new identities.

Construct an identity from the absorption law x (x 4+ y) = x by taking duals.

Solution: Taking the duals of both sides of this identity produces the identity x 4+ xy = x, which
is also called an absorption law and is shown in Table 5. <

‘ chl2web

Rosen-23111" Rosenweb.cls

DEFINITION 1

Aprl 12, 2012 1'7:44

1 Boolean Functions 7

The Abstract Definition of a Boolean Algebra

In this section we have focused on Boolean functions and expressions. However, the results we
have established can be translated into results about propositions or results about sets. Because
of this, it is useful to define Boolean algebras abstractly. Once it is shown that a particular
structure is a Boolean algebra, then all results established about Boolean algebras in general
apply to this particular structure.

Boolean algebras can be defined in several ways. The most common way is to specify the
properties that operations must satisfy, as is done in Definition 1.

A Boolean algebra is a set B with two binary operations V and A, elements 0 and 1, and a
unary operation — such that these properties hold for all x, y, and z in B:

xVv0=x .
Identity laws
xA1l=x
xVvx=1
— Complement laws
xAXx=0

XV Vzi=xV Vv
(y) < (y Z)} Associative laws

EAYAZ=XxA(YyAZ)
XVYy=Yy Vx} Commutative laws
XAYy=YyAX

xVAD=@xVy)AGKVI)

A (y VZ) =@ A y) V(x A Z)} Distributive laws

Using the laws given in Definition 1, it is possible to prove many other laws that hold for every
Boolean algebra, such as idempotent and domination laws. (See Exercises 35-42.)

From our previous discussion, B = {0, 1} with the OR and AND operations and the com-
plement operator, satisfies all these properties. The set of propositions in n variables, with the Vv
and A operators, F and T, and the negation operator, also satisfies all the properties of a Boolean
algebra, as can be seen from Table 6 in Section 1.3. Similarly, the set of subsets of a universal
set U with the union and intersection operations, the empty set and the universal set, and the
set complementation operator, is a Boolean algebra as can be seen by consulting Table 1 in
Section 2.2. So, to establish results about each of Boolean expressions, propositions, and sets,
we need only prove results about abstract Boolean algebras.

Boolean algebras may also be defined using the notion of a lattice, discussed in Chapter 9.
Recall that a lattice L is a partially ordered set in which every pair of elements x, y has a least
upper bound, denoted by lub(x, y) and a greatest lower bound denoted by glb(x, y). Given two
elements x and y of L, we can define two operations V and A on pairs of elements of L by
x Vy=Ilub(x,y)and x Ay = glb(x, y).

For alattice L tobe a Boolean algebra as specified in Definition 1, it must have two properties.
First, it must be complemented. For a lattice to be complemented it must have a least element O
and a greatest element 1 and for every element x of the lattice there must exist an element x such
that x VX = 1 and x A X = 0. Second, it must be distributive. This means that for every x, y,
and zin L, xV(iyAz) =@ Vy)AxVvz) and x A(yVz)=((xAY)V(xAz). Showing
that a complemented, distributive lattice is a Boolean algebra has been left as Supplementary
Exercise 39 in Chapter 9.

‘ chl2web

Rosen-23111" Rosenweb.cls

April 12,2012 1'7:44

8 Boolean Algebra

Exercises

10.

11.

L 12,

13.

. Find the values of these expressions.

a)l-0 bl1+1 ¢ 0-0 d (140

. Find the values, if any, of the Boolean variable x that
satisfy these equations.
a) x-1=0 b) x +x=0
c) x-1=x d) x-x=1

. a) Showthat(1-1)+(0-1+0)=1.

b) Translate the equation in part (a) into a propositional
equivalence by changing each 0 into an F, each 1
into a T, each Boolean sum into a disjunction, each
Boolean product into a conjunction, each complemen-
tation into a negation, and the equals sign into a propo-
sitional equivalence sign.

. a) Show that (1-0) + (1-0) = 1.

b) Translate the equation in part (a) into a propositional
equivalence by changing each O into an F, each 1
into a T, each Boolean sum into a disjunction, each
Boolean product into a conjunction, each complemen-
tation into a negation, and the equals sign into a propo-
sitional equivalence sign.

. Use a table to express the values of each of these Boolean

functions.

a) F(x,y,z) =Xy

b) F(x,y,2) =x+yz

¢) F(x,y,2) =xy+ (xyz)
d) F(x,y,2) =x(yz+y2)

. Use a table to express the values of each of these Boolean

functions.

a) F(x,y,2) =2

b) F(x,y,2) =Xy +Yyz

¢ F(x,y,2) =xyz+ (xyz2)
d) F(x,y,2) =ykxz+x2)

. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 5 by displaying a black circle at each
vertex that corresponds to a 3-tuple where this function
has the value 1.

. Use a 3-cube Q3 to represent each of the Boolean func-

tions in Exercise 6 by displaying a black circle at each
vertex that corresponds to a 3-tuple where this function
has the value 1.

. What values of the Boolean variables x and y satisfy

xy=x-+y?
How many different Boolean functions are there of de-
gree 77

Prove the absorption law x 4+ xy = x using the other laws
in Table 5.

Show that F(x, y, z) = xy + xz + yz has the value 1 if
and only if at least two of the variables x, y, and z have
the value 1.

Show that xy + yz + Xz =Xy + yz + xZ.

Exercises 14-23 deal with the Boolean algebra {0, 1} with ad-
dition, multiplication, and complement defined at the begin-
ning of this section. In each case, use a table as in Example 8.

14.
15.
16.
17.
18.
19.
20.
21.
22,
23.

Verify the law of the double complement.
Verify the idempotent laws.

Verify the identity laws.

Verify the domination laws.

Verify the commutative laws.

Verify the associative laws.

Verify the first distributive law in Table 5.
Verify De Morgan’s laws.

Verify the unit property.

Verify the zero property.

The Boolean operator @, called the XOR operator, is defined
byl®1=0,190=1,001=1,and 06 0 = 0.

24,

25.

26.
27.

28.

*29,

*30.

*31.

*32.

33.

34.

Simplify these expressions.

a) x®0 b) x®1
c) xDx d x®x
Show that these identities hold.

a) x®y=(x+y)(xy)

b) x®y=(xy)+ (xy)

Show thatx @ y = y & x.

Prove or disprove these equalities.

) xd(YP) =Dy Dz

b) x+(@®)=x+y)®x+2)
) xPQY+)=x®))+xd2)

Find the duals of these Boolean expressions.

a) x+y b) xy

¢ xyz+xyz d xz2+x-0+x-1
Suppose that F is a Boolean function represented by a
Boolean expression in the variables x1, . . ., x,. Show that
Fl(x1,...,x,) = F(X1,...,%n).

Show that if F and G are Boolean functions represented

by Boolean expressions in n variables and F' = G, then
F4 = G4, where F? and G are the Boolean functions
represented by the duals of the Boolean expressions rep-
resenting F' and G, respectively. [Hint: Use the result of
Exercise 29.]

How many different Boolean functions F(x, y, z) are
there such that F(x,y,7) = F(x, y, z) for all values of
the Boolean variables x, y, and z?

How many different Boolean functions F(x,y,z) are
there such that F(x, y,z) = F(x,y,z) = F(x, y,7) for
all values of the Boolean variables x, y, and z?

Show that you obtain De Morgan’s laws for propositions
(in Table 6 in Section 1.3) when you transform De Mor-
gan’s laws for Boolean algebra in Table 6 into logical
equivalences.

Show that you obtain the absorption laws for proposi-
tions (in Table 6 in Section 1.3) when you transform the
absorption laws for Boolean algebra in Table 6 into logi-
cal equivalences.

‘ chl2web

Rosen-23111" Rosenweb.cls

Aprl 12, 2012 1'7:44

2 Representing Boolean Functions 9

In Exercises 35-42, use the laws in Definition 1 to show that That is, show that for all x and y, (x Vy) =X Ay and
the stated properties hold in every Boolean algebra. xAY)=X VY.
35. Show that in a Boolean algebra, the idempotent laws 40. Show that in a Boolean algebra, the modular properties

x Vx =xand x A x = x hold for every element x.

36. Show that in a Boolean algebra, every element x has a 41
unique complement X suchthatx VX = landx AX = 0.

hold. That is, show that x A (y V(x A2)) = (x AYy)V
(xAz)andx V(YA VZ)=KVY)ARV2).

. Show that in a Boolean algebra, if x V y = 0, thenx =0
and y =0,and thatif x Ay =1,thenx =land y = 1.

37. Show that in a Boolean algebra, the complement of the 42. Show that in a Boolean algebra, the dual of an iden-

element O is the element 1 and vice versa.

38. Prove that in a Boolean algebra, the law of the double
complement holds; that is, X = x for every element x.

tity, obtained by interchanging the Vv and A operators
and interchanging the elements O and 1, is also a valid
identity.

43. Show that a complemented, distributive lattice is a

39. Show that De Morgan’s laws hold in a Boolean algebra. Boolean algebra.

Representing Boolean Functions

EXAMPLE 1

TABLE 1
x|y|z|F |G
1111010
1117001
11011110
110({0,01]0
O|1]110/0
O 110101
010|110/ 0O0
00101010

Two important problems of Boolean algebra will be studied in this section. The first problem
is: Given the values of a Boolean function, how can a Boolean expression that represents this
function be found? This problem will be solved by showing that any Boolean function can be
represented by a Boolean sum of Boolean products of the variables and their complements. The
solution of this problem shows that every Boolean function can be represented using the three
Boolean operators -, 4+, and ~. The second problem is: Is there a smaller set of operators that
can be used to represent all Boolean functions? We will answer this question by showing that
all Boolean functions can be represented using only one operator. Both of these problems have
practical importance in circuit design.

Sum-of-Products Expansions

We will use examples to illustrate one important way to find a Boolean expression that represents
a Boolean function.

Find Boolean expressions that represent the functions F(x, y, z) and G(x, y, z), which are given
in Table 1.

Solution: An expression that has the value 1 when x = z = 1 and y = 0, and the value 0 other-
wise, is needed to represent F. Such an expression can be formed by taking the Boolean product
of x,y, and z. This product, xyz, has the value 1 if and only if x =y = z = 1, which holds if
andonlyifx =z=1and y =0.

To represent G, we need an expression thatequals 1 whenx =y = landz = 0,orx =z =
0 and y = 1. We can form an expression with these values by taking the Boolean sum of two
different Boolean products. The Boolean product xyz has the value 1 if and only if x =y =1
and z = 0. Similarly, the product Xyz has the value 1 if and only if x =z =0 and y = 1. The
Boolean sum of these two products, xyz + X yz, represents G, because it has the value 1 if and
onlyifx=y=1landz=0,orx =z=0andy = 1. <

Example 1 illustrates a procedure for constructing a Boolean expression representing a
function with given values. Each combination of values of the variables for which the function
has the value 1 leads to a Boolean product of the variables or their complements.

‘ chl2web Rosen-23111T Rosenweb.cls Aprl 12, 2012 17/:44

10 Boolean Algebra

DEFINITION 1 A literal is a Boolean variable or its complement. A minterm of the Boolean variables
X1, X2, ..., X, is a Boolean product y;y, - - - y,, where y; = x; or y; = x;. Hence, a minterm
is a product of n literals, with one literal for each variable.

A minterm has the value 1 for one and only one combination of values of its variables. More
precisely, the minterm y;y> ...y, is | if and only if each y; is 1, and this occurs if and only
if x; = 1 when y; = x; and x; = 0 when y; = X;.

EXAMPLE 2 Find a minterm that equals 1 if x; = x3 = 0 and x; = x4 = x5 = 1, and equals 0 otherwise.

Solution: The minterm X1 x2X3x4x5 has the correct set of values. <

By taking Boolean sums of distinct minterms we can build up a Boolean expression with a
specified set of values. In particular, a Boolean sum of minterms has the value 1 when exactly
one of the minterms in the sum has the value 1. It has the value O for all other combinations of
values of the variables. Consequently, given a Boolean function, a Boolean sum of minterms
can be formed that has the value 1 when this Boolean function has the value 1, and has the
value O when the function has the value 0. The minterms in this Boolean sum correspond to
those combinations of values for which the function has the value 1. The sum of minterms that
represents the function is called the sum-of-products expansion or the disjunctive normal

Links form of the Boolean function.

(See Exercise 42 in Section 1.3 for the development of disjunctive normal form in propo-

sitional calculus.)

EXAMPLE 3 Find the sum-of-products expansion for the function F(x, y, z) = (x + y)zZ.

Extra &= Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we will
Examples < use Boolean identities to expand the product and simplify. We find that
Fx,y,2) =&+ y)z
=xz2+yz Distributive law
=xlz+ 1yz Identity law
=x(y+¥yz+&+X)yz Unit property
=XyZ+xyZ+xyz+Xxyz Distributive law
=xyZ+xyz+xyZ. Idempotent law
Second, we can construct the sum-of-products expansion by determining the values of F for
all possible values of the variables x, y, and z. These values are found in Table 2. The sum-of-

products expansion of F' is the Boolean sum of three minterms corresponding to the three rows
of this table that give the value 1 for the function. This gives

F(x,y,2) =xy7+xyZ+Xxyz. <

It is also possible to find a Boolean expression that represents a Boolean function by taking
a Boolean product of Boolean sums. The resulting expansion is called the conjunctive normal
form or product-of-sums expansion of the function. These expansions can be found from
sum-of-products expansions by taking duals. How to find such expansions directly is described
in Exercise 10.

‘ chl2web

Rosen-23111" Rosenweb.cls

Aprl 12, 2012 1'7:44

2 Representing Boolean Functions 11

TABLE 2
X y z x+y z x+yz
1 1 1 1 0 0
1 1 0 1 1 1
1 0 1 1 0 0
1 0 0 1 1 1
0 1 1 1 0 0
0 1 0 1 1 1
0 0 1 0 0 0
0 0 0 0 1 0

Functional Completeness

Every Boolean function can be expressed as a Boolean sum of minterms. Each minterm is the
Boolean product of Boolean variables or their complements. This shows that every Boolean
function can be represented using the Boolean operators -, +, and ~. Because every Boolean
function can be represented using these operators we say that the set {-, +,” } is functionally
complete. Can we find a smaller set of functionally complete operators? We can do so if one
of the three operators of this set can be expressed in terms of the other two. This can be done
using one of De Morgan’s laws. We can eliminate all Boolean sums using the identity

x+y=XxY,

which is obtained by taking complements of both sides in the second De Morgan law, given in
Table 5 in Section 12.1, and then applying the double complementation law. This means that
the set {-, } is functionally complete. Similarly, we could eliminate all Boolean products using
the identity

Xy =Xx+Y,

which is obtained by taking complements of both sides in the first De Morgan law, given in
Table 5 in Section 12.1, and then applying the double complementation law. Consequently
{4,7 } is functionally complete. Note that the set {4, -} is not functionally complete, be-
cause it is impossible to express the Boolean function F(x) = X using these operators (see
Exercise 19).

We have found sets containing two operators that are functionally complete. Can we find
a smaller set of functionally complete operators, namely, a set containing just one opera-
tor? Such sets exist. Define two operators, the | or NAND operator, defined by 1 | 1 = 0 and
110=0]1=0]0=1; and the | or NOR operator, definedby 1 | 1=1]0=0]1=0
and 0 | 0 = 1. Both of the sets {|} and { | } are functionally complete. To see that {|} is
functionally complete, because {-,” } is functionally complete, all that we have to do is show
that both of the operators - and ~ can be expressed using just the | operator. This can be done as

X =x]|x,

xy=@1[y|&]y).

The reader should verify these identities (see Exercise 14). We leave the demonstration that { | }
is functionally complete for the reader (see Exercises 15 and 16).

‘ chl2web

Rosen-23111T Rosenweb.cls April 12,2012 17/:44

12 Boolean Algebra

Exercises

1. Find a Boolean product of the Boolean variables x, y,
and z, or their complements, that has the value 1 if and

only if
a) x=y=0,z=1. b) x=0,y=1,z=0.
¢c) x=0,y=z=1. d x=y=z=0.

2. Find the sum-of-products expansions of these Boolean
functions.
a) Fx,y)=x+y b) F(x,y)=xy
¢) F(x,y)=1 d Fx,y)=Yy

3. Find the sum-of-products expansions of these Boolean
functions.

a) F(x,y,2)=x+y+z
b) Fx,y,2) = (x +2)y
c) F(x,y,2) =x

d) Fx,y,2)=xy

4. Find the sum-of-products expansions of the Boolean
function F(x, y, z) that equals 1 if and only if
a) x =0. b) xy =0.
¢) x+y=0. d) xyz =0.

5. Find the sum-of-products expansion of the Boolean func-
tion F(w, x,y, z) that has the value 1 if and only if an
odd number of w, x, y, and z have the value 1.

6. Find the sum-of-products expansion of the Boolean func-
tion F(x1, X2, x3, X4, x5) that has the value 1 if and only
if three or more of the variables x1, x2, x3, X4, and x5 have
the value 1.

Another way to find a Boolean expression that represents a
Boolean function is to form a Boolean product of Boolean
sums of literals. Exercises 7-11 are concerned with represen-
tations of this kind.

7. Find a Boolean sum containing either x or X, either y
or y, and either z or z that has the value O if and only if
a) x=y=1,z=0. b) x=y=z=0.

c) x=z=0,y=1.

8. Find a Boolean product of Boolean sums of literals that
has the value O if and only if x =y =1 and z =0,
x=z=0andy = 1,orx =y = z = 0. [Hint: Take the
Boolean product of the Boolean sums found in parts (a),
(b), and (c) in Exercise 7.]

Logic Gates

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Show that the Boolean sum y; 4+ y» + - -- 4+ y,, where

yi = X;j or y; = X;, has the value 0 for exactly one combi-
nation of the values of the variables, namely, when x; = 0
if y; =x; and x; = 1 if y; = Xx;. This Boolean sum is
called a maxterm.

Show that a Boolean function can be represented as
a Boolean product of maxterms. This representation is
called the product-of-sums expansion or conjunctive
normal form of the function. [Hint: Include one max-
term in this product for each combination of the variables
where the function has the value 0.]

Find the product-of-sums expansion of each of the
Boolean functions in Exercise 3.

Express each of these Boolean functions using the oper-
ators - and .

a) x+y+z b) x +y(x +2)

¢ x+y d X(x+y+32)

Express each of the Boolean functions in Exercise 12 us-
ing the operators + and ~.

Show that

a) x =x | x. b) xy=(x[y) x|y
O x+y=xlx)[Iy.

Show that

a) x =x | x.

b) xy=(x{x)! (.

O xty=xInNi&iy.

Show that { | } is functionally complete using Exer-
cise 15.

Express each of the Boolean functions in Exercise 3 using
the operator | .

Express each of the Boolean functions in Exercise 3 using
the operator | .

Show that the set of operators {+, -} is not functionally
complete.

Are these sets of operators functionally complete?
a{+.e} b{ e of e}

Introduction

a Boolean algebra is used to model the circuitry of electronic devices. Each input and each output
Links of such a device can be thought of as a member of the set {0, 1}. A computer, or other electronic
device, is made up of a number of circuits. Each circuit can be designed using the rules of
Boolean algebra that were studied in Sections 12.1 and 12.2. The basic elements of circuits

‘ chl2web

Rosen-23111" Rosenweb.cls

EXAMPLE 1

April 12,2012 1'7:44

3 Logic Gates 13

X X xX+y x ——P Xy
X —}I So0——p
y —Vz : y——P)

(a) Inverter (b) OR gate (c) AND gate

FIGURE 1 Basic Types of Gates.

are called gates, and were introduced in Section 1.2. Each type of gate implements a Boolean
operation. In this section we define several types of gates. Using these gates, we will apply the
rules of Boolean algebra to design circuits that perform a variety of tasks. The circuits that we
will study in this chapter give output that depends only on the input, and not on the current
state of the circuit. In other words, these circuits have no memory capabilities. Such circuits are
called combinational circuits or gating networks.

We will construct combinational circuits using three types of elements. The first is an
inverter, which accepts the value of one Boolean variable as input and produces the complement
of this value as its output. The symbol used for an inverter is shown in Figure 1(a). The input to
the inverter is shown on the left side entering the element, and the output is shown on the right
side leaving the element.

The next type of element we will use is the OR gate. The inputs to this gate are the values
of two or more Boolean variables. The output is the Boolean sum of their values. The symbol
used for an OR gate is shown in Figure 1(b). The inputs to the OR gate are shown on the left
side entering the element, and the output is shown on the right side leaving the element.

The third type of element we will use is the AND gate. The inputs to this gate are the values
of two or more Boolean variables. The output is the Boolean product of their values. The symbol
used for an AND gate is shown in Figure 1(c). The inputs to the AND gate are shown on the left
side entering the element, and the output is shown on the right side leaving the element.

We will permit multiple inputs to AND and OR gates. The inputs to each of these gates are
shown on the left side entering the element, and the output is shown on the right side. Examples
of AND and OR gates with n inputs are shown in Figure 2.

X| ——Pp X
X —’:)_y XpXyeeex, Xy — X Xyt eeet X,
X, —" Xn ._>

FIGURE 2 Gates with n Inputs.

Combinations of Gates

Combinational circuits can be constructed using a combination of inverters, OR gates, and AND
gates. When combinations of circuits are formed, some gates may share inputs. This is shown in
one of two ways in depictions of circuits. One method is to use branchings that indicate all the
gates that use a given input. The other method is to indicate this input separately for each gate.
Figure 3 illustrates the two ways of showing gates with the same input values. Note also that
output from a gate may be used as input by one or more other elements, as shown in Figure 3.
Both drawings in Figure 3 depict the circuit that produces the output xy + Xy.

Construct circuits that produce the following outputs: (a) (x + y)x, (b) X (y +2), and (c) (x +
y+2)(xy2).

Solution: Circuits that produce these outputs are shown in Figure 4. <

‘ chl2web

Rosen-23111" Rosenweb.cls

14 Boolean Algebra

Aprl 12, 2012 1'7:44

FIGURE 3 Two Ways to Draw the Same Circuit.

P —p .

Y > : (x+y) ¥
(a)
X
X

xX(y+72)

X
X+y+z
y -
-)
< »

FIGURE 4 Circuits that Produce the Outputs Specified in Example 1.

‘ chl2web

Rosen-23111" Rosenweb.cls

EXAMPLE 2

Extra
Examples <

EXAMPLE 3

TABLE 1

x |y | Flx,y)

S O = =
S = O =
_ 0 O =

Aprl 12, 2012 1'7:44

3 Logic Gates 15

Examples of Circuits

We will give some examples of circuits that perform some useful functions.

A committee of three individuals decides issues for an organization. Each individual votes either
yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes.
Design a circuit that determines whether a proposal passes.

Solution: Let x =1 if the first individual votes yes, and x = 0 if this individual votes no;
let y = 1 if the second individual votes yes, and y = 0 if this individual votes no; let z = 1
if the third individual votes yes, and z = 0 if this individual votes no. Then a circuit must be
designed that produces the output 1 from the inputs x, y, and z when two or more of x, y,
and z are 1. One representation of the Boolean function that has these output values is
xy + xz + yz (see Exercise 12 in Section 12.1). The circuit that implements this function is
shown in Figure 5. <

FIGURE 5 A Circuit for Majority Voting.

Sometimes light fixtures are controlled by more than one switch. Circuits need to be designed
so that flipping any one of the switches for the fixture turns the light on when it is off and turns
the light off when it is on. Design circuits that accomplish this when there are two switches and
when there are three switches.

Solution: We will begin by designing the circuit that controls the light fixture when two different
switches are used. Let x = 1 when the first switch is closed and x = 0 when it is open, and let
y = 1 when the second switch is closed and y = 0 when it is open. Let F (x, y) = 1 when the
light is on and F(x, y) = 0 when it is off. We can arbitrarily decide that the light will be on
when both switches are closed, so that F'(1, 1) = 1. This determines all the other values of F'.
When one of the two switches is opened, the light goes off, so F(1,0) = F(0, 1) = 0. When
the other switch is also opened, the light goes on, so F'(0, 0) = 1. Table 1 displays these values.
Note that F(x, y) = xy + X y. This function is implemented by the circuit shown in Figure 6.

X ———Pp
y >

D Xy
r——p[>o * 'M_:D—Vx_\wxy

FIGURE 6 A Circuit for a Light Controlled by Two Switches.

y———p

‘ chl2web

Rosen-23111" Rosenweb.cls

16 Boolean Algebra

TABLE 2
x|yl|z| Fx,y,2)
1|11 1
11110 0
110]1 0
1100 1
Of1]1 0
o110 1
0101 1
0(0|0 0

Links

TABLE 3
Input and
Output for the
Half Adder.
Input Output
x|y |s | ¢
1 1 0 1
10| 1]0
o1 |1]0
0/0|01]O0

April 12,2012 1'7:44

\ XYz + XyZ + XyZ + Xyz
| »
Ll

FIGURE 7 A Circuit for a Fixture Controlled by Three Switches.

‘We will now design a circuit for three switches. Let x, y, and z be the Boolean variables that
indicate whether each of the three switches is closed. We let x = 1 when the first switch is closed,
and x = 0 when it is open; y = 1 when the second switch is closed, and y = 0 when it is open;
and z = 1 when the third switch is closed, and z = O whenitis open. Let F (x, y, z) = 1 whenthe
lightisonand F(x, y, z) = 0 when the light is off. We can arbitrarily specify that the light be on
when all three switches are closed, so that F'(1, 1, 1) = 1. This determines all other values of F.
When one switch is opened, the light goes off, so F(1,1,0) = F(1,0,1) = F(0,1,1) =0.
When a second switch is opened, the light goes on, so F(1,0,0) = F(0,1,0) = F(0,0,1) = 1.
Finally, when the third switch is opened, the light goes off again, so F (0, 0, 0) = 0. Table 2
shows the values of this function.

The function F can be represented by its sum-of-products expansion as F(x, y,7) =
xXyzZ + xyz + xyzZ + X yz. The circuit shown in Figure 7 implements this function.

Adders

We will illustrate how logic circuits can be used to carry out addition of two positive integers
from their binary expansions. We will build up the circuitry to do this addition from some
component circuits. First, we will build a circuit that can be used to find x + y, where x and y
are two bits. The input to our circuit will be x and y, because these each have the value O or the
value 1. The output will consist of two bits, namely, s and ¢, where s is the sum bit and c is the
carry bit. This circuit is called a multiple output circuit because it has more than one output.
The circuit that we are designing is called the half adder, because it adds two bits, without
considering a carry from a previous addition. We show the input and output for the half adder
in Table 3. From Table 3 we see that ¢ = xy and that s = xy + Xy = (x 4+ y)(xy). Hence, the
circuit shown in Figure 8 computes the sum bit s and the carry bit ¢ from the bits x and y.

We use the full adder to compute the sum bit and the carry bit when two bits and a carry
are added. The inputs to the full adder are the bits x and y and the carry ¢;. The outputs are the
sum bit s and the new carry c;41. The inputs and outputs for the full adder are shown in Table 4.

‘ chl2web

Rosen-23111T

FIGURE 8 The Half Adder.

Rosenweb.cls

1'7:44

Aprl 12, 2012

x+y

3 Logic Gates 17

§ = Xxyc; + xyc; + Xyc; + xyc;
Sum = (x + y)(xy) c; » N »
o ! *+ 9 P| Half v
x+y)xy
T adder
Xy
Ciy] = Xyc; + xyc;+
X . Ve + xve.
. —P alf Xyc; + xXyc;
Carry = xy dd Xy
y adder -
> P >

FIGURE 9 A Full Adder.

The two outputs of the full adder, the sum bit s and the carry c;41, are given by the sum-

TABLE 4
Input and of-products expansions xyc; + xy¢; + Xy¢; + X y¢; and xyc; + xyc; + xyc; + Xyc;, respec-
Output for tively. However, instead of designing the full adder from scratch, we will use half adders to
the Full Adder. produce the desired output. A full adder circuit using half adders is shown in Figure 9.
Input | Outout Finally, in Figure 10 we show how full and half adders can be used to add the two three-bit
"pu utpu integers (xpx1x0)2 and (y2y1y0)2 to produce the sum (s3525150)2. Note that 53, the highest-order
x|y|ei|s|ecqr | bitinthe sum, is given by the carry cs.
1111 1
1f1jojo| 1 10— Half o » 50
1joj1]0f 1 Yo —Jp] adder > > 5
11001 0 "1 Full
ol1l110 1 adder .
ojt|joft| o | —> >
7 Full
ofo|1|1| o | * P adder
0/0{0|0| O Y2 > Ly 2 =53
FIGURE 10 Adding Two Three-Bit
Integers with Full and Half Adders.
Exercises
In Exercises 1-5 find the output of the given circuit. 3. x >
Y —P

1

‘ chl2web

Rosen-23111T Rosenweb.cls April 12,2012 17/:44

18 Boolean Algebra

6. Construct circuits from inverters, AND gates, and OR

gates to produce these outputs.
a) x+y b) (x + y)x
¢) xyz+xyz d) G+20+2)

7. Design a circuit that implements majority voting for five
individuals.

8. Design a circuit for a light fixture controlled by four
switches, where flipping one of the switches turns the
light on when it is off and turns it off when it is on.

9. Show how the sum of two five-bit integers can be found
using full and half adders.

10. Construct a circuit for a half subtractor using AND gates,
OR gates, and inverters. A half subtractor has two bits
as input and produces as output a difference bit and a
borrow.

11. Construct a circuit for a full subtractor using AND gates,
OR gates, and inverters. A full subtractor has two bits
and a borrow as input, and produces as output a difference
bit and a borrow.

12. Use the circuits from Exercises 10 and 11 to find the dif-
ference of two four-bit integers, where the first integer is
greater than the second integer.

#13. Construct a circuit that compares the two-bit integers
(x1x0)2 and (y1yo0)2, returning an output of 1 when the
first of these numbers is larger and an output of 0 other-
wise.

*14. Construct a circuit that computes the product of the two-
bit integers (x1x0)2 and (y;yo)2. The circuit should have
four output bits for the bits in the product.

ﬂ Minimization of Circuits

Two gates that are often used in circuits are NAND and NOR
gates. When NAND or NOR gates are used to represent cir-
cuits, no other types of gates are needed. The notation for these
gates is as follows:

N x NAND y . xNORy
v —P y

#15. Use NAND gates to construct circuits with these out-

puts.
a) x b) x+y
c) xy d xdy

*16. Use NOR gates to construct circuits for the outputs given
in Exercise 15.

#17. Construct a half adder using NAND gates.

#18. Construct a half adder using NOR gates.

A multiplexer is a switching circuit that produces as output
one of a set of input bits based on the value of control bits.

19. Construct a multiplexer using AND gates, OR gates, and
inverters that has as input the four bits xq, x1, x2, and x3
and the two control bits c¢g and c;. Set up the circuit so
that x; is the output, where i is the value of the two-bit
integer (c1¢p)?2-

The depth of a combinatorial circuit can be defined by spec-
ifying that the depth of the initial input is O and if a gate
has n different inputs at depths dy, da, .. ., dj, respectively,
then its outputs have depth equal to max(dy, da, ..., d,) + 1;
this value is also defined to be the depth of the gate. The depth
of a combinatorial circuit is the maximum depth of the gates
in the circuit.

20. Find the depth of

a) the circuit constructed in Example 2 for majority vot-
ing among three people.

b) the circuit constructed in Example 3 for a light con-
trolled by two switches.

¢) the half adder shown in Figure 8.
d) the full adder shown in Figure 9.

Introduction

The efficiency of a combinational circuit depends on the number and arrangement of its gates. The
process of designing a combinational circuit begins with the table specifying the output for each
combination of input values. We can always use the sum-of-products expansion of a circuit to
find a set of logic gates that will implement this circuit. However, the sum-of-products expansion

‘ chl2web

Rosen-23111" Rosenweb.cls

April 12,2012 1'7:44

4 Minimization of Circuits 19

»E Xyz + xyz

FIGURE 1 Two Circuits with the Same Output.

may contain many more terms than are necessary. Terms in a sum-of-products expansion that
differ in just one variable, so that in one term this variable occurs and in the other term the
complement of this variable occurs, can be combined. For instance, consider the circuit that has
output 1 ifandonlyif x =y =z =1orx =z = 1 and y = 0. The sum-of-products expansion
of this circuit is xyz + xyz. The two products in this expansion differ in exactly one variable,
namely, y. They can be combined as

xyz+xyz=(Q+y)(xz)
=1-(x2)
= XZ.

Hence, xz is a Boolean expression with fewer operators that represents the circuit. We show
two different implementations of this circuit in Figure 1. The second circuit uses only one gate,
whereas the first circuit uses three gates and an inverter.

This example shows that combining terms in the sum-of-products expansion of a circuit
leads to a simpler expression for the circuit. We will describe two procedures that simplify
sum-of-products expansions.

The goal of both procedures is to produce Boolean sums of Boolean products that represent
a Boolean function with the fewest products of literals such that these products contain the
fewest literals possible among all sums of products that represent a Boolean function. Finding
such a sum of products is called minimization of the Boolean function. Minimizing a Boolean
function makes it possible to construct a circuit for this function that uses the fewest gates and
fewest inputs to the AND gates and OR gates in the circuit, among all circuits for the Boolean
expression we are minimizing.

Until the early 1960s logic gates were individual components. To reduce costs it was impor-
tant to use the fewest gates to produce a desired output. However, in the mid-1960s, integrated
circuit technology was developed that made it possible to combine gates on a single chip. Even
though it is now possible to build increasingly complex integrated circuits on chips at low cost,
minimization of Boolean functions remains important.

Reducing the number of gates on a chip can lead to a more reliable circuit and can reduce
the cost to produce the chip. Also, minimization makes it possible to fit more circuits on the
same chip. Furthermore, minimization reduces the number of inputs to gates in a circuit. This
reduces the time used by a circuit to compute its output. Moreover, the number of inputs to a
gate may be limited because of the particular technology used to build logic gates.

The first procedure we will introduce, known as Karnaugh maps (or K-maps), was designed
in the 1950s to help minimize circuits by hand. K-maps are useful in minimizing circuits with
up to six variables, although they become rather complex even for five or six variables. The

‘ chl2web

Rosen-23111" Rosenweb.cls

20 Boolean Algebra

o

Links

FIGURE 2
K-maps in Two
Variables.

EXAMPLE 1

Aprl 12, 2012 1'7:44

second procedure we will describe, the Quine-McCluskey method, was invented in the 1960s.
It automates the process of minimizing combinatorial circuits and can be implemented as a
computer program.

COMPLEXITY OF BOOLEAN FUNCTION MINIMIZATION Unfortunately, minimizing
Boolean functions with many variables is a computationally intensive problem. It has been shown
that this problem is an NP-complete problem (see Section 3.3 and [Ka93]), so the existence of a
polynomial-time algorithm for minimizing Boolean circuits is unlikely. The Quine—-McCluskey
method has exponential complexity. In practice, it can be used only when the number of liter-
als does not exceed ten. Since the 1970s a number of newer algorithms have been developed
for minimizing combinatorial circuits (see [Ha93] and [KaBe04]). However, with the best al-
gorithms yet devised, only circuits with no more than 25 variables can be minimized. Also,
heuristic (or rule-of-thumb) methods can be used to substantially simplify, but not necessarily
minimize, Boolean expressions with a larger number of literals.

Karnaugh Maps

To reduce the number of terms in a Boolean expression representing a circuit, it is necessary
to find terms to combine. There is a graphical method, called a Karnaugh map or K-map,
for finding terms to combine for Boolean functions involving a relatively small number of
variables. The method we will describe was introduced by Maurice Karnaugh in 1953. His
method is based on earlier work by E. W. Veitch. (This method is usually applied only when
the function involves six or fewer variables.) K-maps give us a visual method for simplifying
sum-of-products expansions; they are not suited for mechanizing this process. We will first
illustrate how K-maps are used to simplify expansions of Boolean functions in two variables.
We will continue by showing how K-maps can be used to minimize Boolean functions in three
variables and then in four variables. Then we will describe the concepts that can be used to
extend K-maps to minimize Boolean functions in more than four variables.

There are four possible minterms in the sum-of-products expansion of a Boolean function
in the two variables x and y. A K-map for a Boolean function in these two variables consists
of four cells, where a 1 is placed in the cell representing a minterm if this minterm is present
in the expansion. Cells are said to be adjacent if the minterms that they represent differ in
exactly one literal. For instance, the cell representing Xy is adjacent to the cells representing xy
and X y. The four cells and the terms that they represent are shown in Figure 2.

Find the K-maps for (a) xy + xy, (b) xy + Xy, and (c) xy + Xy + X y.

Solution: We include a 1 in a cell when the minterm represented by this cell is present in the
sum-of-products expansion. The three K-maps are shown in Figure 3.

We can identify minterms that can be combined from the K-map. Whenever there are 1s
in two adjacent cells in the K-map, the minterms represented by these cells can be combined
into a product involving just one of the variables. For instance, xy and X y are represented by
adjacent cells and can be combined into y, because xy + Xy = (x + X)y = y. Moreover, if 1s

MAURICE KARNAUGH (BORN 1924) Maurice Karnaugh, born in New York City, received his B.S. from
the City College of New York and his M.S. and Ph.D. from Yale University. He was a member of the technical
staff at Bell Laboratories from 1952 until 1966 and Manager of Research and Development at the Federal
Systems Division of AT&T from 1966 to 1970. In 1970 he joined IBM as a member of the research staft.
Karnaugh has made fundamental contributions to the application of digital techniques in both computing and
telecommunications. His current interests include knowledge-based systems in computers and heuristic search
methods.

‘ chl2web

Rosen-23111" Rosenweb.cls

EXAMPLE 2

April 12,2012 1'7:44

4 Minimization of Circuits 21

=1
—_
=1
—_
=1
—_
—_

(a) () (©)

FIGURE 3 K-maps for the Sum-of-Products Expansions in Example 1.

are in all four cells, the four minterms can be combined into one term, namely, the Boolean
expression 1 that involves none of the variables. We circle blocks of cells in the K-map that
represent minterms that can be combined and then find the corresponding sum of products. The
goal is to identify the largest possible blocks, and to cover all the 1s with the fewest blocks using
the largest blocks first and always using the largest possible blocks.

Simplify the sum-of-products expansions given in Example 1.

Solution: The grouping of minterms is shown in Figure 4 using the K-maps for these expansions.
Minimal expansions for these sums-of-products are (a) y, (b) xy + Xy, and (¢) x + y. |

y y y y y

T L I
oERonRao

(a) (b) (©

=

=1
=
=l

FIGURE 4 Simplifying the Sum-of-Products Expansions from Example 2.

A K-map in three variables is a rectangle divided into eight cells. The cells represent the
eight possible minterms in three variables. Two cells are said to be adjacent if the minterms that
they represent differ in exactly one literal. One of the ways to form a K-map in three variables
is shown in Figure 5(a). This K-map can be thought of as lying on a cylinder, as shown in
Figure 5(b). On the cylinder, two cells have a common border if and only if they are adjacent.

=1
=
i

sl

il

=1

st

i
=
i
)
i

(a)
(b)

FIGURE 5 K-maps in Three Variables.

‘ chl2web

Rosen-23111" Rosenweb.cls

22 Boolean Algebra

April 12,2012 1'7:44

1
=1

$7 = 497 + W7

(a)

Xz =Xyz + Xyz 7 =xyz +xyz + Xyz +xyz

(b) (©

Ll

=1

X =Xyz +Xyz +Xyz + Xyz 1 = xyz + xyz + xyZ + xyz +
Xyz + Xyz + XyZ + Xyz

(d) (O]

FIGURE 6 Blocks in K-maps in Three Variables.

EXAMPLE 3

To simplify a sum-of-products expansion in three variables, we use the K-map to iden-
tify blocks of minterms that can be combined. Blocks of two adjacent cells represent pairs of
minterms that can be combined into a product of two literals; 2 x 2 and 4 x 1 blocks of cells
represent minterms that can be combined into a single literal; and the block of all eight cells
represents a product of no literals, namely, the function 1. In Figure 6, 1 x 2,2 x 1,2 x 2,4x1,
and 4 x 2 blocks and the products they represent are shown.

The product of literals corresponding to a block of all 1s in the K-map is called an implicant
of the function being minimized. Itis called a prime implicant if this block of 1s is not contained
in a larger block of 1s representing the product of fewer literals than in this product.

The goal is to identify the largest possible blocks in the map and cover all the 1s in the map
with the least number of blocks, using the largest blocks first. The largest possible blocks are
always chosen, but we must always choose a block if it is the only block of 1s covering a 1 in
the K-map. Such a block represents an essential prime implicant. By covering all the 1s in the
map with blocks corresponding to prime implicants we can express the sum of products as a
sum of prime implicants. Note that there may be more than one way to cover all the 1s using
the least number of blocks.

Example 3 illustrates how K-maps in three variables are used.

Use K-maps to minimize these sum-of-products expansions.

@ xyz4+xyz7+xyz+xy7

(b)) xyz4+xyZ74+Xyz+Xyz+XYZ

©) Xyz24+xyZ+ XY+ xYZ+Xy2+XYZ+XVZ
(d) xyz+xyz+xyz+xyz

Solution: The K-maps for these sum-of-products expansions are shown in Figure 7. The group-
ing of blocks shows that minimal expansions into Boolean sums of Boolean products are
(@ xz24+yZ+xyz,)y +xz,(c) x +y + z,and (d) xZ + X y. In part (d) note that the prime
implicants xz and Xy are essential prime implicants, but the prime implicant yz is a
prime implicant that is not essential, because the cells it covers are covered by the other two
prime implicants. <

‘ chl2web Rosen-23111T Rosenweb.cls April 12,2012 17/:44

4 Minimization of Circuits 23

=
-]
-
()

E
(ﬁ
a

FIGURE 7 Using K-maps in Three Variables.

A K-map in four variables is a square that is divided into 16 cells. The cells represent the 16
possible minterms in four variables. One of the ways to form a K-map in four variables is shown
in Figure 8.

Two cells are adjacent if and only if the minterms they represent differ in one literal. Con-
sequently, each cell is adjacent to four other cells. The K-map of a sum-of-products expansion
in four variables can be thought of as lying on a torus, so that adjacent cells have a common
boundary (see Exercise 28). The simplification of a sum-of-products expansion in four variables
is carried out by identifying those blocks of 2, 4, 8, or 16 cells that represent minterms that can be
combined. Each cell representing a minterm must either be used to form a product using fewer
literals, or be included in the expansion. In Figure 9 some examples of blocks that represent
products of three literals, products of two literals, and a single literal are illustrated.

As is the case in K-maps in two and three variables, the goal is to identify the largest
blocks of 1s in the map that correspond to the prime implicants and to cover all the 1s using
the fewest blocks needed, using the largest blocks first. The largest possible blocks are always
used. Example 4 illustrates how K-maps in four variables are used.

wx [wxyz WXyZ WXyZ WXYZ

wx [wxyz WXyZ WXyZ wXyz

=
=i
IS

XyZ WXyZ WwXyz

wx [wxyz WXYZ WXyZ WXyzZ

FIGURE 8 K-maps in Four Variables.

‘ chl2web Rosen-23111" Rosenweb.cls

24 Boolean Algebra

EXAMPLE 4

Aprl 12, 2012 1'7:44

wx wx

wX wX
wx wx
WXZ = WXYZ + WXyzZ WX = WXyz + wXyz +
WXyZ + WXyz
(@) (b)
yZ VZ yZ yZ yZ VZ yZ yZ
wx wx
wx wx
WX WX
WX WX
XZT = Wxyz + wxyz + 7 = WXYZ + WXYZ + WXyZ +
WXyZ + WXyz WXYZ + WXYZ + WXYZ + WXYZ + WXyZ
(c) (d)

FIGURE 9 Blocks in K-maps in Four Variables.

Use K-maps to simplify these sum-of-products expansions.

(@) wxyz +wxyz +wxyz +wxyz +wxyz +wxyz +wxyz +
WXyz +wxyz

) wxyZ +wxyz + wxyz +wxyz +wxyz +wxyz +wxyz

©) wxyz+wxyzZ +wxyz +wxyz +wxyz +wxyz +wxyz +wxyz +
WXYZ +WXyZ +wXxyz

Solution: The K-maps for these expansions are shown in Figure 10. Using the blocks shown
leads to the sum of products (a) wyz +wxz + wxy + wxy + wxyz, (b) yzZ + wxy + Xz, and
(c) 7+ wx + wxy. The reader should determine whether there are other choices of blocks in
each part that lead to different sums of products representing these Boolean functions. <

K-maps can realistically be used to minimize Boolean functions with five or six variables,
but beyond that, they are rarely used because they become extremely complicated. However, the
concepts used in K-maps play an important role in newer algorithms. Furthermore, mastering
these concepts helps you understand these newer algorithms and the computer-aided design
(CAD) programs that implement them. As we develop these concepts, we will be able to illustrate
them by referring back to our discussion of minimization of Boolean functions in three and in
four variables.

The K-maps we used to minimize Boolean functions in two, three, and four variables are
builtusing 2 x 2,2 x 4,and 4 x 4 rectangles, respectively. Furthermore, corresponding cells in
the top row and bottom row and in the leftmost column and rightmost column in each of these

‘ chl2web Rosen-23111" Rosenweb.cls

EXAMPLE 5

EXAMPLE 6

April 12,2012 1'7:44

4 Minimization of Circuits 25

5
’:
5
j

74 yz vz ¥z yZ yz

wx QD wx Kl J wx 1 1
wx @ wx \1/ wx
)

(a) (b

1

N
(H
.
_/

FIGURE 10 Using K-maps in Four Variables.

cases are considered adjacent because they represent minterms differing in only one literal. We
can build K-maps for minimizing Boolean functions in more than four variables in a similar
way. We use a rectangle containing 2/ rows and 2/"/21 columns. (These K-maps contain
2" cells because [n/2] + [n/2] = n.) The rows and columns need to be positioned so that the
cells representing minterms differing in just one literal are adjacent or are considered adjacent
by specifying additional adjacencies of rows and columns. To help (but not entirely) achieve
this, the rows and columns of a K-map are arranged using Gray codes (see Section 10.5), where
we associate bit strings and products by specifying that a 1 corresponds to the appearance of
a variable and a 0 with the appearance of its complement. For example, in a 10-dimensional
K-map, the Gray code 01110 used to label a row corresponds to the product X |x2x3x4X5.

The K-maps we used to minimize Boolean functions with four variables have four rows and
four columns. Both the rows and the columns are arranged using the Gray code 11,10,00,01.
The rows represent products wx, wx, w X, and wx, respectively, and the columns correspond to
the products yz, ¥z, y Z, and yz, respectively. Using Gray codes and considering cells adjacent
in the first and last rows and in the first and last columns, we ensured that minterms that differ
in only one variable are always adjacent. <

To minimize Boolean functions in five variables we use K-maps with 23 = 8 columns and
22 = 4 rows. We label the four rows using the Gray code 11,10,00,01, corresponding to
X1X2, X1X2, X1X2, and X1x2, respectively. We label the eight columns using the Gray code
111,110,100,101,001,000,010,011 corresponding to the terms x3x4Xx5, X3X4X5, X3X4X5, X3X4X5,
X3X4X5,X3X4X5, X3X4X5, and X3x4x5, respectively. Using Gray codes to label columns and rows
ensures that the minterms represented by adjacent cells differ in only one variable. However,
to make sure all cells representing products that differ in only one variable are considered ad-
jacent, we consider cells in the top and bottom rows to be adjacent, as well as cells in the first
and eighth columns, the first and fourth columns, the second and seventh columns, the third and
sixth columns, and the fifth and eighth columns (as the reader should verify). <

To use a K-map to minimize a Boolean function in n variables, we first draw a K-map of
the appropriate size. We place 1s in all cells corresponding to minterms in the sum-of-products
expansion of this function. We then identify all prime implicants of the Boolean function. To do
this we look for the blocks consisting of 2 clustered cells all containing a 1, where 1 < k < n.
These blocks correspond to the product of n — k literals. (Exercise 33 asks the reader to verify
this.) Furthermore, a block of 2% cells each containing a 1 not contained in a block of 2¢*!
cells each containing a 1 represents a prime implicant. The reason that this implicant is a prime
implicant is that no product obtained by deleting a literal is also represented by a block of cells
all containing 1s.

‘ chl2web

Rosen-23111" Rosenweb.cls

26 Boolean Algebra

EXAMPLE 7

Links

EXAMPLE 8

Aprl 12, 2012 1'7:44

A block of eight cells representing a product of two literals in a K-map for minimizing Boolean
functions in five variables all containing 1s is a prime implicant if it is not contained in a larger
block of 16 cells all containing 1s representing a single literal. <

Once all prime implicants have been identified, the goal is to find the smallest possible subset
of these prime implicants with the property that the cells representing these prime implicants
cover all the cells containing a 1 in the K-map. We begin by selecting the essential prime
implicants because each of these is represented by a block that covers a cell containing a 1 that
is not covered by any other prime implicant. We add additional prime implicants to ensure that
all 1s in the K-map are covered. When the number of variables is large, this last step can become
exceedingly complicated.

Don’t Care Conditions

In some circuits we care only about the output for some combinations of input values, be-
cause other combinations of input values are not possible or never occur. This gives us freedom
in producing a simple circuit with the desired output because the output values for all those
combinations that never occur can be arbitrarily chosen. The values of the function for these
combinations are called don’t care conditions. A d is used in a K-map to mark those com-
binations of values of the variables for which the function can be arbitrarily assigned. In the
minimization process we can assign 1s as values to those combinations of the input values that
lead to the largest blocks in the K-map. This is illustrated in Example 8.

One way to code decimal expansions using bits is to use the four bits of the binary expansion
of each digit in the decimal expansion. For instance, 873 is encoded as 100001110011. This
encoding of a decimal expansion is called a binary coded decimal expansion. Because there
are 16 blocks of four bits and only 10 decimal digits, there are six combinations of four bits that
are not used to encode digits. Suppose that a circuit is to be built that produces an output of 1 if
the decimal digit is 5 or greater and an output of 0 if the decimal digit is less than 5. How can
this circuit be simply built using OR gates, AND gates, and inverters?

Solution: Let F(w, x, y, z) denote the output of the circuit, where wxyz is a binary expansion
of a decimal digit. The values of F' are shown in Table 1. The K-map for F, with ds in the
don’t care positions, is shown in Figure 11(a). We can either include or exclude squares with
ds from blocks. This gives us many possible choices for the blocks. For example, excluding
all squares with ds and forming blocks, as shown in Figure 11(b), produces the expression
wxy + wxy + wxz. Including some of the ds and excluding others and forming blocks, as

TABLE 1
Digit w X y z F
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1

‘ chl2web Rosen-23111" Rosenweb.cls

Links

Q

Links

Aprl 12, 2012 1'7:44

4 Minimization of Circuits 27

wx d d d d wx d d d d

(a) (b)

yz Yz yz yz
|
wx d d d w wx d J d d d]
wx Cd d 1 l> wx kd d 1 lj
1

- -

© (d)

FIGURE 11 The K-map for F Showing Its Don’t Care Positions.

shown in Figure 11(c), produces the expression wx + wxy + xyz. Finally, including all the ds
and using the blocks shown in Figure 11(d) produces the simplest sum-of-products expansion
possible, namely, F(x, y,z) = w + xy + xz. <

The Quine-McCluskey Method

We have seen that K-maps can be used to produce minimal expansions of Boolean functions
as Boolean sums of Boolean products. However, K-maps are awkward to use when there are
more than four variables. Furthermore, the use of K-maps relies on visual inspection to identify
terms to group. For these reasons there is a need for a procedure for simplifying sum-of-products
expansions that can be mechanized. The Quine—McCluskey method is such a procedure. It can
be used for Boolean functions in any number of variables. It was developed in the 1950s by
W. V. Quine and E. J. McCluskey, Jr. Basically, the Quine—McCluskey method consists of two

EDWARD J. McCLUSKEY (BORN 1929) Edward McCluskey attended Bowdoin College and M.I.T., where
he received his doctorate in electrical engineering in 1956. He joined Bell Telephone Laboratories in 1955,
remaining there until 1959. McCluskey was professor of electrical engineering at Princeton University from
1959 until 1966, also serving as director of the Computer Center at Princeton from 1961 to 1966. In 1967 he
took a position as professor of computer science and electrical engineering at Stanford University, where he also
served as director of the Digital Systems Laboratory from 1969 to 1978. McCluskey has worked in a variety of

| areas in computer science, including fault-tolerant computing, computer architecture, testing, and logic design.

He is the director of the Center for Reliable Computing at Stanford University where he is now an emeritus
professor. McCluskey is also an ACM Fellow.

‘ chl2web

Rosen-23111T Rosenweb.cls Aprl 12, 2012 17/:44

28 Boolean Algebra

EXAMPLE 9

TABLE 2
Minterm Bit String Number of 1s
xyz 111 3
xyz 101 2
xXyz 011 2
Xyz 001 1
xXyz 000 0

parts. The first part finds those terms that are candidates for inclusion in a minimal expansion
as a Boolean sum of Boolean products. The second part determines which of these terms to
actually use. We will use Example 9 to illustrate how, by successively combining implicants
into implicants with one fewer literal, this procedure works.

We will show how the Quine-McCluskey method can be used to find a minimal expansion
equivalent to

xyz+xyz+xyz+xyz+xyz.

We will represent the minterms in this expansion by bit strings. The first bit will be 1 if x
occurs and 0 if X occurs. The second bit will be 1 if y occurs and 0 if ¥ occurs. The third bit
will be 1 if z occurs and 0 if 7 occurs. We then group these terms according to the number of 1s
in the corresponding bit strings. This information is shown in Table 2.

Minterms that can be combined are those that differ in exactly one literal. Hence, two terms
that can be combined differ by exactly one in the number of 1s in the bit strings that represent
them. When two minterms are combined into a product, this product contains two literals. A
product in two literals is represented using a dash to denote the variable that does not occur. For
instance, the minterms xyz and X yz, represented by bit strings 101 and 001, can be combined
into yz, represented by the string —01. All pairs of minterms that can be combined and the
product formed from these combinations are shown in Table 3.

Next, all pairs of products of two literals that can be combined are combined into one
literal. Two such products can be combined if they contain literals for the same two variables,
and literals for only one of the two variables differ. In terms of the strings representing the
products, these strings must have a dash in the same position and must differ in exactly one
of the other two slots. We can combine the products yz and yz, represented by the strings —11
and —01, into z, represented by the string — —1. We show all the combinations of terms that can
be formed in this way in Table 3.

TABLE 3

Step 1 Step 2

Term Bit String Term String Term String

xyz 111 (1,2) xz 1-1 (12,34 4 -1
xyz 101 (1,3) ¥z 11
Xyz 011 2,4) vz -01
Xz 001 (3.4) Xz 0-1
Xyz 000 (4,5) xy 00—

W A W N =

‘ chl2web Rosen-23111" Rosenweb.cls

S

Links

April 12,2012 1'7:44

4 Minimization of Circuits 29

TABLE 4
xyz xyz xyz Xyz xXyz
Z X X X
Xy X

In Table 3 we also indicate which terms have been used to form products with fewer literals;
these terms will not be needed in a minimal expansion. The next step is to identify a minimal
set of products needed to represent the Boolean function. We begin with all those products that
were not used to construct products with fewer literals. Next, we form Table 4, which has a row
for each candidate product formed by combining original terms, and a column for each original
term; and we put an X in a position if the original term in the sum-of-products expansion was
used to form this candidate product. In this case, we say that the candidate product covers
the original minterm. We need to include at least one product that covers each of the original
minterms. Consequently, whenever there is only one X in a column in the table, the product
corresponding to the row this X is in must be used. From Table 4 we see that both z and X y are
needed. Hence, the final answeris z + X y. <

As was illustrated in Example 9, the Quine—McCluskey method uses this sequence of steps
to simplify a sum-of-products expression.

1. Express each minterm in n variables by a bit string of length » with a 1 in the ith position
if x; occurs and a 0 in this position if X; occurs.

2. Group the bit strings according to the number of 1s in them.

3. Determine all products in n — 1 variables that can be formed by taking the Boolean sum
of minterms in the expansion. Minterms that can be combined are represented by bit
strings that differ in exactly one position. Represent these products in n — 1 variables
with strings that have a 1 in the ith position if x; occurs in the product, a 0 in this position
if X; occurs, and a dash in this position if there is no literal involving x; in the product.

WILLARD VAN ORMAN QUINE (1908-2000) Willard Quine, born in Akron, Ohio, attended Oberlin College
and later Harvard University, where he received his Ph.D. in philosophy in 1932. He became a Junior Fellow
at Harvard in 1933 and was appointed to a position on the faculty there in 1936. He remained at Harvard
his entire professional life, except for World War II, when he worked for the U.S. Navy decrypting messages
from German submarines. Quine was always interested in algorithms, but not in hardware. He arrived at his
discovery of what is now called the Quine—-McCluskey method as a device for teaching mathematical logic,
rather than as a method for simplifying switching circuits. Quine was one of the most famous philosophers of
the twentieth century. He made fundamental contributions to the theory of knowledge, mathematical logic and
set theory, and the philosophies of logic and language. His books, including New Foundations of Mathematical

Logic published in 1937 and Word and Object published in 1960, have had a profound impact. Quine retired from Harvard in 1978
but continued to commute from his home in Beacon Hill to his office there. He used the 1927 Remington typewriter on which he
prepared his doctoral thesis for his entire life. He even had an operation performed on this machine to add a few special symbols,
removing the second period, the second comma, and the question mark. When asked whether he missed the question mark, he
replied, “Well, you see, I deal in certainties.” There is even a word quine, defined in the New Hacker’s Dictionary as a program
that generates a copy of its own source code as its complete output. Producing the shortest possible quine in a given programming
language is a popular puzzle for hackers.

‘ chl2web

Rosen-23111" Rosenweb.cls

30 Boolean Algebra

EXAMPLE 10

April 12,2012 1'7:44

4. Determine all products in n — 2 variables that can be formed by taking the Boolean sum
of the products in n — 1 variables found in the previous step. Products in n — 1 variables
that can be combined are represented by bit strings that have a dash in the same position
and differ in exactly one position.

5. Continue combining Boolean products into products in fewer variables as long as possible.

6. Find all the Boolean products that arose that were not used to form a Boolean product in
one fewer literal.

7. Find the smallest set of these Boolean products such that the sum of these products
represents the Boolean function. This is done by forming a table showing which minterms
are covered by which products. Every minterm must be covered by at least one product.
The first step in using this table is to find all essential prime implicants. Each essential
prime implicant must be included because it is the only prime implicant that covers one of
the minterms. Once we have found essential prime implicants, we can simplify the table
by eliminating the rows for minterms covered by these prime implicants. Furthermore,
we can eliminate any prime implicants that cover a subset of minterms covered by another
prime implicant (as the reader should verify). Moreover, we can eliminate from the table
the row for a minterm if there is another minterm that is covered by a subset of the
prime implicants that cover this minterm. This process of identifying essential prime
implicants that must be included, followed by eliminating redundant prime implicants
and identifying minterms that can be ignored, is iterated until the table does not change.
At this point we use a backtracking procedure to find the optimal solution where we add
prime implicants to the cover to find possible solutions, which we compare to the best
solution found so far at each step.

A final example will illustrate how this procedure is used to simplify a sum-of-products
expansion in four variables.

Use the Quine—McCluskey method to simplify the sum-of-products expansion wxyz + wxyz +
WXYZ +Wxyz +wxyz +wxyz +wx yz.

Solution: We first represent the minterms by bit strings and then group these terms together
according to the number of 1s in the bit strings. This is shown in Table 5. All the Boolean
products that can be formed by taking Boolean sums of these products are shown in Table 6.
The only products that were not used to form products in fewer variables are wz, wyz,
wXxy, and Xyz. In Table 7 we show the minterms covered by each of these products. To cover
these minterms we must include wz and wyz, because these products are the only products that
cover wxyz and wxyz, respectively. Once these two products are included, we see that only
one of the two products left is needed. Consequently, we can take either wz + wyz + wxy or

wz + wyz + Xyz as the final answer. <
TABLE 5
Term Bit String Number of 1s
wxyz 1110 3
wXyz 1011 3
WXYyZ 0111 3
wXyz 1010 2
wxyz 0101 2
wXyz 0011 2
WXz 0001 1

‘ chl2web

Rosen-23111T Rosenweb.cls Aprl 12, 2012 17/:44

4 Minimization of Circuits

Exercises

TABLE 6
Step 1 Step 2
Term Bit String Term String Term String
1 wxyz 1110 (1,4) wyz 1-10 (3,5,6,7) wz 0-—-1
2 wXyz 1011 2,4) wxy 101-
3 wxyz 0111 (2,6) xXyz -011
4 wXyz 1010 3.5) wxz 01-1
5 wxyz 0101 (3,6) wyz 0-11
6 wXyz 0011 5,7) wyz 0-01
7 wXyz 0001 (6,7) WXz 00-1
TABLE 7
wxyz wXxyz wxyz wxyz wxyz wXxyz wxyz
wz X X X X
wyz X
wxy X
Xyz X

1. a) Draw a K-map for a function in two variables and put

a 1 in the cell representing X y.

b) What are the minterms represented by cells adjacent
to this cell?

. Find the sum-of-products expansions represented by each

of these K-maps.

a) y ¥ b) y ¥) y
x| 1 x| 1 1 x| 1 1
x| 1 1 X x| 1 1

. Draw the K-maps of these sum-of-products expansions

in two variables.
a) xy b) xy+Xy
¢ xy+xy+xy+xy

. Use a K-map to find a minimal expansion as a Boolean

sum of Boolean products of each of these functions of the
Boolean variables x and y.

a) xy+xy
b) xy + xy
¢) xy+xy+xy+xy

5. a) Draw a K-map for a function in three variables. Put a

1 in the cell that represents X yz.

b) Which minterms are represented by cells adjacent to

this cell?

6. Use K-maps to find simpler circuits with the same output

as each of the circuits shown.

a)
y

X
y

b) «x

y

N =

N =

I

ERIEE

|

<
<

|

<

E=BE
z

xyz + Xyz

XyZ + X9Z + Xy7 + 332

‘ chl2web

Rosen-23111" Rosenweb.cls

32

10.

11.

12.

13.

14.

April 12,2012

1'7:44

Boolean Algebra

) i poliy
S

. Draw the K-maps of these sum-of-products expansions

in three variables.
a) xyz
€) xyz+Xxyz+Xyz+xyz

b) Xyz+xy7

. Construct a K-map for F(x, y,z) = xz + yz + xyz. Use

this K-map to find the implicants, prime implicants, and
essential prime implicants of F(x, y, 2).

. Construct a K-map for F(x, y, z) = xZ + xyz + yz. Use

this K-map to find the implicants, prime implicants, and
essential prime implicants of F(x, y, 7).

Draw the 3-cube Q3 and label each vertex with the
minterm in the Boolean variables x, y, and z associated
with the bit string represented by this vertex. For each
literal in these variables indicate the 2-cube Q> that is a
subgraph of Q3 and represents this literal.

Draw the 4-cube Q4 and label each vertex with the
minterm in the Boolean variables w, x, y, and z asso-
ciated with the bit string represented by this vertex. For
each literal in these variables, indicate which 3-cube Q3
that is a subgraph of Q4 represents this literal. Indicate
which 2-cube Q> that is a subgraph of Q4 represents the
products wz, Xy, and y 7.

Use a K-map to find a minimal expansion as a Boolean
sum of Boolean products of each of these functions in the
variables x, y, and z.

a) Xyz+xyz

b) xyz+xyz +Xyz +XyzZ

) XYz +xyz+xyz+Xxyz+Xyz

d) xyz +xyz+xy7+Xyz+xXyz+xy2

a) Draw a K-map for a function in four variables. Put a
1 in the cell that represents wxyz.

b) Which minterms are represented by cells adjacent to
this cell?

Use a K-map to find a minimal expansion as a Boolean
sum of Boolean products of each of these functions in the
variables w, x, y, and z.
a) wxyz +wxyz +wxyzZ +wxyzZ + wx yz
b) wxyz + wxyz + wXyz + wxyz + wXxyz + wxyz
) wxyz 4+ wxyzZ + wxyz + wxyz +wxyz +

WXyz + WxXyz +wxyz
d) wxyz + wxyz + wxyz + wxyz + wxyz +

WXYZ +wXyz + wXyz + wxyz

15.

16.

17.

18.

19.

*20.

*21.

22.

23.

24.

25.

*26.

27.

*28.

Find the cells in a K-map for Boolean functions with five
variables that correspond to each of these products.

a) X1X2X3X4 b) Xix3xs C) X3Xx4
d) x3x4 e) x3 f) x5
How many cells in a K-map for Boolean functions

with six variables are needed to represent xi, X1Xxe,
X1X2X6, X2X3X4X5, and x1X2x4X5, respectively?

a) How many cells does a K-map in six variables have?

b) How many cells are adjacent to a given cell in a K-map
in six variables?

Show that cells in a K-map for Boolean functions in
five variables represent minterms that differ in exactly
one literal if and only if they are adjacent or are in cells
that become adjacent when the top and bottom rows and
cells in the first and eighth columns, the first and fourth
columns, the second and seventh columns, the third and
sixth columns, and the fifth and eighth columns are con-
sidered adjacent.

Which rows and which columns of a 4 x 16 map for
Boolean functions in six variables using the Gray codes
1111, 1110, 1010, 1011, 1001, 1000, 0000, 0001, 0011,
0010, 0110, 0111, 0101, 0100, 1100, 1101 to label the
columns and 11, 10, 00, O1 to label the rows need to be
considered adjacent so that cells that represent minterms
that differ in exactly one literal are considered adjacent?

Use K-maps to find a minimal expansion as a Boolean
sum of Boolean products of Boolean functions that have
as input the binary code for each decimal digit and pro-
duce as output a 1 if and only if the digit corresponding
to the input is

a) odd.

¢) not4, 5, or6.
Suppose that there are five members on a committee, but
that Smith and Jones always vote the opposite of Marcus.
Design a circuit that implements majority voting of the
committee using this relationship between votes.

b) not divisible by 3.

Use the Quine—-McCluskey method to simplify the sum-
of-products expansions in Example 3.

Use the Quine-McCluskey method to simplify the sum-
of-products expansions in Exercise 12.

Use the Quine-McCluskey method to simplify the sum-
of-products expansions in Example 4.

Use the Quine—-McCluskey method to simplify the sum-
of-products expansions in Exercise 14.

Explain how K-maps can be used to simplify product-of-
sums expansions in three variables. [Hint: Mark with a 0
all the maxterms in an expansion and combine blocks of
maxterms. |

Use the method from Exercise 26 to simplify the product-
of-sums expansion (x +y+2)(x +y+2)(x +y+72)
x+y+2&E+y+2).

Draw a K-map for the 16 minterms in four Boolean vari-
ables on the surface of a torus.

‘ chl2web

Rosen-23111" Rosenweb.cls

April 12,2012 1'7:44

29. Build a circuit using OR gates, AND gates, and inverters
that produces an output of 1 if a decimal digit, encoded
using a binary coded decimal expansion, is divisible by
3, and an output of 0 otherwise.

In Exercises 30-32 find a minimal sum-of-products expan-

sion, given the K-map shown with don’t care conditions indi-

cated with ds.

30. vz yZ VI ¥z 31. vz Yz VI ¥z
wxld|1|d]1 wx| 1 1
WX d|d WX d| 1
wx d|1 wx 1|d
(2 11d wx| d d

Key Terms and Results

Key Terms and Results 33

32. vz ¥z

33. Show that products of k literals correspond to 2"~ -
dimensional subcubes of the n-cube Q,,, where the ver-
tices of the cube correspond to the minterms represented
by the bit strings labeling the vertices, as described in
Example 8 of Section 10.2.

TERMS

Boolean variable: a variable that assumes only the values 0
and 1

X (complement of x): an expression with the value 1 when x
has the value 0 and the value O when x has the value 1

x - y (or xy) (Boolean product or conjunction of x and y):
an expression with the value 1 when both x and y have the
value 1 and the value 0 otherwise

x + y (Boolean sum or disjunction of x and y): an expres-
sion with the value 1 when either x or y, or both, has the
value 1, and O otherwise

Boolean expressions: the expressions obtained recursively by
specifying that 0, 1, xq, . . ., x,, are Boolean expressions and
E1, (E; + E»), and (E| E;) are Boolean expressions if E
and E; are

dual of a Boolean expression: the expression obtained by in-
terchanging + signs and - signs and interchanging Os and
Is

Boolean function of degree n: a function from B" to B where
B ={0, 1}

Boolean algebra: a set B with two binary operations V and A,
elements 0 and 1, and a complementation operator ~ that
satisfies the identity, complement, associative, commuta-
tive, and distributive laws

literal of the Boolean variable x: either x or X

minterm of xj, x2, ..., Xx,: a Boolean product y;ys--- y,,
where each y; is either x; or X;

sum-of-products expansion (or disjunctive normal form):
the representation of a Boolean function as a disjunction of
minterms

functionally complete: a set of Boolean operators is called
functionally complete if every Boolean function can be rep-
resented using these operators

x | y (or x NAND y): the expression that has the value 0 when
both x and y have the value 1 and the value 1 otherwise

x | y (or x NOR y): the expression that has the value 0 when
either x or y or both have the value 1 and the value O other-
wise

inverter: a device that accepts the value of a Boolean variable
as input and produces the complement of the input

OR gate: a device that accepts the values of two or more
Boolean variables as input and produces their Boolean sum
as output

AND gate: a device that accepts the values of two or more
Boolean variables as input and produces their Boolean prod-
uct as output

half adder: a circuit that adds two bits, producing a sum bit
and a carry bit

full adder: a circuit that adds two bits and a carry, producing
a sum bit and a carry bit

K-map for n variables: a rectangle divided into 2" cells where
each cell represents a minterm in the variables

minimization of a Boolean function: representing a Boolean
function as the sum of the fewest products of literals
such that these products contain the fewest literals possi-
ble among all sums of products that represent this Boolean
function

implicant of a Boolean function: a product of literals with the
property that if this product has the value 1, then the value
of this Boolean function is 1

prime implicant of a Boolean function: a product of literals
that is an implicant of the Boolean function and no product
obtained by deleting a literal is also an implicant of this
function

essential prime implicant of a Boolean function: a prime
implicant of the Boolean function that must be included in
a minimization of this function

don’t care condition: a combination of input values for a cir-
cuit that is not possible or never occurs

RESULTS

The identities for Boolean algebra (see Table 5 in Section 12.1).

‘ch12

web

Rosen-23111T Rosenweb.cls April 12,2012 17/:44

34 Boolean Algebra

Anidentity between Boolean functions represented by Boolean
expressions remains valid when the duals of both sides of
the identity are taken.

Every Boolean function can be represented by a sum-of-
products expansion.

Review Questions

Each of the sets {4, 7} and {-, 7} is functionally complete.

Each of the sets { | } and { | } is functionally complete.

The use of K-maps to minimize Boolean expressions.

The Quine-McCluskey method for minimizing Boolean ex-
pressions.

1. Define a Boolean function of degree n.
2. How many Boolean functions of degree two are there?

3. Give a recursive definition of the set of Boolean expres-
sions.
4. a) What is the dual of a Boolean expression?
b) What is the duality principle? How can it be used to
find new identities involving Boolean expressions?

5. Explain how to construct the sum-of-products expansion
of a Boolean function.

6. a) What does it mean for a set of operators to be func-
tionally complete?
b) Is the set {+, -} functionally complete?
¢) Are there sets of a single operator that are functionally
complete?

7. Explain how to build a circuit for a light controlled by
two switches using OR gates, AND gates, and inverters.

8. Construct a half adder using OR gates, AND gates, and
inverters.

Supplementary Exercises

9. Is there a single type of logic gate that can be used to build
all circuits that can be built using OR gates, AND gates,
and inverters?

10. a) Explain how K-maps can be used to simplify sum-of-
products expansions in three Boolean variables.
b) Use a K-map to simplify the sum-of-products expan-
sion xyz + xyz +xyZ+Xyz+XVyZ.
11. a) Explain how K-maps can be used to simplify sum-of-
products expansions in four Boolean variables.
b) Use a K-map to simplify the sum-of-products ex-
pansion wxyz + wxyzZ + wxyz +wxyz + wxyz +
WX YZ +WxXyz +wxyz +wxyz.
12. a) What is a don’t care condition?
b) Explain how don’t care conditions can be used to build
a circuit using OR gates, AND gates, and inverters
that produces an output of 1 if a decimal digit is 6 or
greater, and an output of 0 if this digit is less than 6.
13. a) Explain how to use the Quine—McCluskey method to
simplify sum-of-products expansions.
b) Use this method to simplify xyz +xyzZ +Xyz +
Xyz+Xxyz.

1. For which values of the Boolean variables x, y, and z does
a) x+y+z=uxyz?
b) x(y+2) = x +y2?
¢) xyz=x+y+7z?

2. Let x and y belong to {0, 1}. Does it necessarily follow
that x = y if there exists a value z in {0, 1} such that
a) xz =yz? b) x+z=y+2?
) xDz=ydz? dxlz=ylz?
e x|z=y|z?

A Boolean function F is called self-dual if and only if

Fxi,...,xy) = F(xq,...,Xx).
3. Which of these functions are self-dual?
a) F(x,y)=x b) F(x,y)=xy+xy

o Flx,y)=x+y d) Fx,y)=xy+xy
4. Give an example of a self-dual Boolean function of three
variables.
*5. How many Boolean functions of degree n are self-dual?
We define the relation < on the set of Boolean functions
of degree n so that F < G, where F and G are Boolean
functions if and only if G(x1,x2,...,x,) =1 whenever
F(xi,x2,...,xp) = 1.

6. Determine whether ' < G or G < F for the following
pairs of functions.
a) F(x,y)=x,G(x,y)=x+y
b) F(X,y)zx‘i‘)’sG(x»)’) =Xy
¢ Flx,y)=X,Gx,y)=x+y

7. Show that if F and G are Boolean functions of degree n,
then
a) F<F+G. b) FG < F.

8. Show thatif F', G, and H are Boolean functions of degree
n,then F +G < Hifandonlyif F < Hand G < H.

*#9, Show that the relation < is a partial ordering on the set of

Boolean functions of degree n.

#10. Draw the Hasse diagram for the poset consisting of the
set of the 16 Boolean functions of degree two (shown in
Table 3 of Section 12.1) with the partial ordering <.

*11. For each of these equalities either prove it is an identity
or find a set of values of the variables for which it does
not hold.
axl(ylad=Klylz
by x{yla=G&lnNlkl
O xlOld=&{ylkiz)

‘ chl2web

Rosen-23111" Rosenweb.cls

April 12,2012 1'7:44

Define the Boolean operator ® as follows: 1 ©1=1,100 =
0,001 =0,and0G0=1.
12. Show thatx © y = xy +xy.
13. Show thatx © y = (x @ y).
14. Show that each of these identities holds.
a) xOx=1 b) x®©x=0
) xOy=y0Oux
15. Isitalways true that (x O y) Oz =x O (y © 2)?
#16. Determine whether the set {©} is functionally complete.

*17. How many of the 16 Boolean functions in two variables
x and y can be represented using only the given set of
operators, variables x and y, and values 0 and 1?

a {1 b{} of+ d{+)
The notation for an XOR gate, which produces the output
x @ y from x and y, is as follows:

3 >—»e

18. Determine the output of each of these circuits.

a)

b)

19. Show how a half adder can be constructed using fewer
gates than are used in Figure 8 of Section 12.3 when XOR
gates can be used in addition to OR gates, AND gates, and
inverters.

20. Design a circuit that determines whether three or more
of four individuals on a committee vote yes on an issue,
where each individual uses a switch for the voting.

Computer Projects

Computer Projects 35

A threshold gate produces an output y that is either 0
or 1 given a set of input values for the Boolean variables
X1, X2, ..., Xp. A threshold gate has a threshold value T,
which is a real number, and weights wy, wo, ..., w,, each of
which is a real number. The output y of the threshold gate is 1
if and only if wix1 + woxy + - - - + wyx, > T. The threshold
gate with threshold value T and weights wy, wa, ..., wy, istep-
resented by the following diagram. Threshold gates are useful
in modeling in neurophysiology and in artificial intelligence.

Xn

21. A threshold gate represents a Boolean function. Find a
Boolean expression for the Boolean function represented
by this threshold gate.

x|

22. A Boolean function that can be represented by a thresh-
old gate is called a threshold function. Show that each
of these functions is a threshold function.

a) Fx)=x b) Fx,y)=x+y
¢) F(x,y)=xy d Fix,y)=x1y
e Flx,y)=x1y f) F(x,y,2) =x+yz
g Fw,x,y,2)=w+xy+2z
h) F(w,x,y,z) = wxz+ xyz
*#23, Show that F'(x, y) = x @ y is not a threshold function.
*24. Show that F(w, x,y,z) = wx + yz is not a threshold
function.

Write programs with these input and output.

1. Given the values of two Boolean variables x and y, find
the valuesof x + y, xy, x ® y,x | y,and x | y.

2. Construct a table listing the set of values of all 256
Boolean functions of degree three.

3. Given the values of a Boolean function in n variables,
where n is a positive integer, construct the sum-of-
products expansion of this function.

4. Given the table of values of a Boolean function, express
this function using only the operators - and

5. Given the table of values of a Boolean function, express
this function using only the operators + and .

*6. Given the table of values of a Boolean function, express
this function using only the operator | .

‘ch12

web

Rosen-23111" Rosenweb.cls

April 12,2012 1'7:44

36 Boolean Algebra

*

**10.

7.

8.

9.

Given the table of values of a Boolean function, express
this function using only the operator | .

Given the table of values of a Boolean function of degree
three, construct its K-map.

Given the table of values of a Boolean function of degree
four, construct its K-map.

Given the table of values of a Boolean function, use the

Computations and Explorations

11.

12.

Quine-McCluskey method to find a minimal sum-of-
products representation of this function.
Given a threshold value and a set of weights for a thresh-

old gate and the values of the n Boolean variables in the
input, determine the output of this gate.

Given a positive integer n, construct a random Boolean
expression in n variables in disjunctive normal form.

Use a computational program or programs you have written to do these exercises.

w

. Compute the number of Boolean functions of degrees

seven, eight, nine, and ten.

. Construct a table of the Boolean functions of degree three.

. Construct a table of the Boolean functions of degree four.

. Express each of the different Boolean expressions in three

variables in disjunctive normal form with just the NAND
operator, using as few NAND operators as possible. What
is the largest number of NAND operators required?

. Express each of the different Boolean expressions in dis-

junctive normal form in four variables using just the NOR

Writing Projects

operator, with as few NOR operators as possible. What is
the largest number of NOR operators required?

. Randomly generate 10 different Boolean expressions in

four variables and determine the average number of steps
required to minimize them using the Quine—McCluskey
method.

. Randomly generate 10 different Boolean expressions in

five variables and determine the average number of steps
required to minimize them using the Quine—McCluskey
method.

Respond to these with essays using outside sources.

. Describe some of the early machines devised to solve

problems in logic, such as the Stanhope Demonstrator,
Jevons’s Logic Machine, and the Marquand Machine.

. Explain the difference between combinational circuits

and sequential circuits. Then explain how flip-flops are
used to build sequential circuits.

. Define a shift register and discuss how shift registers are

used. Show how to build shift registers using flip-flops
and logic gates.

. Show how multipliers can be built using logic gates.

. Find out how logic gates are physically constructed. Dis-

cuss whether NAND and NOR gates are used in building
circuits.

. Explain how dependency notation can be used to describe

complicated switching circuits.

10.

11.

12.

. Describe how multiplexers are used to build switching

circuits.

. Explain the advantages of using threshold gates to con-

struct switching circuits. Illustrate this by using threshold
gates to construct half and full adders.

. Describe the concept of hazard-free switching circuits and

give some of the principles used in designing such circuits.

Explain how to use K-maps to minimize functions of six
variables.

Discuss the ideas used by newer methods for minimiz-
ing Boolean functions, such as Espresso. Explain how
these methods can help solve minimization problems in
as many as 25 variables.

Describe what is meant by the functional decomposition
of a Boolean function of n variables and discuss proce-
dures for decomposing Boolean functions into a compo-
sition of Boolean functions with fewer variables.

