
CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

Modeling Computation

1 Languages
and
Grammars

2 Finite-State
Machines
with Output

3 Finite-State
Machines
with No
Output

4 Language
Recognition

5 Turing
Machines

Computers can perform many tasks. Given a task, two questions arise. The first is: Can it
be carried out using a computer? Once we know that this first question has an affirmative

answer, we can ask the second question: How can the task be carried out? Models of computation
are used to help answer these questions.

We will study three types of structures used in models of computation, namely, grammars,
finite-state machines, and Turing machines. Grammars are used to generate the words of a
language and to determine whether a word is in a language. Formal languages, which are
generated by grammars, provide models both for natural languages, such as English, and for
programming languages, such as Pascal, Fortran, Prolog, C, and Java. In particular, grammars
are extremely important in the construction and theory of compilers. The grammars that we will
discuss were first used by the American linguist Noam Chomsky in the 1950s.

Various types of finite-state machines are used in modeling. All finite-state machines have
a set of states, including a starting state, an input alphabet, and a transition function that assigns
a next state to every pair of a state and an input. The states of a finite-state machine give it
limited memory capabilities. Some finite-state machines produce an output symbol for each
transition; these machines can be used to model many kinds of machines, including vending
machines, delay machines, binary adders, and language recognizers. We will also study finite-
state machines that have no output but do have final states. Such machines are extensively used
in language recognition. The strings that are recognized are those that take the starting state
to a final state. The concepts of grammars and finite-state machines can be tied together. We
will characterize those sets that are recognized by a finite-state machine and show that these are
precisely the sets that are generated by a certain type of grammar.

Finally, we will introduce the concept of a Turing machine. We will show how Turing
machines can be used to recognize sets. We will also show how Turing machines can be used
to compute number-theoretic functions. We will discuss the Church–Turing thesis, which states
that every effective computation can be carried out using a Turing machine. We will explain
how Turing machines can be used to study the difficulty of solving certain classes of problems.
In particular, we will describe how Turing machines are used to classify problems as tractable
versus intractable and solvable versus unsolvable.

1 Languages and Grammars

Introduction

Words in the English language can be combined in various ways. The grammar of English tells
us whether a combination of words is a valid sentence. For instance, the frog writes neatly is
a valid sentence, because it is formed from a noun phrase, the frog, made up of the article the
and the noun frog, followed by a verb phrase, writes neatly, made up of the verb writes and the
adverb neatly. We do not care that this is a nonsensical statement, because we are concerned
only with the syntax, or form, of the sentence, and not its semantics, or meaning. We also note
that the combination of words swims quickly mathematics is not a valid sentence because it does
not follow the rules of English grammar.

The syntax of a natural language, that is, a spoken language, such as English, French,
German, or Spanish, is extremely complicated. In fact, it does not seem possible to specify all
the rules of syntax for a natural language. Research in the automatic translation of one language

1

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

2 Modeling Computation

to another has led to the concept of a formal language, which, unlike a natural language, is
specified by a well-defined set of rules of syntax. Rules of syntax are important not only in
linguistics, the study of natural languages, but also in the study of programming languages.

We will describe the sentences of a formal language using a grammar. The use of grammars
helps when we consider the two classes of problems that arise most frequently in applications
to programming languages: (1) How can we determine whether a combination of words is a
valid sentence in a formal language? (2) How can we generate the valid sentences of a formal
language? Before giving a technical definition of a grammar, we will describe an example of
a grammar that generates a subset of English. This subset of English is defined using a list of
rules that describe how a valid sentence can be produced. We specify that

1. a sentence is made up of a noun phrase followed by a verb phrase;
2. a noun phrase is made up of an article followed by an adjective followed by a noun,

or
3. a noun phrase is made up of an article followed by a noun;
4. a verb phrase is made up of a verb followed by an adverb, or
5. a verb phrase is made up of a verb;
6. an article is a, or
7. an article is the;
8. an adjective is large, or
9. an adjective is hungry;

10. a noun is rabbit, or
11. a noun is mathematician;
12. a verb is eats, or
13. a verb is hops;
14. an adverb is quickly, or
15. an adverb is wildly.

From these rules we can form valid sentences using a series of replacements until no more rules
can be used. For instance, we can follow the sequence of replacements:

sentence
noun phrase verb phrase
article adjective noun verb phrase
article adjective noun verb adverb
the adjective noun verb adverb
the large noun verb adverb
the large rabbit verb adverb
the large rabbit hops adverb
the large rabbit hops quickly

to obtain a valid sentence. It is also easy to see that some other valid sentences are: a hungry
mathematician eats wildly, a large mathematician hops, the rabbit eats quickly, and so on. Also,
we can see that the quickly eats mathematician is not a valid sentence.

Phrase-Structure Grammars

Before we give a formal definition of a grammar, we introduce a little terminology.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

1 Languages and Grammars 3

DEFINITION 1 A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word (or
sentence) over V is a string of finite length of elements of V . The empty string or null string,
denoted by λ, is the string containing no symbols. The set of all words over V is denoted
by V ∗. A language over V is a subset of V ∗.

Note that λ, the empty string, is the string containing no symbols. It is different from ∅, the
empty set. It follows that {λ} is the set containing exactly one string, namely, the empty string.

Languages can be specified in various ways. One way is to list all the words in the language.
Another is to give some criteria that a word must satisfy to be in the language. In this section, we
describe another important way to specify a language, namely, through the use of a grammar,
such as the set of rules we gave in the introduction to this section. A grammar provides a
set of symbols of various types and a set of rules for producing words. More precisely, a
grammar has a vocabulary V , which is a set of symbols used to derive members of the language.
Some of the elements of the vocabulary cannot be replaced by other symbols. These are called
terminals, and the other members of the vocabulary, which can be replaced by other symbols,
are called nonterminals. The sets of terminals and nonterminals are usually denoted by T

and N , respectively. In the example given in the introduction of the section, the set of terminals
is {a, the, rabbit, mathematician, hops, eats, quickly, wildly}, and the set of nonterminals is
{sentence, noun phrase, verb phrase, adjective, article, noun, verb, adverb}. There is a
special member of the vocabulary called the start symbol, denoted by S, which is the element
of the vocabulary that we always begin with. In the example in the introduction, the start symbol

The notion of a
phrase-structure
grammar extends
the concept of a
rewrite system
devised by Axel Thue
in the early 20th
century.

is sentence. The rules that specify when we can replace a string from V ∗, the set of all strings
of elements in the vocabulary, with another string are called the productions of the grammar.
We denote by z0 → z1 the production that specifies that z0 can be replaced by z1 within a
string. The productions in the grammar given in the introduction of this section were listed.
The first production, written using this notation, is sentence → noun phrase verb phrase. We
summarize this terminology in Definition 2.

DEFINITION 2 A phrase-structure grammar G = (V , T , S, P) consists of a vocabulary V , a subset T

of V consisting of terminal symbols, a start symbol S from V , and a finite set of pro-
ductions P . The set V − T is denoted by N . Elements of N are called nonterminal symbols.
Every production in P must contain at least one nonterminal on its left side.

EXAMPLE 1 Let G = (V , T , S, P), where V = {a, b, A, B, S}, T = {a, b}, S is the start symbol, and P =
{S → ABa, A → BB, B → ab, AB → b}. G is an example of a phrase-structure grammar. ▲

We will be interested in the words that can be generated by the productions of a phrase-
structure grammar.

DEFINITION 3 Let G = (V , T , S, P) be a phrase-structure grammar. Let w0 = lz0r (that is, the concate-
nation of l, z0, and r) and w1 = lz1r be strings over V . If z0 → z1 is a production of G,
we say that w1 is directly derivable from w0 and we write w0 ⇒ w1. If w0, w1, . . . , wn are
strings over V such that w0 ⇒ w1, w1 ⇒ w2, . . . , wn−1 ⇒ wn, then we say that wn is derivable
from w0, and we write w0

∗⇒ wn. The sequence of steps used to obtain wn from w0 is called
a derivation.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

4 Modeling Computation

EXAMPLE 2 The string Aaba is directly derivable from ABa in the grammar in Example 1 because
B → ab is a production in the grammar. The string abababa is derivable from ABa be-
cause ABa ⇒ Aaba ⇒ BBaba ⇒ Bababa ⇒ abababa, using the productions B → ab, A → BB,
B → ab, and B → ab in succession. ▲

DEFINITION 4 Let G = (V , T , S, P) be a phrase-structure grammar. The language generated by G (or the
language of G), denoted by L(G), is the set of all strings of terminals that are derivable from
the starting state S. In other words,

L(G) = {w ∈ T ∗ | S ∗⇒ w}.

In Examples 3 and 4 we find the language generated by a phrase-structure grammar.

EXAMPLE 3 Let G be the grammar with vocabulary V = {S, A, a, b}, set of terminals T = {a, b}, starting
symbol S, and productions P = {S → aA, S → b, A → aa}. What is L(G), the language of
this grammar?

Solution: From the start state S we can derive aA using the production S → aA. We can
also use the production S → b to derive b. From aA the production A → aa can be used to
derive aaa. No additional words can be derived. Hence, L(G) = {b, aaa}. ▲

EXAMPLE 4 Let G be the grammar with vocabulary V = {S, 0, 1}, set of terminals T = {0, 1}, starting sym-
bol S, and productions P = {S → 11S, S → 0}. What is L(G), the language of this grammar?

Solution: From S we can derive 0 using S → 0, or 11S using S → 11S. From 11S we can
derive either 110 or 1111S. From 1111S we can derive 11110 and 111111S. At any stage of a
derivation we can either add two 1s at the end of the string or terminate the derivation by adding
a 0 at the end of the string. We surmise that L(G) = {0, 110, 11110, 1111110, . . . }, the set of
all strings that begin with an even number of 1s and end with a 0. This can be proved using
an inductive argument that shows that after n productions have been used, the only strings of
terminals generated are those consisting of n − 1 concatenations of 11 followed by 0. (This is
left as an exercise for the reader.) ▲

The problem of constructing a grammar that generates a given language often arises. Ex-
amples 5, 6, and 7 describe problems of this kind.

EXAMPLE 5 Give a phrase-structure grammar that generates the set {0n1n | n = 0, 1, 2, . . . }.
Solution: Two productions can be used to generate all strings consisting of a string of 0s followed
by a string of the same number of 1s, including the null string. The first builds up successively
longer strings in the language by adding a 0 at the start of the string and a 1 at the end. The second
production replaces S with the empty string. The solution is the grammar G = (V , T , S, P),
where V = {0, 1, S}, T = {0, 1}, S is the starting symbol, and the productions are

S → 0S1
S → λ.

The verification that this grammar generates the correct set is left as an exercise for the
reader. ▲

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

1 Languages and Grammars 5

Example 5 involved the set of strings made up of 0s followed by 1s, where the number
of 0s and 1s are the same. Example 6 considers the set of strings consisting of 0s followed
by 1s, where the number of 0s and 1s may differ.

EXAMPLE 6 Find a phrase-structure grammar to generate the set {0m1n | m and n are nonnegative integers}.
Solution: We will give two grammars G1 and G2 that generate this set. This will illustrate that
two grammars can generate the same language.

The grammar G1 has alphabet V = {S, 0, 1}; terminals T = {0, 1}; and productions S → 0S,
S → S1, and S → λ. G1 generates the correct set, because using the first production m times
puts m 0s at the beginning of the string, and using the second production n times puts n 1s at
the end of the string. The details of this verification are left to the reader.

The grammar G2 has alphabet V = {S, A, 0, 1}; terminals T = {0, 1}; and productions
S → 0S, S → 1A, S → 1, A → 1A, A → 1, and S → λ. The details that this grammar gen-
erates the correct set are left as an exercise for the reader. ▲

Sometimes a set that is easy to describe can be generated only by a complicated grammar.
Example 7 illustrates this.

EXAMPLE 7 One grammar that generates the set {0n1n2n | n = 0, 1, 2, 3, . . . } is G = (V , T , S, P)

with V = {0, 1, 2, S, A, B, C}; T = {0, 1, 2}; starting state S; and productions S → C,
C → 0CAB, S → λ, BA → AB, 0A → 01, 1A → 11, 1B → 12, and 2B → 22. We leave
it as an exercise for the reader (Exercise 12) to show that this statement is correct. The grammar
given is the simplest type of grammar that generates this set, in a sense that will be made clear
later in this section. ▲

Types of Phrase-Structure Grammars

Phrase-structure grammars can be classified according to the types of productions that are al-
lowed. We will describe the classification scheme introduced by Noam Chomsky. In Section 13.4
we will see that the different types of languages defined in this scheme correspond to the classes
of languages that can be recognized using different models of computing machines.

A type 0 grammar has no restrictions on its productions. A type 1 grammar can have
productions of the form w1 → w2, where w1 = lAr and w2 = lwr, where A is a nonterminal
symbol, l and r are strings of zero or more terminal or nonterminal symbols, and w is a nonempty
string of terminal or nonterminal symbols. It can also have the production S → λ as long
as S does not appear on the right-hand side of any other production. A type 2 grammar can
have productions only of the form w1 → w2, where w1 is a single symbol that is not a terminal
symbol. A type 3 grammar can have productions only of the form w1 → w2 with w1 = A and
either w2 = aB or w2 = a, where A and B are nonterminal symbols and a is a terminal symbol,
or with w1 = S and w2 = λ.

Type 2 grammars are called context-free grammars because a nonterminal symbol that is
the left side of a production can be replaced in a string whenever it occurs, no matter what else is
in the string.A language generated by a type 2 grammar is called a context-free language. When
there is a production of the form lw1r → lw2r (but not of the form w1 → w2), the grammar is
called type 1 or context-sensitive because w1 can be replaced by w2 only when it is surrounded
by the strings l and r . A language generated by a type 1 grammar is called a context-sensitive
language. Type 3 grammars are also called regular grammars. A language generated by a
regular grammar is called regular. Section 13.4 deals with the relationship between regular
languages and finite-state machines.

Of the four types of grammars we have defined, context-sensitive grammars have the most
complicated definition. Sometimes, these grammars are defined in a different way. A production
of the form w1 → w2 is called noncontracting if the length of w1 is less than or equal to the

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

6 Modeling Computation

length of w2. According to our characterization of context-senstive languages, every production
in a type 1 grammar, other than the production S → λ, if it is present, is noncontracting. It follows
that the lengths of the strings in a derivation in a context-sensitive language are nondecreasing
unless the production S → λ is used. This means that the only way for the empty string to belong
to the language generated by a context-sensitive grammar is for the production S → λ to be
part of the grammar. The other way that context-sensitive grammars are defined is by specifying
that all productions are noncontracting. A grammar with this property is called noncontracting
or monotonic. The class of noncontracting grammars is not the same as the class of context-
sensitive grammars. However, these two classes are closely related; it can be shown that they
define the same set of languages except that noncontracting grammars cannot generate any
language containing the empty string λ.

EXAMPLE 8 From Example 6 we know that {0m1n | m, n = 0, 1, 2, . . . } is a regular language, because it can
be generated by a regular grammar, namely, the grammar G2 in Example 6. ▲

Context-free and regular grammars play an important role in programming languages.
Context-free grammars are used to define the syntax of almost all programming languages.
These grammars are strong enough to define a wide range of languages. Furthermore, efficient
algorithms can be devised to determine whether and how a string can be generated. Regular
grammars are used to search text for certain patterns and in lexical analysis, which is the process
of transforming an input stream into a stream of tokens for use by a parser.

EXAMPLE 9 It follows from Example 5 that {0n1n | n = 0, 1, 2, . . . } is a context-free language, because the
productions in this grammar are S → 0S1 and S → λ. However, it is not a regular language.
This will be shown in Section 13.4. ▲

EXAMPLE 10 The set {0n1n2n | n = 0, 1, 2, . . . } is a context-sensitive language, because it can be generated
by a type 1 grammar, as Example 7 shows, but not by any type 2 language. (This is shown in
Exercise 28 in the supplementary exercises at the end of the chapter.) ▲

Table 1 summarizes the terminology used to classify phrase-structure grammars.

Derivation Trees

A derivation in the language generated by a context-free grammar can be represented graphically
using an ordered rooted tree, called a derivation, or parse tree. The root of this tree represents
the starting symbol. The internal vertices of the tree represent the nonterminal symbols that
arise in the derivation. The leaves of the tree represent the terminal symbols that arise. If the
production A → w arises in the derivation, where w is a word, the vertex that represents A has
as children vertices that represent each symbol in w, in order from left to right.

TABLE 1 Types of Grammars.

Type Restrictions on Productions w1 → w2

0 No restrictions

1 w1 = lAr and w2 = lwr, where A ∈ N , l, r, w ∈ (N ∪ T)∗ and w �= λ;

or w1 = S and w2 = λ as long as S is not on the right-hand side of another production

2 w1 = A, where A is a nonterminal symbol

3 w1 = A and w2 = aB or w2 = a, where A ∈ N , B ∈ N , and a ∈ T ; or w1 = S and w2 = λ

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

1 Languages and Grammars 7

sentence

noun phrase verb phrase

adjectivearticle noun verb adverb

hungrythe rabbit eats quickly

FIGURE 1 A Derivation Tree.

EXAMPLE 11 Construct a derivation tree for the derivation of the hungry rabbit eats quickly, given in the
introduction of this section.

Solution: The derivation tree is shown in Figure 1. ▲

The problem of determining whether a string is in the language generated by a context-free
grammar arises in many applications, such as in the construction of compilers. Two approaches
to this problem are indicated in Example 12.

EXAMPLE 12 Determine whether the word cbab belongs to the language generated by the grammar G =
(V , T , S, P), where V = {a, b, c, A, B, C, S}, T = {a, b, c}, S is the starting symbol, and the
productions are

S → AB

A → Ca

B → Ba

B → Cb

B → b

C → cb

C → b.

Solution: One way to approach this problem is to begin with S and attempt to derive cbab using a
series of productions. Because there is only one production with S on its left-hand side, we must
start with S ⇒ AB. Next we use the only production that has A on its left-hand side, namely,
A → Ca, to obtain S ⇒ AB ⇒ CaB. Because cbab begins with the symbols cb, we use the
production C → cb. This gives us S ⇒ AB ⇒ CaB ⇒ cbaB. We finish by using the production
B → b, to obtain S ⇒ AB ⇒ CaB ⇒ cbaB ⇒ cbab. The approach that we have used is called
top-down parsing, because it begins with the starting symbol and proceeds by successively
applying productions.

There is another approach to this problem, called bottom-up parsing. In this approach, we
work backward. Because cbab is the string to be derived, we can use the production C → cb, so

AVRAM NOAM CHOMSKY (BORN 1928) Noam Chomsky, born in Philadelphia, is the son of a Hebrew
scholar. He received his B.A., M.A., and Ph.D. in linguistics, all from the University of Pennsylvania. He was
on the staff of the University of Pennsylvania from 1950 until 1951. In 1955 he joined the faculty at M.I.T.,
beginning his M.I.T. career teaching engineers French and German. Chomsky is currently the Ferrari P. Ward
Professor of foreign languages and linguistics at M.I.T. He is known for his many fundamental contributions
to linguistics, including the study of grammars. Chomsky is also widely known for his outspoken political
activism.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

8 Modeling Computation

that Cab ⇒ cbab. Then, we can use the production A → Ca, so that Ab ⇒ Cab ⇒ cbab. Using the
production B → b gives AB ⇒ Ab ⇒ Cab ⇒ cbab. Finally, using S → AB shows that a complete
derivation for cbab is S ⇒ AB ⇒ Ab ⇒ Cab ⇒ cbab. ▲

Backus–Naur Form

There is another notation that is sometimes used to specify a type 2 grammar, called the
Backus–Naur form (BNF), after John Backus, who invented it, and Peter Naur, who refined
it for use in the specification of the programming language ALGOL. (Surprisingly, a notation

The ancient Indian
grammarian Pan. ini
specified Sanskrit using
3959 rules; Backus-Naur
form is sometimes called
Backus-Pan. ini form.

quite similar to the Backus–Naur form was used approximately 2500 years ago to describe
the grammar of Sanskrit.) The Backus–Naur form is used to specify the syntactic rules of
many computer languages, including Java. The productions in a type 2 grammar have a single
nonterminal symbol as their left-hand side. Instead of listing all the productions separately,
we can combine all those with the same nonterminal symbol on the left-hand side into one
statement. Instead of using the symbol → in a production, we use the symbol ::=. We enclose
all nonterminal symbols in brackets, 〈 〉, and we list all the right-hand sides of productions in
the same statement, separating them by bars. For instance, the productions A → Aa, A → a,
and A → AB can be combined into 〈A〉 ::= 〈A〉a | a | 〈A〉〈B〉.

Example 13 illustrates how the Backus–Naur form is used to describe the syntax of pro-
gramming languages. Our example comes from the original use of Backus–Naur form in the
description of ALGOL 60.

JOHN BACKUS (1924–2007) John Backus was born in Philadelphia and grew up in Wilmington, Delaware.
He attended the Hill School in Pottstown, Pennsylvania. He needed to attend summer school every year because
he disliked studying and was not a serious student. But he enjoyed spending his summers in New Hampshire
where he attended summer school and amused himself with summer activities, including sailing. He obliged
his father by enrolling at the University of Virginia to study chemistry. But he quickly decided chemistry was
not for him, and in 1943 he entered the army, where he received medical training and worked in a neurosurgery
ward in an army hospital. Ironically, Backus was soon diagnosed with a bone tumor in his skull and was fitted
with a metal plate. His medical work in the army convinced him to try medical school, but he abandoned this
after nine months because he disliked the rote memorization required. After dropping out of medical school,

he entered a school for radio technicians because he wanted to build his own high fidelity set. A teacher in this school recognized his
potential and asked him to help with some mathematical calculations needed for an article in a magazine. Finally, Backus found what
he was interested in: mathematics and its applications. He enrolled at Columbia University, from which he received both bachelor’s
and master’s degrees in mathematics. Backus joined IBM as a programmer in 1950. He participated in the design and development
of two of IBM’s early computers. From 1954 to 1958 he led the IBM group that developed FORTRAN. Backus became a staff
member at the IBM Watson Research Center in 1958. He was part of the committees that designed the programming language
ALGOL, using what is now called the Backus–Naur form for the description of the syntax of this language. Later, Backus worked
on the mathematics of families of sets and on a functional style of programming. Backus became an IBM Fellow in 1963, and he
received the National Medal of Science in 1974 and the prestigious Turing Award from the Association of Computing Machinery in
1977.

PETER NAUR (BORN 1928) Peter Naur was born in Frederiksberg, near Copenhagen. As a boy he became
interested in astronomy. Not only did he observe heavenly bodies, but he also computed the orbits of comets
and asteroids. Naur attended Copenhagen University, receiving his degree in 1949. He spent 1950 and 1951 in
Cambridge, where he used an early computer to calculate the motions of comets and planets. After returning to
Denmark he continued working in astronomy but kept his ties to computing. In 1955 he served as a consultant
to the building of the first Danish computer. In 1959 Naur made the switch from astronomy to computing as
a full-time activity. His first job as a full-time computer scientist was participating in the development of the
programming language ALGOL. From 1960 to 1967 he worked on the development of compilers for ALGOL
and COBOL. In 1969 he became professor of computer science at Copenhagen University, where he has worked

in the area of programming methodology. His research interests include the design, structure, and performance of computer programs.
Naur has been a pioneer in both the areas of software architecture and software engineering. He rejects the view that computer
programming is a branch of mathematics and prefers that computer science be called datalogy.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

1 Languages and Grammars 9

EXAMPLE 13 In ALGOL 60 an identifier (which is the name of an entity such as a variable) consists of a string
of alphanumeric characters (that is, letters and digits) and must begin with a letter. We can use
these rules in Backus–Naur to describe the set of allowable identifiers:

〈identifier〉 ::= 〈letter〉 | 〈identifier〉〈letter〉 | 〈identifier〉〈digit〉
〈letter〉 ::= a | b | · · · | y | z the ellipsis indicates that all 26 letters are included
〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For example, we can produce the valid identifier x99a by using the first rule to replace 〈identifier〉
by 〈identifier〉〈letter〉, the second rule to obtain 〈identifier〉a, the first rule twice to obtain
〈identifier〉〈digit〉〈digit〉a, the third rule twice to obtain 〈identifier〉99a, the first rule to obtain
〈letter〉99a, and finally the second rule to obtain x99a. ▲

EXAMPLE 14 What is the Backus–Naur form of the grammar for the subset of English described in the
introduction to this section?

Solution: The Backus–Naur form of this grammar is

〈sentence〉 ::= 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 ::= 〈article〉〈adjective〉〈noun〉 | 〈article〉〈noun〉
〈verb phrase〉 ::= 〈verb〉〈adverb〉 | 〈verb〉
〈article〉 ::= a | the
〈adjective〉 ::= large | hungry
〈noun〉 ::= rabbit | mathematician
〈verb〉 ::= eats | hops
〈adverb〉 ::= quickly | wildly

▲

EXAMPLE 15 Give the Backus–Naur form for the production of signed integers in decimal notation. (A signed
integer is a nonnegative integer preceded by a plus sign or a minus sign.)

Solution: The Backus–Naur form for a grammar that produces signed integers is

〈signed integer〉 ::= 〈sign〉〈integer〉
〈sign〉 ::= + | −
〈integer〉 ::= 〈digit〉 | 〈digit〉〈integer〉
〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

▲

The Backus–Naur form, with a variety of extensions, is used extensively to specify the
syntax of programming languages, such as Java and LISP; database languages, such as SQL;
and markup languages, such as XML. Some extensions of the Backus–Naur form that are
commonly used in the description of programming languages are introduced in the preamble to
Exercise 34.

Exercises

Exercises 1–3 refer to the grammar with start symbol sen-
tence, set of terminals T = {the, sleepy, happy, tortoise, hare,
passes, runs, quickly, slowly}, set of nonterminals N = {noun
phrase, transitive verb phrase, intransitive verb phrase,
article, adjective, noun, verb, adverb}, and productions:

sentence → noun phrase transitive verb phrase
noun phrase

sentence → noun phrase intransitive verb phrase
noun phrase → article adjective noun
noun phrase → article noun
transitive verb phrase → transitive verb
intransitive verb phrase → intransitive verb adverb
intransitive verb phrase → intransitive verb
article → the

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

10 Modeling Computation

adjective → sleepy
adjective → happy
noun → tortoise
noun → hare
transitive verb → passes
intransitive verb → runs
adverb → quickly
adverb → slowly

1. Use the set of productions to show that each of these sen-
tences is a valid sentence.
a) the happy hare runs
b) the sleepy tortoise runs quickly
c) the tortoise passes the hare
d) the sleepy hare passes the happy tortoise

2. Find five other valid sentences, besides those given in
Exercise 1.

3. Show that the hare runs the sleepy tortoise is not a valid
sentence.

4. Let G = (V , T , S, P) be the phrase-structure grammar
with V = {0, 1, A, S}, T = {0, 1}, and set of produc-
tions P consisting of S → 1S, S → 00A, A → 0A,
and A → 0.
a) Show that 111000 belongs to the language generated

by G.
b) Show that 11001 does not belong to the language gen-

erated by G.
c) What is the language generated by G?

5. Let G = (V , T , S, P) be the phrase-structure grammar
with V = {0, 1, A, B, S}, T = {0, 1}, and set of pro-
ductions P consisting of S → 0A, S → 1A, A → 0B,
B → 1A, B → 1.
a) Show that 10101 belongs to the language generated

by G.
b) Show that 10110 does not belong to the language gen-

erated by G.
c) What is the language generated by G?

∗6. Let V = {S, A, B, a, b} and T = {a, b}. Find the lan-
guage generated by the grammar (V , T , S, P) when the
set P of productions consists of
a) S → AB, A → ab, B → bb.
b) S → AB, S → aA, A → a, B → ba.
c) S → AB, S → AA, A → aB, A → ab, B → b.
d) S → AA, S → B, A → aaA, A → aa, B → bB,

B → b.
e) S → AB, A → aAb, B → bBa, A → λ, B → λ.

7. Construct a derivation of 0313 using the grammar given
in Example 5.

8. Show that the grammar given in Example 5 generates the
set {0n1n | n = 0, 1, 2, . . . }.

9. a) Construct a derivation of 0214 using the grammar G1
in Example 6.

b) Construct a derivation of 0214 using the grammar G2
in Example 6.

10. a) Show that the grammar G1 given in Example 6 gen-
erates the set {0m1n | m, n = 0, 1, 2, . . . }.

b) Show that the grammar G2 in Example 6 generates
the same set.

11. Construct a derivation of 021222 in the grammar given in
Example 7.

∗12. Show that the grammar given in Example 7 generates the
set {0n1n2n | n = 0, 1, 2, . . . }.

13. Find a phrase-structure grammar for each of these lan-
guages.
a) the set consisting of the bit strings 0, 1, and 11
b) the set of bit strings containing only 1s
c) the set of bit strings that start with 0 and end with 1
d) the set of bit strings that consist of a 0 followed by an

even number of 1s
14. Find a phrase-structure grammar for each of these lan-

guages.
a) the set consisting of the bit strings 10, 01, and 101
b) the set of bit strings that start with 00 and end with

one or more 1s
c) the set of bit strings consisting of an even number

of 1s followed by a final 0
d) the set of bit strings that have neither two consecutive

0s nor two consecutive 1s
∗15. Find a phrase-structure grammar for each of these lan-

guages.
a) the set of all bit strings containing an even number

of 0s and no 1s
b) the set of all bit strings made up of a 1 followed by an

odd number of 0s
c) the set of all bit strings containing an even number

of 0s and an even number of 1s
d) the set of all strings containing 10 or more 0s and no

1s
e) the set of all strings containing more 0s than 1s
f) the set of all strings containing an equal number of 0s

and 1s
g) the set of all strings containing an unequal number

of 0s and 1s
16. Construct phrase-structure grammars to generate each of

these sets.
a) {1n | n ≥ 0} b) {10n | n ≥ 0}
c) {(11)n | n ≥ 0}

17. Construct phrase-structure grammars to generate each of
these sets.
a) {0n | n ≥ 0} b) {1n0 | n ≥ 0}
c) {(000)n | n ≥ 0}

18. Construct phrase-structure grammars to generate each of
these sets.
a) {012n | n ≥ 0}
b) {0n12n | n ≥ 0}
c) {0n1m0n | m ≥ 0 and n ≥ 0}

19. Let V = {S, A, B, a, b} and T = {a, b}. Determine
whether G = (V , T , S, P) is a type 0 grammar but not
a type 1 grammar, a type 1 grammar but not a type 2
grammar, or a type 2 grammar but not a type 3 grammar
if P, the set of productions, is
a) S → aAB, A → Bb, B → λ.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

1 Languages and Grammars 11

b) S → aA, A → a, A → b.
c) S → ABa, AB → a.
d) S → ABA, A → aB, B → ab.
e) S → bA, A → B, B → a.
f) S → aA, aA → B, B → aA, A → b.
g) S → bA, A → b, S → λ.
h) S → AB, B → aAb, aAb → b.
i) S → aA, A → bB, B → b, B → λ.
j) S → A, A → B, B → λ.

20. A palindrome is a string that reads the same backward
as it does forward, that is, a string w, where w = wR ,
where wR is the reversal of the string w. Find a context-
free grammar that generates the set of all palindromes
over the alphabet {0, 1}.

∗21. Let G1 and G2 be context-free grammars, generating
the languages L(G1) and L(G2), respectively. Show
that there is a context-free grammar generating each of
these sets.
a) L(G1) ∪ L(G2) b) L(G1)L(G2)
c) L(G1)*

22. Find the strings constructed using the derivation trees
shown here.

sentence

noun phrase verb phrase

adjectivearticle noun verb adverb

largea mathematician hops wildly

signed integer

sign integer

+ digit integer

9 integer

digit

digit

8

7

23. Construct derivation trees for the sentences in Exercise 1.
24. Let G be the grammar with V = {a, b, c, S}; T =

{a, b, c}; starting symbol S; and productions S → abS,
S → bcS, S → bbS, S → a, and S → cb. Construct
derivation trees for
a) bcbba. b) bbbcbba.
c) bcabbbbbcb.

∗25. Use top-down parsing to determine whether each of the
following strings belongs to the language generated by
the grammar in Example 12.
a) baba b) abab

c) cbaba d) bbbcba
∗26. Use bottom-up parsing to determine whether the strings

in Exercise 25 belong to the language generated by the
grammar in Example 12.

27. Construct a derivation tree for −109 using the grammar
given in Example 15.

28. a) Explain what the productions are in a grammar if the
Backus–Naur form for productions is as follows:

〈expression〉 ::= (〈expression〉) |
〈expression〉 + 〈expression〉 |
〈expression〉 ∗ 〈expression〉 |
〈variable〉

〈variable〉 ::= x | y

b) Find a derivation tree for (x ∗ y) + x in this grammar.

29. a) Construct a phrase-structure grammar that generates
all signed decimal numbers, consisting of a sign, ei-
ther + or −; a nonnegative integer; and a decimal
fraction that is either the empty string or a decimal
point followed by a positive integer, where initial ze-
ros in an integer are allowed.

b) Give the Backus–Naur form of this grammar.

c) Construct a derivation tree for −31.4 in this grammar.

30. a) Construct a phrase-structure grammar for the set of all
fractions of the form a/b, where a is a signed integer
in decimal notation and b is a positive integer.

b) What is the Backus–Naur form for this grammar?

c) Construct a derivation tree for +311/17 in this gram-
mar.

31. Give production rules in Backus–Naur form for an iden-
tifier if it can consist of
a) one or more lowercase letters.

b) at least three but no more than six lowercase letters.

c) one to six uppercase or lowercase letters beginning
with an uppercase letter.

d) a lowercase letter, followed by a digit or an under-
score, followed by three or four alphanumeric char-
acters (lower or uppercase letters and digits).

32. Give production rules in Backus–Naur form for the name
of a person if this name consists of a first name, which is
a string of letters, where only the first letter is uppercase;
a middle initial; and a last name, which can be any string
of letters.

33. Give production rules in Backus–Naur form that gener-
ate all identifiers in the C programming language. In C
an identifier starts with a letter or an underscore (_) that
is followed by one or more lowercase letters, uppercase
letters, underscores, and digits.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

12 Modeling Computation

Several extensions to Backus–Naur form are commonly used
to define phrase-structure grammars. In one such extension, a
question mark (?) indicates that the symbol, or group of sym-
bols inside parentheses, to its left can appear zero or once (that
is, it is optional), an asterisk (*) indicates that the symbol to
its left can appear zero or more times, and a plus (+) indi-
cates that the symbol to its left can appear one or more times.
These extensions are part of extended Backus–Naur form
(EBNF), and the symbols ?, *, and + are called metacharac-
ters. In EBNF the brackets used to denote nonterminals are
usually not shown.
34. Describe the set of strings defined by each of these sets

of productions in EBNF.
a) string ::= L+D?L+

L ::= a | b | c

D ::= 0 | 1
b) string ::= sign D+ | D+

sign ::= + | −
D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

c) string ::= L∗(D+)?L∗
L ::= x | y

D ::= 0 | 1
35. Give production rules in extended Backus–Naur form that

generate all decimal numerals consisting of an optional
sign, a nonnegative integer, and a decimal fraction that
is either the empty string or a decimal point followed by
an optional positive integer optionally preceded by some
number of zeros.

36. Give production rules in extended Backus–Naur form that
generate a sandwich if a sandwich consists of a lower slice
of bread; mustard or mayonnaise; optional lettuce; an op-
tional slice of tomato; one or more slices of either turkey,
chicken, or roast beef (in any combination); optionally
some number of slices of cheese; and a top slice of bread.

37. Give production rules in extended Backus–Naur form for
identifiers in the C programming language (see Exer-
cise 33).

38. Describe how productions for a grammar in extended
Backus–Naur form can be translated into a set of pro-
ductions for the grammar in Backus–Naur form.

This is the Backus–Naur form that describes the syntax of
expressions in postfix (or reverse Polish) notation.

〈expression〉 ::= 〈term〉 | 〈term〉〈term〉〈addOperator〉
〈addOperator〉 ::= + | −
〈term〉 ::= 〈factor〉 | 〈factor〉〈factor〉〈mulOperator〉
〈mulOperator〉 ::= ∗ | /

〈factor〉 ::= 〈identifier〉 | 〈expression〉
〈identifier〉 ::= a | b | · · · | z

39. For each of these strings, determine whether it is gener-
ated by the grammar given for postfix notation. If it is,
find the steps used to generate the string
a) abc∗+ b) xy++
c) xy−z∗ d) wxyz−∗/

e) ade−∗
40. Use Backus–Naur form to describe the syntax of expres-

sions in infix notation, where the set of operators and
identifiers is the same as in the BNF for postfix expres-
sions given in the preamble to Exercise 39, but parenthe-
ses must surround expressions being used as factors.

41. For each of these strings, determine whether it is gener-
ated by the grammar for infix expressions from Exercise
40. If it is, find the steps used to generate the string.
a) x + y + z b) a/b + c/d

c) m ∗ (n + p) d) + m − n + p − q

e) (m + n) ∗ (p − q)

42. Let G be a grammar and let R be the relation contain-
ing the ordered pair (w0, w1) if and only if w1 is directly
derivable from w0 in G. What is the reflexive transitive
closure of R?

2 Finite-State Machines with Output

Introduction

Many kinds of machines, including components in computers, can be modeled using a structure
called a finite-state machine. Several types of finite-state machines are commonly used in models.
All these versions of finite-state machines include a finite set of states, with a designated starting
state, an input alphabet, and a transition function that assigns a next state to every state and input
pair. Finite-state machines are used extensively in applications in computer science and data
networking. For example, finite-state machines are the basis for programs for spell checking,
grammar checking, indexing or searching large bodies of text, recognizing speech, transforming
text using markup languages such as XML and HTML, and network protocols that specify how
computers communicate.

In this section, we will study those finite-state machines that produce output. We will show
how finite-state machines can be used to model a vending machine, a machine that delays input,
a machine that adds integers, and a machine that determines whether a bit string contains a
specified pattern.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

2 Finite-State Machines with Output 13

TABLE 1 State Table for a Vending Machine.

Next State Output

Input Input

State 5 10 25 O R 5 10 25 O R

s0 s1 s2 s5 s0 s0 n n n n n

s1 s2 s3 s6 s1 s1 n n n n n

s2 s3 s4 s6 s2 s2 n n 5 n n

s3 s4 s5 s6 s3 s3 n n 10 n n

s4 s5 s6 s6 s4 s4 n n 15 n n

s5 s6 s6 s6 s5 s5 n 5 20 n n

s6 s6 s6 s6 s0 s0 5 10 25 OJ AJ

Before giving formal definitions, we will show how a vending machine can be modeled. A
vending machine accepts nickels (5 cents), dimes (10 cents), and quarters (25 cents). When a
total of 30 cents or more has been deposited, the machine immediately returns the amount in
excess of 30 cents. When 30 cents has been deposited and any excess refunded, the customer
can push an orange button and receive an orange juice or push a red button and receive an
apple juice. We can describe how the machine works by specifying its states, how it changes
states when input is received, and the output that is produced for every combination of input
and current state.

Finite-state machines with
output are often called
finite-state transducers.

The machine can be in any of seven different states si, i = 0, 1, 2, . . . , 6, where si is the
state where the machine has collected 5i cents. The machine starts in state s0, with 0 cents
received. The possible inputs are 5 cents, 10 cents, 25 cents, the orange button (O), and the red
button (R). The possible outputs are nothing (n), 5 cents, 10 cents, 15 cents, 20 cents, 25 cents,
an orange juice, and an apple juice.

We illustrate how this model of the machine works with this example. Suppose that a student
puts in a dime followed by a quarter, receives 5 cents back, and then pushes the orange button
for an orange juice. The machine starts in state s0. The first input is 10 cents, which changes
the state of the machine to s2 and gives no output. The second input is 25 cents. This changes
the state from s2 to s6, and gives 5 cents as output. The next input is the orange button, which
changes the state from s6 back to s0 (because the machine returns to the start state) and gives
an orange juice as its output.

We can display all the state changes and output of this machine in a table. To do this we
need to specify for each combination of state and input the next state and the output obtained.
Table 1 shows the transitions and outputs for each pair of a state and an input.

Another way to show the actions of a machine is to use a directed graph with labeled edges,
where each state is represented by a circle, edges represent the transitions, and edges are labeled
with the input and the output for that transition. Figure 1 shows such a directed graph for the
vending machine.

Finite-State Machines with Outputs

We will now give the formal definition of a finite-state machine with output.

DEFINITION 1 A finite-state machine M = (S, I, O, f, g, s0) consists of a finite set S of states, a finite input
alphabet I, a finite output alphabet O, a transition function f that assigns to each state and
input pair a new state, an output function g that assigns to each state and input pair an output,
and an initial state s0.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

14 Modeling Computation

s0 s1 s2 s3 s4 s5 s6
Start 5, n 5, n 5, n 5, n 5, n 5, n

10, n 10, n 10, n 10, n 10, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

R, n
O, n

25, n

25, n 25, 5 25, 20

10, 525, 15
25, 10

25, 25

5, 5
10, 10

O, orange juice

R, apple juice

FIGURE 1 A Vending Machine.

Let M = (S, I, O, f, g, s0) be a finite-state machine. We can use a state table to represent the
values of the transition function f and the output function g for all pairs of states and input. We
previously constructed a state table for the vending machine discussed in the introduction to
this section.

EXAMPLE 1 The state table shown in Table 2 describes a finite-state machine with S = {s0, s1, s2, s3},
I = {0, 1}, and O = {0, 1}. The values of the transition function f are displayed in the first
two columns, and the values of the output function g are displayed in the last two columns. ▲

Another way to represent a finite-state machine is to use a state diagram, which is a directed
graph with labeled edges. In this diagram, each state is represented by a circle. Arrows labeled
with the input and output pair are shown for each transition.

EXAMPLE 2 Construct the state diagram for the finite-state machine with the state table shown in Table 2.

Solution: The state diagram for this machine is shown in Figure 2. ▲

EXAMPLE 3 Construct the state table for the finite-state machine with the state diagram shown in Figure 3.

Solution: The state table for this machine is shown in Table 3. ▲

s2

s3s0

s11, 0

0, 1

1, 1

1, 0

0, 1
0, 0

0, 0

1, 1

Start

FIGURE 2 The State Diagram for the
Finite-State Machine Shown in Table 2.

TABLE 2

f g

Input Input

State 0 1 0 1

s0 s1 s0 1 0

s1 s3 s0 1 1

s2 s1 s2 0 1

s3 s2 s1 0 0

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

2 Finite-State Machines with Output 15

s0

s1

0, 1

Start

s3

1, 0

s2

s4

0, 0

1, 1

1, 0

0, 0
1, 0

0,
0

0, 1

1, 0

FIGURE 3 A Finite-State Machine.

TABLE 3

f g

Input Input

State 0 1 0 1

s0 s1 s3 1 0

s1 s1 s2 1 1

s2 s3 s4 0 0

s3 s1 s0 0 0

s4 s3 s4 0 0

An input string takes the starting state through a sequence of states, as determined by the
transition function. As we read the input string symbol by symbol (from left to right), each input
symbol takes the machine from one state to another. Because each transition produces an output,
an input string also produces an output string.

Suppose that the input string is x = x1x2 . . . xk . Then, reading this input takes the machine
from state s0 to state s1, where s1 = f (s0, x1), then to state s2, where s2 = f (s1, x2), and so on,
with sj = f (sj−1, xj) for j = 1, 2, . . . , k, ending at state sk = f (sk−1, xk). This sequence of
transitions produces an output string y1y2 . . . yk , where y1 = g(s0, x1) is the output correspond-
ing to the transition from s0 to s1, y2 = g(s1, x2) is the output corresponding to the transition
from s1 to s2, and so on. In general, yj = g(sj−1, xj) for j = 1, 2, . . . , k. Hence, we can extend
the definition of the output function g to input strings so that g(x) = y, where y is the output
corresponding to the input string x. This notation is useful in many applications.

EXAMPLE 4 Find the output string generated by the finite-state machine in Figure 3 if the input string
is 101011.

Solution: The output obtained is 001000. The successive states and outputs are shown in
Table 4. ▲

We can now look at some examples of useful finite-state machines. Examples 5, 6, and 7
illustrate that the states of a finite-state machine give it limited memory capabilities. The states
can be used to remember the properties of the symbols that have been read by the machine.
However, because there are only finitely many different states, finite-state machines cannot be
used for some important purposes. This will be illustrated in Section 13.4.

EXAMPLE 5 An important element in many electronic devices is a unit-delay machine, which produces as
output the input string delayed by a specified amount of time. How can a finite-state machine
be constructed that delays an input string by one unit of time, that is, produces as output the bit
string 0x1x2 . . . xk−1 given the input bit string x1x2 . . . xk?

Solution: A delay machine can be constructed that has two possible inputs, namely, 0 and 1. The
machine must have a start state s0. Because the machine has to remember whether the previous

TABLE 4

Input 1 0 1 0 1 1 —

State s0 s3 s1 s2 s3 s0 s3

Output 0 0 1 0 0 0 —

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

16 Modeling Computation

Start

1, 1

0, 0

1, 0 0, 1

1, 0

0, 0

s0

s1

s2

FIGURE 4 A Unit-Delay Machine.

11, 0

00, 1

10, 1

Start

10, 0

11, 100, 0 s0 s1

01, 1 01, 0

FIGURE 5 A Finite-State Machine for
Addition.

input was a 0 or a 1, two other states s1 and s2 are needed, where the machine is in state s1 if the
previous input was 1 and in state s2 if the previous input was 0. An output of 0 is produced for
the initial transition from s0. Each transition from s1 gives an output of 1, and each transition
from s2 gives an output of 0. The output corresponding to the input of a string x1 . . . xk is the
string that begins with 0, followed by x1, followed by x2, . . . , ending with xk−1. The state
diagram for this machine is shown in Figure 4. ▲

EXAMPLE 6 Produce a finite-state machine that adds two positive integers using their binary expansions.

Solution: When (xn . . . x1x0)2 and (yn . . . y1y0)2 are added, the following procedure (as de-
scribed in Section 4.2) is followed. First, the bits x0 and y0 are added, producing a sum bit z0
and a carry bit c0. This carry bit is either 0 or 1. Then, the bits x1 and y1 are added, together
with the carry c0. This gives a sum bit z1 and a carry bit c1. This procedure is continued until
the nth stage, where xn, yn, and the previous carry cn−1 are added to produce the sum bit zn and
the carry bit cn, which is equal to the sum bit zn+1.

A finite-state machine to carry out this addition can be constructed using just two states.
For simplicity we assume that both the initial bits xn and yn are 0 (otherwise we have to make
special arrangements concerning the sum bit zn+1). The start state s0 is used to remember that
the previous carry is 0 (or for the addition of the rightmost bits). The other state, s1, is used to
remember that the previous carry is 1.

Because the inputs to the machine are pairs of bits, there are four possible inputs. We
represent these possibilities by 00 (when both bits are 0), 01 (when the first bit is 0 and the
second is 1), 10 (when the first bit is 1 and the second is 0), and 11 (when both bits are 1).
The transitions and the outputs are constructed from the sum of the two bits represented by
the input and the carry represented by the state. For instance, when the machine is in state s1
and receives 01 as input, the next state is s1 and the output is 0, because the sum that arises is
0 + 1 + 1 = (10)2. The state diagram for this machine is shown in Figure 5. ▲

EXAMPLE 7 In a certain coding scheme, when three consecutive 1s appear in a message, the receiver of the
message knows that there has been a transmission error. Construct a finite-state machine that
gives a 1 as its current output bit if and only if the last three bits received are all 1s.

Solution: Three states are needed in this machine. The start state s0 remembers that the previous
input value, if it exists, was not a 1. The state s1 remembers that the previous input was a 1,
but the input before the previous input, if it exists, was not a 1. The state s2 remembers that the
previous two inputs were 1s.

An input of 1 takes s0 to s1, because now a 1, and not two consecutive 1s, has been read; it
takes s1 to s2, because now two consecutive 1s have been read; and it takes s2 to itself, because
at least two consecutive 1s have been read. An input of 0 takes every state to s0, because this
breaks up any string of consecutive 1s. The output for the transition from s2 to itself when a 1

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

2 Finite-State Machines with Output 17

Start

s0 s1 s2

1, 0

0, 0

0, 0

1, 0

0, 0

1, 1

FIGURE 6 A Finite-State Machine That Gives an Output of 1
If and Only If the Input String Read So Far Ends with 111.

is read is 1, because this combination of input and state shows that three consecutive 1s have
been read. All other outputs are 0. The state diagram of this machine is shown in Figure 6. ▲

The final output bit of the finite-state machine we constructed in Example 7 is 1 if and only
if the input string ends with 111. Because of this, we say that this finite-state machine recognizes
the set of bit strings that end with 111. This leads us to Definition 2.

DEFINITION 2 Let M = (S, I, O, f, g, s0) be a finite-state machine and L ⊆ I ∗. We say that M recognizes
(or accepts) L if an input string x belongs to L if and only if the last output bit produced by
M when given x as input is a 1.

TYPES OF FINITE-STATE MACHINES Many different kinds of finite-state machines have
been developed to model computing machines. In this section we have given a definition of one
type of finite-state machine. In the type of machine introduced in this section, outputs correspond
to transitions between states. Machines of this type are known as Mealy machines, because
they were first studied by G. H. Mealy in 1955. There is another important type of finite-state
machine with output, where the output is determined only by the state. This type of finite-state
machine is known as a Moore machine, because E. F. Moore introduced this type of machine
in 1956. Moore machines are considered in a sequence of exercises.

In Example 7 we showed how a Mealy machine can be used for language recognition.
However, another type of finite-state machine, giving no output, is usually used for this purpose.
Finite-state machines with no output, also known as finite-state automata, have a set of final
states and recognize a string if and only if it takes the start state to a final state. We will study
this type of finite-state machine in Section 13.3.

Exercises

1. Draw the state diagrams for the finite-state machines with
these state tables.
a)

f g

Input Input

State 0 1 0 1

s0 s1 s0 0 1

s1 s0 s2 0 1

s2 s1 s1 0 0

b) f g

Input Input

State 0 1 0 1

s0 s1 s0 0 0

s1 s2 s0 1 1

s2 s0 s3 0 1

s3 s1 s2 1 0

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

18 Modeling Computation

c) f g

Input Input

State 0 1 0 1

s0 s0 s4 1 1

s1 s0 s3 0 1

s2 s0 s2 0 0

s3 s1 s1 1 1

s4 s1 s0 1 0

2. Give the state tables for the finite-state machines with
these state diagrams.

a)
Start

0,1

0,1

0,0

1,1

1,01,0 0,1 1,0

s0

s2 s3

s1

b)

Start s0

s1

s2

1,0

0,0

1,1

1,0

0,0

0,1

c)
Start s0

s2 s3

s1

0,0

1,1
1,1

0,0
0,0

0,0

1,1

1,0

3. Find the output generated from the input string 01110 for
the finite-state machine with the state table in
a) Exercise 1(a).

b) Exercise 1(b).

c) Exercise 1(c).
4. Find the output generated from the input string 10001 for

the finite-state machine with the state diagram in
a) Exercise 2(a).

b) Exercise 2(b).

c) Exercise 2(c).
5. Find the output for each of these input strings when given

as input to the finite-state machine in Example 2.
a) 0111 b) 11011011 c) 01010101010

6. Find the output for each of these input strings when given
as input to the finite-state machine in Example 3.
a) 0000 b) 101010 c) 11011100010

7. Construct a finite-state machine that models an old-
fashioned soda machine that accepts nickels, dimes, and
quarters. The soda machine accepts change until 35 cents
has been put in. It gives change back for any amount
greater than 35 cents. Then the customer can push but-
tons to receive either a cola, a root beer, or a ginger ale.

8. Construct a finite-state machine that models a newspa-
per vending machine that has a door that can be opened
only after either three dimes (and any number of other
coins) or a quarter and a nickel (and any number of other
coins) have been inserted. Once the door can be opened,
the customer opens it and takes a paper, closing the door.
No change is ever returned no matter how much extra
money has been inserted. The next customer starts with
no credit.

9. Construct a finite-state machine that delays an input string
two bits, giving 00 as the first two bits of output.

10. Construct a finite-state machine that changes every other
bit, starting with the second bit, of an input string, and
leaves the other bits unchanged.

11. Construct a finite-state machine for the log-on procedure
for a computer, where the user logs on by entering a user
identification number, which is considered to be a single
input, and then a password, which is considered to be a
single input. If the password is incorrect, the user is asked
for the user identification number again.

12. Construct a finite-state machine for a combination lock
that contains numbers 1 through 40 and that opens only
when the correct combination, 10 right, 8 second left, 37
right, is entered. Each input is a triple consisting of a num-
ber, the direction of the turn, and the number of times the
lock is turned in that direction.

13. Construct a finite-state machine for a toll machine that
opens a gate after 25 cents, in nickels, dimes, or quar-
ters, has been deposited. No change is given for overpay-
ment, and no credit is given to the next driver when more
than 25 cents has been deposited.

14. Construct a finite-state machine for entering a security
code into an automatic teller machine (ATM) that imple-
ments these rules: A user enters a string of four digits,
one digit at a time. If the user enters the correct four dig-
its of the password, the ATM displays a welcome screen.
When the user enters an incorrect string of four digits, the
ATM displays a screen that informs the user that an incor-
rect password was entered. If a user enters the incorrect
password three times, the account islocked.

15. Construct a finite-state machine for a restricted telephone
switching system that implements these rules. Only calls
to the telephone numbers 0, 911, and the digit 1 followed
by 10-digit telephone numbers that begin with 212, 800,
866, 877, and 888 are sent to the network.All other strings
of digits are blocked by the system and the user hears an
error message.

16. Construct a finite-state machine that gives an output of
1 if the number of input symbols read so far is divisible
by 3 and an output of 0 otherwise.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

3 Finite-State Machines with No Output 19

17. Construct a finite-state machine that determines whether
the input string has a 1 in the last position and a 0 in the
third to the last position read so far.

18. Construct a finite-state machine that determines whether
the input string read so far ends in at least five consecutive
1s.

19. Construct a finite-state machine that determines whether
the word computer has been read as the last eight char-
acters in the input read so far, where the input can be any
string of English letters.

A Moore machine M = (S, I, O, f, g, s0) consists of a fi-
nite set of states, an input alphabet I , an output alphabet O,
a transition function f that assigns a next state to every pair
of a state and an input, an output function g that assigns an
output to every state, and a starting state s0. A Moore machine
can be represented either by a table listing the transitions for
each pair of state and input and the outputs for each state,
or by a state diagram that displays the states, the transitions
between states, and the output for each state. In the diagram,
transitions are indicated with arrows labeled with the input,
and the outputs are shown next to the states.
20. Construct the state diagram for the Moore machine with

this state table.

f

Input

State 0 1 g

s0 s0 s2 0

s1 s3 s0 1

s2 s2 s1 1

s3 s2 s0 1

21. Construct the state table for the Moore machine with the
state diagram shown here. Each input string to a Moore
machine M produces an output string. In particular, the
output corresponding to the input string a1a2 . . . ak is
the string g(s0)g(s1) . . . g(sk), where si = f (si−1, ai) for
i = 1, 2, . . . , k.

Start s0

s1

s2

0

1

0

1

0

1 0
1

1

22. Find the output string generated by the Moore machine
in Exercise 20 with each of these input strings.
a) 0101 b) 111111 c) 11101110111

23. Find the output string generated by the Moore ma-
chine in Exercise 21 with each of the input strings in
Exercise 22.

24. Construct a Moore machine that gives an output of 1
whenever the number of symbols in the input string read
so far is divisible by 4 and an output of 0 otherwise.

25. Construct a Moore machine that determines whether an
input string contains an even or odd number of 1s. The
machine should give 1 as output if an even number of 1s
are in the string and 0 as output if an odd number of 1s
are in the string.

3 Finite-State Machines with No Output

Introduction

One of the most important applications of finite-state machines is in language recognition.
This application plays a fundamental role in the design and construction of compilers for pro-
gramming languages. In Section 13.2 we showed that a finite-state machine with output can be
used to recognize a language, by giving an output of 1 when a string from the language has
been read and a 0 otherwise. However, there are other types of finite-state machines that are
specially designed for recognizing languages. Instead of producing output, these machines have
final states. A string is recognized if and only if it takes the starting state to one of these final
states.

Set of Strings

Before discussing finite-state machines with no output, we will introduce some important back-
ground material on sets of strings. The operations that will be defined here will be used exten-
sively in our discussion of language recognition by finite-state machines.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

20 Modeling Computation

DEFINITION 1 Suppose that A and B are subsets of V ∗, where V is a vocabulary. The concatenation of A

and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y

is a string in B.

EXAMPLE 1 Let A = {0, 11} and B = {1, 10, 110}. Find AB and BA.

Solution: The set AB contains every concatenation of a string in A and a string in B. Hence,
AB = {01, 010, 0110, 111, 1110, 11110}. The set BA contains every concatenation of a string
in B and a string in A. Hence, BA = {10, 111, 100, 1011, 1100, 11011}. ▲

Note that it is not necessarily the case that AB = BA when A and B are subsets of V ∗,
where V is an alphabet, as Example 1 illustrates.

From the definition of the concatenation of two sets of strings, we can define An, for
n = 0, 1, 2, This is done recursively by specifying that

A0 = {λ},
An+1 = AnA for n = 0, 1, 2,

EXAMPLE 2 Let A = {1,00}. Find An for n = 0, 1, 2, and 3.

Solution: We have A0 = {λ} and A1 = A0A = {λ}A = {1, 00}. To find A2 we take concate-
nations of pairs of elements of A. This gives A2 = {11, 100, 001, 0000}. To find A3 we
take concatenations of elements in A2 and A; this gives A3 = {111, 1100, 1001, 10000,

0011, 00100, 00001, 000000}. ▲

DEFINITION 2 Suppose that A is a subset of V ∗. Then the Kleene closure of A, denoted by A∗, is the set
consisting of concatenations of arbitrarily many strings from A. That is, A∗ = ⋃∞

k=0 Ak .

EXAMPLE 3 What are the Kleene closures of the sets A = {0}, B = {0, 1}, and C = {11}?
Solution: The Kleene closure of A is the concatenation of the string 0 with itself an arbitrary
finite number of times. Hence, A∗ = {0n | n = 0, 1, 2, . . . }. The Kleene closure of B is the
concatenation of an arbitrary number of strings, where each string is either 0 or 1. This is the set
of all strings over the alphabet V = {0, 1}. That is, B∗ = V ∗. Finally, the Kleene closurebreak
of C is the concatenation of the string 11 with itself an arbitrary number of times. Hence, C∗ is
the set of strings consisting of an even number of 1s. That is, C∗ = {12n | n = 0, 1, 2, . . . }. ▲

Finite-State Automata

] We will now give a definition of a finite-state machine with no output. Such machines are also
called finite-state automata, and that is the terminology we will use for them here. (Note: The
singular of automata is automaton.) These machines differ from the finite-state machines studied
in Section 13.2 in that they do not produce output, but they do have a set of final states. As we
will see, they recognize strings that take the starting state to a final state.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

3 Finite-State Machines with No Output 21

TABLE 1

f

Input

State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1

s1

s3

s2

s0

1 1

Start 1
0

00, 1

0

FIGURE 1 The State Diagram for a
Finite-State Automaton.

DEFINITION 3 A finite-state automaton M = (S, I, f, s0, F) consists of a finite set S of states, a finite input
alphabet I, a transition function f that assigns a next state to every pair of state and input
(so that f : S × I → S), an initial or start state s0, and a subset F of S consisting of final
(or accepting states).

We can represent finite-state automata using either state tables or state diagrams. Final states
are indicated in state diagrams by using double circles.

EXAMPLE 4 Construct the state diagram for the finite-state automaton M = (S, I, f, s0, F), where S =
{s0, s1, s2, s3}, I = {0, 1}, F = {s0, s3}, and the transition function f is given in Table 1.

Solution: The state diagram is shown in Figure 1. Note that because both the inputs 0 and 1
take s2 to s0, we write 0,1 over the edge from s2 to s0. ▲

EXTENDING THE TRANSITION FUNCTION The transition function f of a finite-state
machine M = (S, I, f, s0, F) can be extended so that it is defined for all pairs of states and
strings; that is, f can be extended to a function f : S × I ∗ → S. Let x = x1x2 . . . xk be a string
in I ∗. Then f (s1, x) is the state obtained by using each successive symbol of x, from left to
right, as input, starting with state s1. From s1 we go on to state s2 = f (s1, x1), then to state
s3 = f (s2, x2), and so on, with f (s1, x) = f (sk, xk). Formally, we can define this extended
transition function f recursively for the deterministic finite-state machine M = (S, I, f, s0, F)

by

(i) f (s, λ) = s for every state s ∈ S; and
(ii) f (s, xa) = f (f (s, x), a) for all s ∈ S, x ∈ I ∗, and a ∈ I .

STEPHEN COLE KLEENE (1909–1994) Stephen Kleene was born in Hartford, Connecticut. His mother,
Alice Lena Cole, was a poet, and his father, GustavAdolph Kleene, was an economics professor. Kleene attended
Amherst College and received his Ph.D. from Princeton in 1934, where he studied under the famous logician
Alonzo Church. Kleene joined the faculty of the University of Wisconsin in 1935, where he remained except for
several leaves, including stays at the Institute for Advanced Study in Princeton. During World War II he was a
navigation instructor at the Naval Reserve’s Midshipmen’s School and later served as the director of the Naval
Research Laboratory. Kleene made significant contributions to the theory of recursive functions, investigating
questions of computability and decidability, and proved one of the central results of automata theory. He served
as the Acting Director of the Mathematics Research Center and as Dean of the College of Letters and Sciences

at the University of Wisconsin. Kleene was a student of natural history. He discovered a previously undescribed variety of butterfly
that is named after him. He was an avid hiker and climber. Kleene was also noted as a talented teller of anecdotes, using a powerful
voice that could be heard several offices away.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

22 Modeling Computation

We can use structural induction and this recursive definition to prove properties of this extended
transition function. For example, in Exercise 15 we ask you to prove that

f (s, xy) = f (f (s, x), y)

for every state s ∈ S and strings x ∈ I ∗ and y ∈ I ∗.

Language Recognition by Finite-State Machines

Next, we define some terms that are used when studying the recognition by finite-state automata
of certain sets of strings.

DEFINITION 4 A string x is said to be recognized or accepted by the machine M = (S, I, f, s0, F) if it takes
the initial state s0 to a final state, that is, f (s0, x) is a state in F . The language recognized
or accepted by the machine M , denoted by L(M), is the set of all strings that are recognized
by M . Two finite-state automata are called equivalent if they recognize the same language.

In Example 5 we will find the languages recognized by several finite-state automata.

EXAMPLE 5 Determine the languages recognized by the finite-state automata M1, M2, and M3 in Figure 2.

s0
Start

M1

s1
0

1
0, 1

s0
Start s1

0 s2
1 s3

0, 1

0, 1

0

1

M2

s0
Start s1

0

s2
1

0, 1

0

s3 0, 1
1

M3

FIGURE 2 Some Finite-State Automata.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

3 Finite-State Machines with No Output 23

Solution: The only final state of M1 is s0. The strings that take s0 to itself are those consisting
of zero or more consecutive 1s. Hence, L(M1) = {1n | n = 0, 1, 2, . . . }.

The only final state of M2 is s2. The only strings that take s0 to s2 are 1 and 01. Hence,
L(M2) = {1, 01}.

The final states ofM3 are s0 and s3.The only strings that take s0 to itself areλ, 0, 00, 000, . . . ,

that is, any string of zero or more consecutive 0s. The only strings that take s0 to s3 are a string
of zero or more consecutive 0s, followed by 10, followed by any string. Hence, L(M3) =
{0n, 0n10x | n = 0, 1, 2, . . . , and x is any string}. ▲

DESIGNING FINITE-STATE AUTOMATA We can often construct a finite-state automaton
that recognizes a given set of strings by carefully adding states and transitions and determining
which of these states should be final states. When appropriate we include states that can keep
track of some of the properties of the input string, providing the finite-state automaton with
limited memory. Examples 6 and 7 illustrate some of the techniques that can be used to construct
finite-state automata that recognize particular types of sets of strings.

EXAMPLE 6 Construct deterministic finite-state automata that recognize each of these languages.

(a) the set of bit strings that begin with two 0s
(b) the set of bit strings that contain two consecutive 0s
(c) the set of bit strings that do not contain two consecutive 0s
(d) the set of bit strings that end with two 0s
(e) the set of bit strings that contain at least two 0s

Solution: (a) Our goal is to construct a deterministic finite-state automaton that recog-
nizes the set of bit strings that begin with two 0s. Besides the start state s0, we include a
nonfinal state s1; we move to s1 from s0 if the first bit is a 0. Next, we add a final state s2, which
we move to from s1 if the second bit is a 0. When we have reached s2 we know that the first two
input bits are both 0s, so we stay in the state s2 no matter what the succeeding bits (if any) are.
We move to a nonfinal state s3 from s0 if the first bit is a 1 and from s1 if the second bit is a 1.
The reader should verify that the finite-state automaton in Figure 3(a) recognizes the set of bit
strings that begin with two 0s.

s0
Start

s1

(a)

0 0
s2

1

1

s3

0, 1

0, 1

s0
Start

s1

(c)

0

0

s2

1

1

0, 1

s0
Start

s1

(b)

0

0

s2

1

1

0, 1

s0
Start s1

(d)

00 0
s2

1

11

s0
Start s1

(e)

00 s2

1 1

0, 1

FIGURE 3 Deterministic Finite-State Automata Recognizing the Languages in Example 6.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

24 Modeling Computation

(b) Our goal is to construct a deterministic finite-state automaton that recognizes the set of
bit strings that contain two consecutive 0s. Besides the start state s0, we include a nonfinal
state s1, which tells us that the last input bit seen is a 0, but either the bit before it was a 1, or
this bit was the initial bit of the string. We include a final state s2 that we move to from s1 when
the next input bit after a 0 is also a 0. If a 1 follows a 0 in the string (before we encounter two
consecutive 0s), we return to s0 and begin looking for consecutive 0s all over again. The reader
should verify that the finite-state automaton in Figure 3(b) recognizes the set of bit strings that
contain two consecutive 0s.

(c) Our goal is to construct a deterministic finite-state automaton that recognizes the set of
bit strings that do not contain two consecutive 0s. Besides the start state s0, which should
be a final state, we include a final state s1, which we move to from s0 when 0 is the first
input bit. When an input bit is a 1, we return to, or stay in, state s0. We add a state s2, which
we move to from s1 when the input bit is a 0. Reaching s2 tells us that we have seen two
consecutive 0s as input bits. We stay in state s2 once we have reached it; this state is not final.
The reader should verify that the finite-state automaton in Figure 3(c) recognizes the set of bit
strings that do not contain two consecutive 0s. [The astute reader will notice the relationship
between the finite-state automaton constructed here and the one constructed in part (b). See
Exercise 39.]

(d) Our goal is to construct a deterministic finite-state automaton that recognizes the set of bit
strings that end with two 0s. Besides the start state s0, we include a nonfinal state s1, which
we move to if the first bit is 0. We include a final state s2, which we move to from s1 if the
next input bit after a 0 is also a 0. If an input of 0 follows a previous 0, we stay in state s2
because the last two input bits are still 0s. Once we are in state s2, an input bit of 1 sends us back
to s0, and we begin looking for consecutive 0s all over again. We also return to s0 if the next
input is a 1 when we are in state s1. The reader should verify that the finite-state automaton in
Figure 3(d) recognizes the set of bit strings that end with two 0s.

(e) Our goal is to construct a deterministic finite-state automaton that recognizes the set of bit
strings that contain two 0s. Besides the start state, we include a state s1, which is not final; we
stay in s0 until an input bit is a 0 and we move to s1 when we encounter the first 0 bit in the input.
We add a final state s2, which we move to from s1 once we encounter a second 0 bit. Whenever
we encounter a 1 as input, we stay in the current state. Once we have reached s2, we remain
there. Here, s1 and s2 are used to tell us that we have already seen one or two 0s in the input
string so far, respectively. The reader should verify that the finite-state automaton in Figure 3(e)
recognizes the set of bit strings that contain two 0s. ▲

EXAMPLE 7 Construct a deterministic finite-state automaton that recognizes the set of bit strings that contain
an odd number of 1s and that end with at least two consecutive 0s.

Solution: We can build a deterministic finite-state automaton that recognizes the specified set
by including states that keep track of both the parity of the number of 1 bits and whether we
have seen no, one, or at least two 0s at the end of the input string.

The start state s0 can be used to tell us that the input read so far contains an even number
of 1s and ends with no 0s (that is, is empty or ends with a 1). Besides the start state, we include
five more states. We move to states s1, s2, s3, s4, and s5, respectively, when the input string read
so far contains an even number of 1s and ends with one 0; when it contains an even number
of 1s and ends with at least two 0s; when it contains an odd number of 1s and ends with no 0s;
when it contains an odd number of 1s and ends with one 0; and when it contains an odd number
of 1s and ends with two 0s. The state s5 is a final state.

The reader should verify that the finite-state automaton in Figure 4 recognizes the set of bit
strings that contain an odd number of 1s and end with at least two consecutive 0s. ▲

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

3 Finite-State Machines with No Output 25

s0
Start

s1

Number of
1s

even even even odd odd odd

0 0 1

0

s2

1

1 1 1
1

s3
0

s4
0 0

s5

Number of
0s at end

0 1 ≥2 0 1 ≥2

FIGURE 4 A Deterministic Finite-State Automaton Recognizing the Set of Bit Strings Containing an Odd
Number of 1s and Ending with at Least Two 0s.

EQUIVALENT FINITE-STATE AUTOMATA In Definition 4 we specified that two finite-
state automata are equivalent if they recognize the same language. Example 8 provides an
example of two equivalent deterministic finite-state machines.

EXAMPLE 8 Show that the two finite-state automata M0 and M1 shown in Figure 5 are equivalent.

Solution: For a string x to be recognized by M0, x must take us from s0 to the final state s1 or
the final state s4. The only string that takes us from s0 to s1 is the string 1. The strings that take
us from s0 to s4 are those strings that begin with a 0, which takes us from s0 to s2, followed by
zero or more additional 0s, which keep the machine in state s2, followed by a 1, which takes us
from state s2 to the final state s4. All other strings take us from s0 to a state that is not final. (We
leave it to the reader to fill in the details.) We conclude that L(M0) is the set of strings of zero
or more 0 bits followed by a final 1.

For a string x to be recognized by M1, x must take us from s0 to the final state s1. So, for x

to be recognized, it must begin with some number of 0s, which leave us in state s0, followed by

s0

s1

0, 1

s2

s3

s4

0, 1

0, 1

1

0

1

0

s0
Start

s1

0

Start

s2
0, 1

0, 1
1

M0

M1

FIGURE 5 M0 and M1 Are Equivalent Finite-State Automata.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

26 Modeling Computation

a 1, which takes us to the final state s1. A string of all zeros is not recognized because it leaves us
in state s0, which is not final. All strings that contain a 0 after 1 are not recognized because they
take us to state s2, which is not final. It follows that L(M1) is the same as L(M0). We conclude
that M0 and M1 are equivalent.

Note that the finite-state machine M1 only has three states. No finite state machine with
fewer than three states can be used to recognize the set of all strings of zero or more 0 bits
followed by a 1 (see Exercise 37). ▲

As Example 8 shows, a finite-state automaton may have more states than one equivalent
to it. In fact, algorithms used to construct finite-state automata to recognize certain languages
may have many more states than necessary. Using unnecessarily large finite-state machines to
recognize languages can make both hardware and software applications inefficient and costly.
This problem arises when finite-state automata are used in compilers, which translate computer
programs to a language a computer can understand (object code).

Exercises 58–61 develop a procedure that constructs a finite-state automaton with the fewest
states possible among all finite-state automata equivalent to a given finite-state automaton. This
procedure is known as machine minimization. The minimization procedure described in these
exercises reduces the number of states by replacing states with equivalence classes of states with
respect to an equivalence relation in which two states are equivalent if every input string either
sends both states to a final state or sends both to a state that is not final. Before the minimization
procedure begins, all states that cannot be reached from the start state using any input string are
first removed; removing these does not change the language recognized.

GRACE BREWSTER MURRAY HOPPER (1906–1992) Grace Hopper, born in NewYork City, displayed an
intense curiosity as a child with how things worked.At the age of seven, she disassembled alarm clocks to discover
their mechanisms. She inherited her love of mathematics from her mother, who received special permission to
study geometry (but not algebra and trigonometry) at a time when women were actively discouraged from such
study. Hopper was inspired by her father, a successful insurance broker, who had lost his legs from circulatory
problems. He told his children they could do anything if they put their minds to it. He inspired Hopper to pursue
higher education and not conform to the usual roles for females. Her parents made sure that she had an excellent
education; she attended private schools for girls in NewYork. Hopper entered Vassar College in 1924, where she
majored in mathematics and physics; she graduated in 1928. She received a masters degree in mathematics from

Yale University in 1930. In 1930 she also married an English instructor at the New York School of Commerce; she later divorced and
did not have children. Hopper was a mathematics professor at Vassar from 1931 until 1943, earning a Ph.D. from Yale in 1934.

After the attack on Pearl Harbor, Hopper, coming from a family with strong military traditions, decided to leave her academic
position and join the Navy WAVES. To enlist, she needed special permission to leave her strategic position as a mathematics professor,
as well as a waiver for weighing too little. In December 1943, she was sworn into the Navy Reserve and trained at the Midshipman’s
School for Women. Hopper was assigned to work at the Naval Ordnance Laboratory] at Harvard University. She wrote programs for
the world’s first large-scale automatically sequenced digital computer, which was used to help aim Navy artillery in varying weather.
Hopper has been credited with coining the term “bug” to refer to a hardware glitch, but it was used at Harvard prior to her arrival
there. However, it is true that Hopper and her programming team found a moth in one of the relays in the computer hardware that
shut the system down. This famous moth was pasted into a lab book. In the 1950s Hopper coined the term “debug” for the process
of removing programming errors.

In 1946, when the Navy told her that she was too old for active service, Hopper chose to remain at Harvard as a civilian research
fellow. In 1949 she left Harvard to join the Eckert–Mauchly Computer Corporation, where she helped develop the first commercial
computer, UNIVAC. Hopper remained with this company when it was taken over by Remington Rand and when Remington Rand
merged with the Sperry Corporation. She was a visionary for the potential power of computers; she understood that computers would
become widely used if tools that were both programmer-friendly and application-friendly could be developed. In particular, she
believed that computer programs could be written in English, rather than using machine instructions. To help achieve this goal, she
developed the first compiler. She published the first research paper on compilers in 1952. Hopper is also known as the mother of the
computer language COBOL; members of Hopper’s staff helped to frame the basic language design for COBOL using their earlier
work as a basis.

In 1966, Hopper retired from the Navy Reserve. However, only seven months later, the Navy recalled her from retirement to
help standardize high-level naval computer languages. In 1983 she was promoted to the rank of Commodore by special Presidential
appointment, and in 1985 she was elevated to the rank of Rear Admiral. Her retirement from the Navy, at the age of 80, was held on
the USS Constitution.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

3 Finite-State Machines with No Output 27

Nondeterministic Finite-State Automata

The finite-state automata discussed so far are deterministic, because for each pair of state and
input value there is a unique next state given by the transition function. There is another important
type of finite-state automaton in which there may be several possible next states for each pair
of input value and state. Such machines are called nondeterministic. Nondeterministic finite-
state automata are important in determining which languages can be recognized by a finite-state
automaton.

DEFINITION 5 A nondeterministic finite-state automaton M = (S, I, f, s0, F) consists of a set S of states,
an input alphabet I, a transition function f that assigns a set of states to each pair of state and
input (so that f : S × I → P(S)), a starting state s0, and a subset F of S consisting of the
final states.

We can represent nondeterministic finite-state automata using state tables or state diagrams.
When we use a state table, for each pair of state and input value we give a list of possible
next states. In the state diagram, we include an edge from each state to all possible next states,
labeling edges with the input or inputs that lead to this transition.

EXAMPLE 9 Find the state diagram for the nondeterministic finite-state automaton with the state table shown
in Table 2. The final states are s2 and s3.

Solution: The state diagram for this automaton is shown in Figure 6. ▲

EXAMPLE 10 Find the state table for the nondeterministic finite-state automaton with the state diagram shown
in Figure 7.

Solution: The state table is given as Table 3. ▲

What does it mean for a nondeterministic finite-state automaton to recognize a string
x = x1x2 . . . xk? The first input symbol x1 takes the starting state s0 to a set S1 of states. The
next input symbol x2 takes each of the states in S1 to a set of states. Let S2 be the union of these
sets. We continue this process, including at a stage all states obtained using a state obtained
at the previous stage and the current input symbol. We recognize, or accept, the string x if
there is a final state in the set of all states that can be obtained from s0 using x. The language
recognized by a nondeterministic finite-state automaton is the set of all strings recognized by
this automaton.

TABLE 2

f

Input

State 0 1

s0 s0, s1 s3

s1 s0 s1, s3

s2 s0, s2

s3 s0, s1, s2 s1

s1

s3

s2

s0

0, 1
Start

0

01

0
1

0

1

1

1

0

FIGURE 6 The Nondeterministic
Finite-State Automaton with State
Table Given in Table 2.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

28 Modeling Computation

s0

s1

Start

s2

s3

s4

0

0, 1

1

1

0

1

0
0

FIGURE 7 A Nondeterministic Finite-State
Automaton.

TABLE 3

f

Input

State 0 1

s0 s0, s2 s1

s1 s3 s4

s2 s4

s3 s3

s4 s3 s3

EXAMPLE 11 Find the language recognized by the nondeterministic finite-state automaton shown in Figure 7.

Solution: Because s0 is a final state, and there is a transition from s0 to itself when 0 is the input,
the machine recognizes all strings consisting of zero or more consecutive 0s. Furthermore,
because s4 is a final state, any string that has s4 in the set of states that can be reached from s0
with this input string is recognized. The only such strings are strings consisting of zero or more
consecutive 0s followed by 01 or 11. Because s0 and s4 are the only final states, the language
recognized by the machine is {0n, 0n01, 0n11 | n ≥ 0}. ▲

One important fact is that a language recognized by a nondeterministic finite-state automaton
is also recognized by a deterministic finite-state automaton. We will take advantage of this fact in
Section 13.4 when we will determine which languages are recognized by finite-state automata.

THEOREM 1 If the language L is recognized by a nondeterministic finite-state automaton M0, then L is
also recognized by a deterministic finite-state automaton M1.

Proof: We will describe how to construct the deterministic finite-state automaton M1 that rec-
ognizes L from M0, the nondeterministic finite-state automaton that recognizes this language.
Each state in M1 will be made up of a set of states in M0. The start symbol of M1 is {s0}, which
is the set containing the start state of M0. The input set of M1 is the same as the input set of M0.

Given a state {si1, si2, . . . , sik } of M1, the input symbol x takes this state to the union
of the sets of next states for the elements of this set, that is, the union of the sets f (si1, x),
f (si2, x), . . . , f (sik , x). The states of M1 are all the subsets of S, the set of states of M0, that are
obtained in this way starting with s0. (There are as many as 2n states in the deterministic machine,
where n is the number of states in the nondeterministic machine, because all subsets may occur
as states, including the empty set, although usually far fewer states occur.) The final states
of M1 are those sets that contain a final state of M0.

Suppose that an input string is recognized by M0. Then one of the states that can be reached
from s0 using this input string is a final state (the reader should provide an inductive proof of
this). This means that in M1, this input string leads from {s0} to a set of states of M0 that contains
a final state. This subset is a final state of M1, so this string is also recognized by M1. Also, an
input string not recognized by M0 does not lead to any final states in M0. (The reader should
provide the details that prove this statement.) Consequently, this input string does not lead from
{s0} to a final state in M1.

EXAMPLE 12 Find a deterministic finite-state automaton that recognizes the same language as the nondeter-
ministic finite-state automaton in Example 10.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

3 Finite-State Machines with No Output 29

Start

0

0, 1

1

1

0

0

1

1

1

0

0, 1

0, 1

0

{s0, s2} {s1, s4}

{s3, s4}{s0}

{s1} {s4}

{s3}∅

FIGURE 8 A Deterministic Automaton Equivalent to the
Nondeterministic Automaton in Example 10.

Solution: The deterministic automaton shown in Figure 8 is constructed from the nonde-
terministic automaton in Example 10. The states of this deterministic automaton are sub-
sets of the set of all states of the nondeterministic machine. The next state of a subset un-
der an input symbol is the subset containing the next states in the nondeterministic ma-
chine of all elements in this subset. For instance, on input of 0, {s0} goes to {s0, s2},
because s0 has transitions to itself and to s2 in the nondeterministic machine; the set {s0, s2}
goes to {s1, s4} on input of 1, because s0 goes just to s1 and s2 goes just to s4 on input of 1 in
the nondeterministic machine; and the set {s1, s4} goes to {s3} on input of 0, because s1 and s4
both go to just s3 on input of 0 in the deterministic machine. All subsets that are obtained in
this way are included in the deterministic finite-state machine. Note that the empty set is one of
the states of this machine, because it is the subset containing all the next states of {s3} on input
of 1. The start state is {s0}, and the set of final states are all those that include s0 or s4. ▲

Exercises

1. Let A = {0, 11} and B = {00, 01}. Find each of these
sets.
a) AB b) BA c) A2 d) B3

2. Show that if A is a set of strings, then A∅ = ∅A = ∅.
3. Find all pairs of sets of strings A and B for which

AB = {10, 111, 1010, 1000, 10111, 101000}.
4. Show that these equalities hold.

a) {λ}∗ = {λ}
b) (A∗)∗ = A∗ for every set of strings A

5. Describe the elements of the set A∗ for these values of A.
a) {10} b) {111} c) {0, 01} d) {1, 101}

6. Let V be an alphabet, and let A and B be subsets of V ∗.
Show that |AB| ≤ |A||B|.

7. Let V be an alphabet, and let A and B be subsets of V ∗
with A ⊆ B. Show that A∗ ⊆ B∗.

8. Suppose that A is a subset of V ∗, where V is an alphabet.
Prove or disprove each of these statements.
a) A ⊆ A2 b) if A = A2, then λ ∈ A

c) A{λ} = A d) (A∗)∗ = A∗
e) A∗A = A∗ f) |An| = |A|n

9. Determine whether the string 11101 is in each of these
sets.
a) {0, 1}∗ b) {1}∗{0}∗{1}∗

c) {11} {0}∗{01} d) {11}∗{01}∗
e) {111}∗{0}∗{1} f) {11, 0} {00, 101}

10. Determine whether the string 01001 is in each of these
sets.
a) {0, 1}∗ b) {0}∗{10}{1}∗
c) {010}∗{0}∗{1} d) {010, 011} {00, 01}
e) {00} {0}∗{01} f) {01}∗{01}∗

11. Determine whether each of these strings is recognized by
the deterministic finite-state automaton in Figure 1.
a) 111 b) 0011 c) 1010111 d) 011011011

12. Determine whether each of these strings is recognized by
the deterministic finite-state automaton in Figure 1.
a) 010 b) 1101 c) 1111110 d) 010101010

13. Determine whether all the strings in each of these sets are
recognized by the deterministic finite-state automaton in
Figure 1.
a) {0}∗ b) {0} {0}∗ c) {1} {0}∗
d) {01}∗ e) {0}∗{1}∗ f) {1} {0, 1}∗

14. Show that if M = (S, I, f, s0, F) is a deterministic finite-
state automaton and f (s, x) = s for the state s ∈ S and
the input string x ∈ I ∗, then f (s, xn) = s for every non-
negative integer n. (Here xn is the concatenation of n

copies of the string x, defined recursively in Exercise 37
in Section 5.3.)

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

30 Modeling Computation

15. Given a deterministic finite-state automaton M =
(S, I, f, s0, F), use structural induction and the recursive
definition of the extended transition function f to prove
that f (s, xy) = f (f (s, x), y) for all states s ∈ S and all
strings x ∈ I ∗ and y ∈ I ∗.

In Exercises 16–22 find the language recognized by the given
deterministic finite-state automaton.

16.

s0
Start s1

1 s2
0 1

0, 1

0

17.
s0

Start s1
1 0, 1 0, 1 s2

0

18.

s0
Start s1

0 s2
0 0, 1

1

1

19.

s0
Start s1

1 s2
0 0, 1

1

0

20.

s0
Start s1

0 s2
1 0, 1

0

1

s3

0, 1

21.

s0 s5

s1

1

0, 1

0, 1

s2

s3

s4

0

1

0 0

1

0

1

Start

22.

s0 s5

s1

0

0, 1

s2

s3

s4

0

11

0

1

0 1

0

1

Start

23. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings beginning with 01.

24. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that end with 10.

25. Construct a deterministic finite-state automaton that
recognizes the set of all bit strings that contain the
string 101.

26. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that do not contain three
consecutive 0s.

27. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain exactly
three 0s.

28. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain at least
three 0s.

29. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain three consec-
utive 1s.

30. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that begin with 0 or
with 11.

31. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that begin and end with 11.

32. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain an even num-
ber of 1s.

33. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain an odd number
of 0s.

34. Construct a deterministic finite-state automaton that rec-
ognizes the set of all bit strings that contain an even num-
ber of 0s and an odd number of 1s.

35. Construct a finite-state automaton that recognizes the set
of bit strings consisting of a 0 followed by a string with
an odd number of 1s.

36. Construct a finite-state automaton with four states that
recognizes the set of bit strings containing an even num-
ber of 1s and an odd number of 0s.

37. Show that there is no finite-state automaton with two
states that recognizes the set of all bit strings that have
one or more 1 bits and end with a 0.

38. Show that there is no finite-state automaton with three
states that recognizes the set of bit strings containing an
even number of 1s and an even number of 0s.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

3 Finite-State Machines with No Output 31

39. Explain how you can change the deterministic finite-state
automaton M so that the changed automaton recognizes
the set I ∗ − L(M).

40. Use Exercise 39 and finite-state automata constructed in
Example 6 to find deterministic finite-state automata that
recognize each of these sets.
a) the set of bit strings that do not begin with two 0s

b) the set of bit strings that do not end with two 0s

c) the set of bit strings that contain at most one 0 (that
is, that do not contain at least two 0s)

41. Use the procedure you described in Exercise 39 and the
finite-state automata you constructed in Exercise 25 to
find a deterministic finite-state automaton that recognizes
the set of all bit strings that do not contain the string 101.

42. Use the procedure you described in Exercise 39 and the
finite-state automaton you constructed in Exercise 29 to
find a deterministic finite-state automaton that recognizes
the set of all bit strings that do not contain three consec-
utive 1s.

In Exercises 43–49 find the language recognized by the given
nondeterministic finite-state automaton.

43.
s0

Start s1
0, 1 s2

1

0

44. Start s1
0, 1 s2

0 1

1

s0

45.

s0
Start s1

0 s2
1 1

0

0

46.
s0

Start s1
1 s2

0

0, 1

47.

s0 s1 s2 s3
Start 1 0 0, 1

0

0

1

0

48.

s0 s5

s1

0, 1

0

s2

s3

s4

1

0

01

0, 1

0, 1

1

0, 1Start

0

0

49.

s0 s5

s1

0

0

10

1, 0

s2

s3

s4

0, 1

0, 1
0

1

0, 1

Start

0, 1

1

50. Find a deterministic finite-state automaton that recog-
nizes the same language as the nondeterministic finite-
state automaton in Exercise 43.

51. Find a deterministic finite-state automaton that recog-
nizes the same language as the nondeterministic finite-
state automaton in Exercise 44.

52. Find a deterministic finite-state automaton that recog-
nizes the same language as the nondeterministic finite-
state automaton in Exercise 45.

53. Find a deterministic finite-state automaton that recog-
nizes the same language as the nondeterministic finite-
state automaton in Exercise 46.

54. Find a deterministic finite-state automaton that recog-
nizes the same language as the nondeterministic finite-
state automaton in Exercise 47.

55. Find a deterministic finite-state automaton that recog-
nizes each of these sets.
a) {0} b) {1, 00}
c) {1n | n = 2, 3, 4, . . . }

56. Find a nondeterministic finite-state automaton that recog-
nizes each of the languages in Exercise 55, and has fewer
states, if possible, than the deterministic automaton you
found in that exercise.

∗57. Show that there is no finite-state automaton that recog-
nizes the set of bit strings containing an equal number
of 0s and 1s.

In Exercises 58–62 we introduce a technique for construct-
ing a deterministic finite-state machine equivalent to a given
deterministic finite-state machine with the least number of
states possible. Suppose that M = (S, I, f, s0, F) is a finite-
state automaton and that k is a nonnegative integer. Let Rk be
the relation on the set S of states of M such that sRkt if and
only if for every input string x with l(x) ≤ k [where l(x) is the
length of x, as usual], f (s, x) and f (t, x) are both final states

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

32 Modeling Computation

or both not final states. Furthermore, let R∗ be the relation on
the set of states of M such that sR∗t if and only if for every
input string x, regardless of length, f (s, x) and f (t, x) are
both final states or both not final states.

∗58. a) Show that for every nonnegative integer k, Rk is an
equivalence relation on S. We say that two states s

and t are k-equivalent if sRkt .
b) Show that R∗ is an equivalence relation on S. We say

that two states s and t are *-equivalent if sR∗t .
c) Show that if s and t are two k-equivalent states of M ,

where k is a positive integer, then s and k are also
(k − 1)-equivalent

d) Show that the equivalence classes of Rk are a refine-
ment of the equivalence classes of Rk−1 if k is a pos-
itive integer. (The refinement of a partition of a set is
defined in the preamble to Exercise 49 in Section 9.5.)

e) Show that if s and t are k-equivalent for every non-
negative integer k, then they are ∗-equivalent.

f) Show that all states in a given R∗-equivalence class
are final states or all are not final states.

g) Show that if s and t are R∗-equivalent, then f (s, a)

and f (t, a) are also R∗-equivalent for all a ∈ I .
∗59. Show that there is a nonnegative integer n such that the set

of n-equivalence classes of states of M is the same as the
set of (n + 1)-equivalence classes of states of M . Then
show for this integer n, the set of n-equivalence classes
of states of M equals the set of ∗-equivalence classes of
states of M .

The quotient automaton M of the deterministic finite-state
automaton M = (S, I, f, s0, F) is the finite-state automaton
(S, I, f , [s0]R∗ , F), where the set of states S is the set of
∗-equivalence classes of S, the transition function f is de-
fined by f ([s]R∗ , a) = [f (s, a)]R∗ for all states [s]R∗ of M

and input symbols a ∈ I , and F is the set consisting of R∗-
equivalence classes of final states of M .

∗60. a) Show that s and t are 0-equivalent if and only if either
both s and t are final states or neither s nor t is a final
state. Conclude that each final state of M , which is an
R∗-equivalence class, contains only final states of M .

b) Show that if k is a positive integer, then s and t are k-
equivalent if and only if s and t are (k − 1)-equivalent
and for every input symbol a ∈ I , f (s, a) and f (t, a)

are (k − 1)-equivalent. Conclude that the transition
function f is well-defined.

c) Describe a procedure that can be used to construct the
quotient automaton of a finite-automaton M .

∗∗61. a) Show that if M is a finite-state automaton, then the
quotient automaton M recognizes the same language
as M .

b) Show that if M is a finite-state automaton with the
property that for every state s of M there is a string
x ∈ I ∗ such that f (s0, x) = s, then the quotient au-
tomaton M has the minimum number of states of any
finite-state automaton equivalent to M .

62. Answer these questions about the finite-state automaton
M shown here.

s0

s1

1

1
s2

s3

s4

s5

s6

0

0

0

1

1

0

1 1 0

01

0
Start

a) Find the k-equivalence classes of M for k = 0, 1, 2,
and 3. Also, find the ∗-equivalence classes of M .

b) Construct the quotient automaton M of M .

4 Language Recognition

Introduction

We have seen that finite-state automata can be used as language recognizers. What sets can be
recognized by these machines? Although this seems like an extremely difficult problem, there
is a simple characterization of the sets that can be recognized by finite state automata. This
problem was first solved in 1956 by the American mathematician Stephen Kleene. He showed
that there is a finite-state automaton that recognizes a set if and only if this set can be built
up from the null set, the empty string, and singleton strings by taking concatenations, unions,
and Kleene closures, in arbitrary order. Sets that can be built up in this way are called regular
sets. Regular grammars were defined in Section 13.1. Because of the terminology used, it is
not surprising that there is a connection between regular sets, which are the sets recognized
by finite-state automata, and regular grammars. In particular, a set is regular if and only if it is
generated by a regular grammar.

Finally, there are sets that cannot be recognized by any finite-state automata. We will give
an example of such a set. We will briefly discuss more powerful models of computation, such as
pushdown automata and Turing machines, at the end of this section. The regular sets are those

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

4 Language Recognition 33

that can be formed using the operations of concatenation, union, and Kleene closure in arbitrary
order, starting with the empty set, the set consisting of the empty string, and singleton sets. We
will see that the regular sets are those that can be recognized using a finite-state automaton. To
define regular sets we first need to define regular expressions.

DEFINITION 1 The regular expressions over a set I are defined recursively by:

the symbol ∅ is a regular expression;
the symbol λ is a regular expression;
the symbol x is a regular expression whenever x ∈ I ;
the symbols (AB), (A ∪ B), and A∗ are regular expressions whenever A

and B are regular expressions.

Each regular expression represents a set specified by these rules:

∅ represents the empty set, that is, the set with no strings;
λ represents the set {λ}, which is the set containing the empty string;
x represents the set {x} containing the string with one symbol x;
(AB) represents the concatenation of the sets represented by A and by B;
(A ∪ B) represents the union of the sets represented by A and by B;
A∗ represents the Kleene closure of the set represented by A.

Sets represented by regular expressions are called regular sets. Henceforth regular expressions
will be used to describe regular sets, so when we refer to the regular set A, we will mean the
regular set represented by the regular expression A. Note that we will leave out outer parentheses
from regular expressions when they are not needed.

Example 1 shows how regular expressions are used to specify regular sets.

EXAMPLE 1 What are the strings in the regular sets specified by the regular expressions 10∗, (10)∗, 0 ∪ 01,
0(0 ∪ 1)∗, and (0∗1)∗?

Solution: The regular sets represented by these expressions are given in Table 1, as the reader
should verify. ▲

Finding a regular expression that specifies a given set can be quite tricky, as Example 2
illustrates.

EXAMPLE 2 Find a regular expression that specifies each of these sets:

(a) the set of bit strings with even length
(b) the set of bit strings ending with a 0 and not containing 11
(c) the set of bit strings containing an odd number of 0s

TABLE 1

Expression Strings

10∗ a 1 followed by any number of 0s (including no zeros)

(10)∗ any number of copies of 10 (including the null string)

0 ∪ 01 the string 0 or the string 01

0(0 ∪ 1)∗ any string beginning with 0

(0∗1)∗ any string not ending with 0

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

34 Modeling Computation

Solution: (a) To construct a regular expression for the set of bit strings with even length, we
use the fact that such a string can be obtained by concatenating zero or more strings each
consisting of two bits. The set of strings of two bits is specified by the regular expression
(00 ∪ 01 ∪ 10 ∪ 11). Consequently, the set of strings with even length is specified by
(00 ∪ 01 ∪ 10 ∪ 11) ∗ .

(b) A bit string ending with a 0 and not containing 11 must be the concatenation of one or
more strings where each string is either a 0 or a 10. (To see this, note that such a bit string must
consist of 0 bits or 1 bits each followed by a 0; the string cannot end with a single 1 because
we know it ends with a 0.) It follows that the regular expression (0 ∪ 10)∗ (0 ∪ 10) specifies the
set of bit strings that do not contain 11 and end with a 0. [Note that the set specified by (0 ∪
10)∗ includes the empty string, which is not in this set, because the empty string does not end
with a 0.]

(c) A bit string containing an odd number of 0s must contain at least one 0, which tells us
that it starts with zero or more 1s, followed by a 0, followed by zero or more 1s. That is, each
such bit string begins with a string of the form 1j 01k for nonnegative integers j and k. Because
the bit string contains an odd number of 0s, additional bits after this initial block can be split into
blocks each starting with a 0 and containing one more 0. Each such block is of the form 01p01q ,
where p and q are nonnegative integers. Consequently, the regular expression 1∗01∗(01∗01∗)∗
specifies the set of bit strings with an odd number of 0s. ▲

Kleene’s Theorem

In 1956 Kleene proved that regular sets are the sets that are recognized by a finite-state automaton.
Consequently, this important result is called Kleene’s theorem.

THEOREM 1 KLEENE’S THEOREM A set is regular if and only if it is recognized by a finite-state
automaton.

Kleene’s theorem is one of the central results in automata theory. We will prove the only if part of
this theorem, namely, that every regular set is recognized by a finite-state automaton. The proof
of the if part, that a set recognized by a finite-state automaton is regular, is left as an exercise
for the reader.

Proof: Recall that a regular set is defined in terms of regular expressions, which are defined
recursively. We can prove that every regular set is recognized by a finite-state automaton if we
can do the following things.

1. Show that ∅ is recognized by a finite-state automaton.
2. Show that {λ} is recognized by a finite-state automaton.
3. Show that {a} is recognized by a finite-state automaton whenever a is a symbol in I .
4. Show that AB is recognized by a finite-state automaton whenever both A and B are.
5. Show that A ∪ B is recognized by a finite-state automaton whenever both A and B are.
6. Show that A∗ is recognized by a finite-state automaton whenever A is.

We now consider each of these tasks. First, we show that ∅ is recognized by a nondeterministic
finite-state automaton. To do this, all we need is an automaton with no final states. Such an
automaton is shown in Figure 1(a).

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

4 Language Recognition 35

s0Start s0 s0Start s1
a

Start

(a) (b) (c)

FIGURE 1 Nondeterministic Finite-State Automata That Recognize Some Basic Sets.

Second, we show that {λ} is recognized by a finite-state automaton. To do this, all we need
is an automaton that recognizes λ, the null string, but not any other string. This can be done by
making the start state s0 a final state and having no transitions, so that no other string takes s0
to a final state. The nondeterministic automaton in Figure 1(b) shows such a machine.

Third, we show that {a} is recognized by a nondeterministic finite-state automaton. To do
this, we can use a machine with a starting state s0 and a final state s1. We have a transition from
s0 to s1 when the input is a, and no other transitions. The only string recognized by this machine
is a. This machine is shown in Figure 1(c).

Next, we show that AB and A ∪ B can be recognized by finite-state automata if A and B

are languages recognized by finite-state automata. Suppose that A is recognized by MA =
(SA, I, fA, sA, FA) and B is recognized by MB = (SB, I, fB, sB, FB).

We begin by constructing a finite-state machine MAB = (SAB, I, fAB, sAB, FAB) that recog-
nizes AB, the concatenation of A and B. We build such a machine by combining the machines
for A and B in series, so a string in A takes the combined machine from sA, the start state
of MA, to sB , the start state of MB . A string in B should take the combined machine from sB to
a final state of the combined machine. Consequently, we make the following construction.
Let SAB be SA ∪ SB . [Note that we can assume that SA and SB are disjoint.] The start-
ing state sAB is the same as sA. The set of final states, FAB , is the set of final states of
MB with sAB included if and only if λ ∈ A ∩ B. The transitions in MAB include all tran-
sitions in MA and in MB , as well as some new transitions. For every transition in MA

that leads to a final state, we form a transition in MAB from the same state to sB , on the
same input. In this way, a string in A takes MAB from sAB to sB , and then a string in B

takes sB to a final state of MAB . Moreover, for every transition from sB we form a transition
in MAB from sAB to the same state. Figure 2(a) contains an illustration of this construction.

We now construct a machine MA∪B = (SA∪B, I, fA∪B, sA∪B, FA∪B) that recognizes
A ∪ B. This automaton can be constructed by combining MA and MB in parallel, using a
new start state that has the transitions that both sA and sB have. Let SA∪B = SA ∪ SB ∪ {sA∪B},
where sA∪B is a new state that is the start state of MA∪B . Let the set of final states FA∪B be
FA ∪ FB ∪ {sA∪B} if λ ∈ A ∪ B, and FA ∪ FB otherwise. The transitions in MA∪B include all
those in MA and in MB . Also, for each transition from sA to a state s on input i we include a
transition from sA∪B to s on input i, and for each transition from sB to a state s on input i we
include a transition from sA∪B to s on input i. In this way, a string in A leads from sA∪B to
a final state in the new machine, and a string in B leads from sA∪B to a final state in the new
machine. Figure 2(b) illustrates the construction of MA∪B .

Finally, we construct M
A

∗ = (S
A

∗, I, f
A

∗, s
A

∗, F
A

∗), a machine that recognizes A∗, the
Kleene closure of A. Let S

A
∗ include all states in SA and one additional state s

A
∗ , which is

the starting state for the new machine. The set of final states F
A

∗ includes all states in FA

as well as the start state s
A

∗ , because λ must be recognized. To recognize concatenations of
arbitrarily many strings from A, we include all the transitions in MA, as well as transitions
from s

A
∗ that match the transitions from sA, and transitions from each final state that match the

transitions from sA. With this set of transitions, a string made up of concatenations of strings
from A will take s

A
∗ to a final state when the first string in A has been read, returning to a

final state when the second string in A has been read, and so on. Figure 2(c) illustrates the
construction we used.

A nondeterministic finite-state automaton can be constructed for any regular set using the
procedure described in this proof. We illustrate how this is done with Example 3.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

36 Modeling Computation

sA
i

sB
Start MA i MB

sA
i MA

Start

sB

i

MB

sA

i

MA
sA*

Start i MA*

(a)

(b)

(c)

Transition to final state in MA produces a transition to sB.

Transition from sB in MB produces a transition from sAB = sA.

Transitions from sA produce A transitions from sA* and all final states of MA.

MAB

i

Start state is sAB = sA, which is final if sA and sB are final. Final states include all final states of MB.

sA B
MA B

Final states are the final states in MA and MB.

sA B is the new start state, which is final if sA or sB is final.

sA* is the new start state, which is a final state. Final states include all final states in MA.

i

i

i

i

FIGURE 2 Building Automata to Recognize Concatenations, Unions, and Kleene Closures.

EXAMPLE 3 Construct a nondeterministic finite-state automaton that recognizes the regular set 1∗ ∪ 01.

Solution: We begin by building a machine that recognizes 1∗. This is done using the machine
that recognizes 1 and then using the construction for M

A
∗ described in the proof. Next, we

build a machine that recognizes 01, using machines that recognize 0 and 1 and the construction
in the proof for MAB . Finally, using the construction in the proof for MA∪B , we construct the
machine for 1∗ ∪ 01. The finite-state automata used in this construction are shown in Figure 3.
The states in the successive machines have been labeled using different subscripts, even when a
state is formed from one previously used in another machine. Note that the construction given
here does not produce the simplest machine that recognizes 1∗ ∪ 01. A much simpler machine
that recognizes this set is shown in Figure 3(b). ▲

Regular Sets and Regular Grammars

In Section 13.1 we introduced phrase-structure grammars and defined different types of gram-
mars. In particular we defined regular, or type 3, grammars, which are grammars of the

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

4 Language Recognition 37

s3
Start s4 s5

1 1

1

s6
Start s7

0

s1
Start s2

1

s8
Start s9 s10

0

0

s11
1

s13 s14 s15

1

1

Start

s16 s17 s18
0

0

s19
1

s0
Start

s1

1

s2 s3
1

0

1

1

Machine(a)

(b)

1

0
0

s12

Set recognized

1

1*

0

01

1* 01

1* 01

FIGURE 3 Nondeterministic Finite-State Automata Recognizing 1∗ ∪ 01.

form G = (V , T , S, P), where each production is of the form S → λ, A → a, or A → aB,
where a is a terminal symbol, and A and B are nonterminal symbols. As the terminology
suggests, there is a close connection between regular grammars and regular sets.

THEOREM 2 A set is generated by a regular grammar if and only if it is a regular set.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

38 Modeling Computation

Proof: First we show that a set generated by a regular grammar is a regular set. Suppose
thatG = (V , T , S, P) is a regular grammar generating the setL(G).To show thatL(G) is regular
we will build a nondeterministic finite-state machine M = (S, I, f, s0, F) that recognizes L(G).
Let S, the set of states, contain a state sA for each nonterminal symbol A of G and an additional
state sF , which is a final state. The start state s0 is the state formed from the start symbol S.
The transitions of M are formed from the productions of G in the following way. A transition
from sA to sF on input of a is included if A → a is a production, and a transition from sA to sB
on input of a is included if A → aB is a production. The set of final states includes sF and also
includes s0 if S → λ is a production in G. It is not hard to show that the language recognized
by M equals the language generated by the grammar G, that is, L(M) = L(G). This can be
done by determining the words that lead to a final state. The details are left as an exercise for
the reader.

Before giving the proof of the converse, we illustrate how a nondeterministic machine is
constructed that recognizes the same set as a regular grammar.

EXAMPLE 4 Construct a nondeterministic finite-state automaton that recognizes the language generated by
the regular grammarG = (V , T , S, P), whereV = {0, 1, A, S},T = {0, 1}, and the productions
in P are S → 1A, S → 0, S → λ, A → 0A, A → 1A, and A → 1.

Solution: The state diagram for a nondeterministic finite-state automaton that recognizes L(G)

is shown in Figure 4. This automaton is constructed following the procedure described in the
proof. In this automaton, s0 is the state corresponding to S, s1 is the state corresponding to A,
and s2 is the final state. ▲

s1

s2

s0
Start

0, 1

1

0

1

FIGURE 4 A
Nondeterministic
Finite-State
Automaton
Recognizing L(G).

s0
Start

1

0

s1

s2

0

1

1

0

FIGURE 5
A Finite-State
Automaton.

We now complete the proof of Theorem 2.

Proof: We now show that if a set is regular, then there is a regular grammar that generates
it. Suppose that M is a finite-state machine that recognizes this set with the property that s0,
the starting state of M , is never the next state for a transition. (We can find such a machine
by Exercise 20.) The grammar G = (V , T , S, P) is defined as follows. The set V of symbols
of G is formed by assigning a symbol to each state of S and each input symbol in I . The
set T of terminal symbols of G is the set I . The start symbol S is the symbol formed
from the start state s0. The set P of productions in G is formed from the transitions in
M . In particular, if the state s goes to a final state under input a, then the production
As → a is included in P , where As is the nonterminal symbol formed from the state s.
If the state s goes to the state t on input a, then the production As → aAt is included
in P . The production S → λ is included in P if and only if λ ∈ L(M). Because the productions
of G correspond to the transitions of M and the productions leading to terminals correspond to
transitions to final states, it is not hard to show that L(G) = L(M). We leave the details as an
exercise for the reader.

Example 5 illustrates the construction used to produce a grammar from an automaton that
generates the language recognized by this automaton.

EXAMPLE 5 Find a regular grammar that generates the regular set recognized by the finite-state automaton
shown in Figure 5.

Solution: The grammar G = (V , T , S, P) generates the set recognized by this automaton where
V = {S, A, B, 0, 1}, the symbols S, A, and B correspond to the states s0, s1, and s2, respec-
tively, T = {0, 1}, S is the start symbol; and the productions are S → 0A, S → 1B, S → 1,
S → λ, A → 0A, A → 1B, A → 1, B → 0A, B → 1B, and B → 1. ▲

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

4 Language Recognition 39

s2s1s0Start sNsi s2N
0 0 0 0 0 0 1 1

0

0

0 0

0

0

si+2 sj–2

si+1 sj–1

FIGURE 6 The Path Produced by 0N1N .

A Set Not Recognized by a Finite-State Automaton

We have seen that a set is recognized by a finite state automaton if and only if it is regular. We
will now show that there are sets that are not regular by describing one such set. The technique
used to show that this set is not regular illustrates an important method for showing that certain
sets are not regular.

EXAMPLE 6 Show that the set {0n1n | n = 0, 1, 2, . . . }, made up of all strings consisting of a block of 0s
followed by a block of an equal number of 1s, is not regular.

Solution: Suppose that this set were regular. Then there would be a nondeterministic finite-state
automaton M = (S, I, f, s0, F) recognizing it. Let N be the number of states in this machine,
that is, N = |S|. Because M recognizes all strings made up of a number of 0s followed by an
equal number of 1s, M must recognize 0N1N . Let s0, s1, s2, . . . , s2N be the sequence of states
that is obtained starting at s0 and using the symbols of 0N1N as input, so that s1 = f (s0, 0),
s2 = f (s1, 0), . . . , sN = f (sN−1, 0), sN+1 = f (sN, 1), . . . , s2N = f (s2N−1, 1). Note that s2N

is a final state.
Because there are only N states, the pigeonhole principle shows that at least two of the

first N + 1 of the states, which are s0, . . . , sN , must be the same. Say that si and sj are two
such identical states, with 0 ≤ i < j ≤ N . This means that f (si, 0t) = sj , where t = j − i. It
follows that there is a loop leading from si back to itself, obtained using the input 0 a total of t

times, in the state diagram shown in Figure 6.
Now consider the input string 0N0t1N = 0N+t1N . There are t more consecutive 0s at the

start of this block than there are consecutive 1s that follow it. Because this string is not of the
form 0n1n (because it has more 0s than 1s), it is not recognized by M . Consequently,
f (s0, 0N+t1N) cannot be a final state. However, when we use the string 0N+t1N as input,
we end up in the same state as before, namely, s2N . The reason for this is that the extra t 0s in
this string take us around the loop from si back to itself an extra time, as shown in Figure 6.
Then the rest of the string leads us to exactly the same state as before. This contradiction shows
that {0n1n | n = 0, 1, 2, . . . } is not regular. ▲

More Powerful Types of Machines

Finite-state automata are unable to carry out many computations. The main limitation of these
machines is their finite amount of memory. This prevents them from recognizing languages that
are not regular, such as {0n1n | n = 0, 1, 2, . . . }. Because a set is regular if and only if it is the
language generated by a regular grammar, Example 6 shows that there is no regular grammar

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

40 Modeling Computation

that generates the set {0n1n | n = 0, 1, 2, . . . }. However, there is a context-free grammar that
generates this set. Such a grammar was given in Example 5 in Section 13.1.

Because of the limitations of finite-state machines, it is necessary to use other, more pow-
erful, models of computation. One such model is the pushdown automaton. A pushdown
automaton includes everything in a finite-state automaton, as well as a stack, which provides
unlimited memory. Symbols can be placed on the top or taken off the top of the stack. A set is
recognized in one of two ways by a pushdown automaton. First, a set is recognized if the set
consists of all the strings that produce an empty stack when they are used as input. Second, a
set is recognized if it consists of all the strings that lead to a final state when used as input. It
can be shown that a set is recognized by a pushdown automaton if and only if it is the language
generated by a context-free grammar.

However, there are sets that cannot be expressed as the language generated by a context-
free grammar. One such set is {0n1n2n | n = 0, 1, 2, . . . }. We will indicate why this set cannot
be recognized by a pushdown automaton, but we will not give a proof, because we have not
developed the machinery needed. (However, one method of proof is given in Exercise 28 of the
supplementary exercises at the end of this chapter.) The stack can be used to show that a string
begins with a sequence of 0s followed by an equal number of 1s by placing a symbol on the
stack for each 0 (as long as only 0s are read), and removing one of these symbols for each 1 (as
long as only 1s following the 0s are read). But once this is done, the stack is empty, and there
is no way to determine that there are the same number of 2s in the string as 0s.

There are other machines called linear bounded automata, more powerful than push-
down automata, that can recognize sets such as {0n1n2n | n = 0, 1, 2, . . . }. In particular, linear
bounded automata can recognize context-sensitive languages. However, these machines cannot
recognize all the languages generated by phrase-structure grammars. To avoid the limitations
of special types of machines, the model known as a Turing machine, named after the British

Alan Turing invented
Turning machines before
modern computers
existed!

mathematician Alan Turing, is used. A Turing machine is made up of everything included in a
finite-state machine together with a tape, which is infinite in both directions. A Turing machine
has read and write capabilities on the tape, and it can move back and forth along this tape. Tur-
ing machines can recognize all languages generated by phrase-structure grammars. In addition,
Turing machines can model all the computations that can be performed on a computing ma-
chine. Because of their power, Turing machines are extensively studied in theoretical computer
science. We will briefly study them in Section 13.5.

ALAN MATHISON TURING (1912–1954) Alan Turing was born in London, although he was conceived in
India, where his father was employed in the Indian Civil Service. As a boy, he was fascinated by chemistry,
performing a wide variety of experiments, and by machinery. Turing attended Sherborne, an English boarding
school. In 1931 he won a scholarship to King’s College, Cambridge. After completing his dissertation, which
included a rediscovery of the central limit theorem, a famous theorem in statistics, he was elected a fellow of
his college. In 1935 Turing became fascinated with the decision problem, a problem posed by the great German
mathematician Hilbert, which asked whether there is a general method that can be applied to any assertion to
determine whether the assertion is true. Turing enjoyed running (later in life running as a serious amateur in
competitions), and one day, while resting after a run, he discovered the key ideas needed to solve the decision

problem. In his solution, he invented what is now called a Turing machine as the most general model of a computing machine.
Using these machines, he found a problem, involving what he called computable numbers, that could not be decided using a general
method.

From 1936 to 1938 Turing visited Princeton University to work with Alonzo Church, who had also solved Hilbert’s decision
problem. In 1939 Turing returned to King’s College. However, at the outbreak of World War II, he joined the Foreign Office,
performing cryptanalysis of German ciphers. His contribution to the breaking of the code of the Enigma, a mechanical German
cipher machine, played an important role in winning the war.

After the war, Turing worked on the development of early computers. He was interested in the ability of machines to think,
proposing that if a computer could not be distinguished from a person based on written replies to questions, it should be considered
to be “thinking.” He was also interested in biology, having written on morphogenesis, the development of form in organisms. In 1954
Turing committed suicide by taking cyanide, without leaving a clear explanation. Legal troubles related to a homosexual relationship
and hormonal treatments mandated by the court to lessen his sex drive may have been factors in his decision to end his life.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

4 Language Recognition 41

Exercises

1. Describe in words the strings in each of these regular sets.
a) 1∗0 b) 1*00*
c) 111 ∪ 001 d) (1 ∪ 00)∗
e) (00∗1)∗ f) (0 ∪ 1)(0 ∪ 1)∗00

2. Describe in words the strings in each of these regular sets.
a) 001∗ b) (01)*
c) 01 ∪ 001∗ d) 0(11 ∪ 0)∗
e) (101∗)∗ f) (0∗∪1)11

3. Determine whether 0101 belongs to each of these regular
sets.
a) 01∗0∗ b) 0(11)∗(01)∗
c) 0(10)∗1∗ d) 0∗10(0 ∪ 1)

e) (01)∗(11)∗ f) 0∗(10 ∪ 11)∗
g) 0∗(10)∗11 h) 01(01 ∪ 0)1∗

4. Determine whether 1011 belongs to each of these regular
sets.
a) 10∗1∗ b) 0∗(10 ∪ 11)∗
c) 1(01)∗1∗ d) 1∗01(0 ∪ 1)

e) (10)∗(11)∗ f) 1(00)∗(11)∗
g) (10)∗1011 h) (1 ∪ 00)(01 ∪ 0)1∗

5. Express each of these sets using a regular expression.
a) the set consisting of the strings 0, 11, and 010
b) the set of strings of three 0s followed by two or

more 0s
c) the set of strings of odd length
d) the set of strings that contain exactly one 1
e) the set of strings ending in 1 and not containing 000

6. Express each of these sets using a regular expression.
a) the set containing all strings with zero, one, or two

bits
b) the set of strings of two 0s, followed by zero or

more 1s, and ending with a 0
c) the set of strings with every 1 followed by two 0s
d) the set of strings ending in 00 and not containing 11
e) the set of strings containing an even number of 1s

7. Express each of these sets using a regular expression.
a) the set of strings of one or more 0s followed by a 1
b) the set of strings of two or more symbols followed by

three or more 0s
c) the set of strings with either no 1 preceding a 0 or

no 0 preceding a 1
d) the set of strings containing a string of 1s such that

the number of 1s equals 2 modulo 3, followed by an
even number of 0s

8. Construct deterministic finite-state automata that recog-
nize each of these sets from I∗, where I is an alphabet.
a) ∅ b) {λ} c) {a}, where a ∈ I

9. Construct nondeterministic finite-state automata that rec-
ognize each of the sets in Exercise 8.

10. Construct nondeterministic finite-state automata that rec-
ognize each of these sets.
a) {λ, 0} b) {0, 11} c) {0, 11, 000}

∗11. Show that if A is a regular set, then AR , the set of all
reversals of strings in A, is also regular.

12. Using the constructions described in the proof of Kleene’s
theorem, find nondeterministic finite-state automata that
recognize each of these sets.
a) 01∗ b) (0 ∪ 1)1∗ c) 00(1∗ ∪ 10)

13. Using the constructions described in the proof of Kleene’s
theorem, find nondeterministic finite-state automata that
recognize each of these sets.
a) 0∗1∗ b) (0 ∪ 11)∗ c) 01∗ ∪ 00∗1

14. Construct a nondeterministic finite-state automaton that
recognizes the language generated by the regular gram-
mar G = (V , T , S, P), where V = {0, 1, S, A, B}, T =
{0, 1}, S is the start symbol, and the set of productions is
a) S → 0A, S → 1B, A → 0, B → 0.
b) S → 1A, S → 0, S → λ, A → 0B, B → 1B,

B → 1.
c) S → 1B, S → 0, A → 1A, A → 0B, A → 1,

A → 0, B → 1.

In Exercises 15–17 construct a regular grammar G =
(V , T , S, P) that generates the language recognized by the
given finite-state machine.

15.
s0

Start s1
0 s2

0, 1 0, 1

1

16.
s1

s2

s0

1

0

1

0

0

1
Start

17.
s0

Start

s2

s1

s3

1

0

1

0, 1

1

0

0

18. Show that the finite-state automaton constructed from a
regular grammar in the proof of Theorem 2 recognizes
the set generated by this grammar.

19. Show that the regular grammar constructed from a finite-
state automaton in the proof of Theorem 2 generates the
set recognized by this automaton.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

42 Modeling Computation

20. Show that every nondeterministic finite-state automaton
is equivalent to another such automaton that has the prop-
erty that its starting state is never revisited.

∗21. Let M = (S, I, f, s0, F) be a deterministic finite-state
automaton. Show that the language recognized by
M, L(M), is infinite if and only if there is a word x rec-
ognized by M with l(x) ≥ |S|.

∗22. One important technique used to prove that certain sets are
not regular is the pumping lemma. The pumping lemma
states that if M = (S, I, f, s0, F) is a deterministic finite-
state automaton and if x is a string in L(M), the language
recognized by M , with l(x) ≥ |S|, then there are strings
u, v, and w in I ∗ such that x = uvw, l(uv) ≤ |S| and
l(v) ≥ 1, and uviw ∈ L(M) for i = 0, 1, 2, Prove
the pumping lemma. [Hint: Use the same idea as was
used in Example 5.]

∗23. Show that the set {02n1n | n = 0, 1, 2, . . .} is not regular
using the pumping lemma given in Exercise 22.

∗24. Show that the set {1n2 | n = 0, 1, 2, . . . } is not regular
using the pumping lemma from Exercise 22.

∗25. Show that the set of palindromes over {0, 1} is not reg-
ular using the pumping lemma given in Exercise 22.
[Hint: Consider strings of the form 0N 10N .]

∗∗26. Show that a set recognized by a finite-state automaton is
regular. (This is the if part of Kleene’s theorem.)

Suppose that L is a subset of I ∗, where I is a nonempty set of
symbols. If x ∈ I ∗, we let L/x = {z ∈ I ∗ | xz ∈ L}. We say

that the strings x ∈ I ∗ and y ∈ I ∗ are distinguishable with
respect to L if L/x �= L/y. A string z for which xz ∈ L but
yz /∈ L, or xz /∈ L, but yz ∈ L is said to distinguish x and y

with respect to L. When L/x = L/y, we say that x and y are
indistinguishable with respect to L.

27. Let L be the set of all bit strings that end with 01. Show
that 11 and 10 are distinguishable with respect to L and
that the strings 1 and 11 are indistinguishable with respect
to L.

28. Suppose that M = (S, I, f, s0, F) is a deterministic
finite-state machine. Show that if x and y are two strings
in I ∗ that are distinguishable with respect to L(M), then
f (s0, x) �= f (s0, y).

∗29. Suppose that L is a subset of I ∗ and for some positive
integer n there are n strings in I ∗ such that every two of
these strings are distinguishable with respect to L. Prove
that every deterministic finite-state automaton recogniz-
ing L has at least n states.

∗30. Let Ln be the set of strings with at least n bits in which the
nth symbol from the end is a 0. Use Exercise 29 to show
that a deterministic finite-state machine recognizing Ln

must have at least 2n states.

∗31. Use Exercise 29 to show that the language consisting of
all bit strings that are palindromes (that is, strings that
equal their own reversals) is not regular.

5 Turing Machines

Introduction

The finite-state automata studied earlier in this chapter cannot be used as general models of
computation. They are limited in what they can do. For example, finite-state automata are able
to recognize regular sets, but are not able to recognize many easy-to-describe sets, including
{0n1n | n ≥ 0}, which computers recognize using memory. We can use finite-state automata to
compute relatively simple functions such as the sum of two numbers, but we cannot use them to
compute functions that computers can, such as the product of two numbers. To overcome these
deficiencies we can use a more powerful type of machine known as a Turing machine, after Alan
Turing, the famous mathematician and computer scientist who invented them in the 1930s.

Basically, a Turing machine consists of a control unit, which at any step is in one of finitely
many different states, together with a tape divided into cells, which is infinite in both directions.
Turing machines have read and write capabilities on the tape as the control unit moves back and
forth along this tape, changing states depending on the tape symbol read. Turing machines are
more powerful than finite-state machines because they include memory capabilities that finite-
state machines lack. We will show how to use Turing machines to recognize sets, including
sets that cannot be recognized by finite-state machines. We will also show how to compute

“Machines take me by
surprise with great
frequency” – Alan Turing

functions using Turing machines. Turing machines are the most general models of computation;
essentially, they can do whatever a computer can do. Note that Turing machines are much more
powerful than real computers, which have finite memory capabilities.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

5 Turing Machines 43

B 1 0B 1 0 1 B 1 B

Tape is infinite in both directions.
Only finitely many nonblank cells at any time.

s4

B

s0

s3 s2

s1

Read/Write Head

Control
Unit

FIGURE 1 A Representation of a Turing Machine.

Definition of Turing Machines

We now give the formal definition of a Turing machine. Afterward we will explain how this
formal definition can be interpreted in terms of a control head that can read and write symbols
on a tape and move either right or left along the tape.

DEFINITION 1 A Turing machine T = (S, I, f, s0) consists of a finite set S of states, an alphabet I containing
the blank symbol B, a partial function f from S × I to S × I × {R, L}, and a starting state s0.

Recall from Section 2.3 that a partial function is defined only for those elements in its domain
of definition. This means that for some (state, symbol) pairs the partial function f may be
undefined, but for a pair for which it is defined, there is a unique (state, symbol, direction)
triple associated to this pair. We call the five-tuples corresponding to the partial function in the
definition of a Turing machine the transition rules of the machine.

To interpret this definition in terms of a machine, consider a control unit and a tape divided
into cells, infinite in both directions, having only a finite number of nonblank symbols on it at
any given time, as pictured in Figure 1. The action of the Turing machine at each step of its
operation depends on the value of the partial function f for the current state and tape symbol.

At each step, the control unit reads the current tape symbol x. If the control unit is in state s

and if the partial function f is defined for the pair (s, x) with f (s, x) = (s′, x′, d), the control
unit

1. enters the state s′,
2. writes the symbol x′ in the current cell, erasing x, and
3. moves right one cell if d = R or moves left one cell if d = L.

We write this step as the five-tuple (s, x, s′, x′, d). If the partial function f is undefined for the
pair (s, x), then the Turing machine T will halt.

A common way to define a Turing machine is to specify a set of five-tuples of the form
(s, x, s′, x′, d). The set of states and input alphabet is implicitly defined when such a definition
is used.

At the beginning of its operation a Turing machine is assumed to be in the initial state s0
and to be positioned over the leftmost nonblank symbol on the tape. If the tape is all blank, the
control head can be positioned over any cell. We will call the positioning of the control head
over the leftmost nonblank tape symbol the initial position of the machine.

Example 1 illustrates how a Turing machine works.

EXAMPLE 1 What is the final tape when the Turing machine T defined by the seven five-
tuples (s0, 0, s0, 0, R), (s0, 1, s1, 1, R), (s0, B, s3, B, R), (s1, 0, s0, 0, R), (s1, 1, s2, 0, L)

(s1, B, s3, B, R), and (s2, 1, s3, 0, R) is run on the tape shown in Figure 2(a)?

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

44 Modeling Computation

B 0 0B 1 0 0 0 B B

Machine Halts

Initial Position

B 0 0B 1 0 1 1 B B

s0(a)

B 0 0B 1 0 1 1 B B

(b)

B 0 0B 1 0 1 1 B B

s1(c)

B 0 0B 1 0 1 1 B B

(d)

B 0 0B 1 0 1 1 B B

(e)

B 0 0B 1 0 1 0 B B

(f)

s3

s2

s1

s0

s0

(g)

FIGURE 2 The Steps Produced by Running T on the Tape in Figure 1.

Solution: We start the operation with T in state s0 and with T positioned over the leftmost
nonblank symbol on the tape. The first step, using the five-tuple (s0, 0, s0, 0, R), reads the 0 in
the leftmost nonblank cell, stays in state s0, writes a 0 in this cell, and moves one cell right.
The second step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the current cell, enters
state s1, writes a 1 in this cell, and moves one cell right. The third step, using the five-tuple
(s1, 0, s0, 0, R), reads the 0 in the current cell, enters state s0, writes a 0 in this cell, and moves
one cell right. The fourth step, using the five-tuple (s0, 1, s1, 1, R), reads the 1 in the current
cell, enters state s1, writes a 1 in this cell, and moves right one cell. The fifth step, using the
five-tuple (s1, 1, s2, 0, L), reads the 1 in the current cell, enters state s2, writes a 0 in this cell,
and moves left one cell. The sixth step, using the five-tuple (s2, 1, s3, 0, R), reads the 1 in the
current cell, enters the state s3, writes a 0 in this cell, and moves right one cell. Finally, in the
seventh step, the machine halts because there is no five-tuple beginning with the pair (s3, 0) in
the description of the machine. The steps are shown in Figure 2.

Note that T changes the first pair of consecutive 1s on the tape to 0s and then halts. ▲

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

5 Turing Machines 45

Using Turing Machines to Recognize Sets

Turing machines can be used to recognize sets. To do so requires that we define the concept of
a final state as follows. A final state of a Turing machine T is a state that is not the first state in
any five-tuple in the description of T using five-tuples (for example, state s3 in Example 1).

We can now define what it means for a Turing machine to recognize a string. Given a string,
we write consecutive symbols in this string in consecutive cells.

DEFINITION 2 Let V be a subset of an alphabet I . A Turing machine T = (S, I, f, s0) recognizes a string x

in V ∗ if and only if T , starting in the initial position when x is written on the tape, halts in
a final state. T is said to recognize a subset A of V ∗ if x is recognized by T if and only if x

belongs to A.

Note that to recognize a subset A of V ∗ we can use symbols not in V . This means that the input
alphabet I may include symbols not in V . These extra symbols are often used as markers (see
Example 3).

When does a Turing machine T not recognize a string x in V ∗? The answer is that x is
not recognized if T does not halt or halts in a state that is not final when it operates on a tape
containing the symbols of x in consecutive cells, starting in the initial position. (The reader
should understand that this is one of many possible ways to define how to recognize sets using
Turing machines.)

We illustrate this concept with Example 2.

EXAMPLE 2 Find a Turing machine that recognizes the set of bit strings that have a 1 as their second bit, that
is, the regular set (0 ∪ 1)1(0 ∪ 1)∗.

Solution: We want a Turing machine that, starting at the leftmost nonblank tape cell, moves
right, and determines whether the second symbol is a 1. If the second symbol is 1, the machine
should move into a final state. If the second symbol is not a 1, the machine should not halt or it
should halt in a nonfinal state.

To construct such a machine, we include the five-tuples (s0, 0, s1, 0, R) and (s0, 1, s1, 1, R)

to read in the first symbol and put the Turing machine in state s1. Next, we include the five-tuples
(s1, 0, s2, 0, R) and (s1, 1, s3, 1, R) to read in the second symbol and either move to state s2 if
this symbol is a 0, or to state s3 if this symbol is a 1. We do not want to recognize strings that
have a 0 as their second bit, so s2 should not be a final state. We want s3 to be a final state. So, we
can include the five-tuple (s2, 0, s2, 0, R). Because we do not want to recognize the empty string
or a string with one bit, we also include the five-tuples (s0, B, s2, 0, R) and (s1, B, s2, 0, R).

The Turing machine T consisting of the seven five-tuples listed here will terminate in the
final state s3 if and only if the bit string has at least two bits and the second bit of the input string
is a 1. If the bit string contains fewer than two bits or if the second bit is not a 1, the machine
will terminate in the nonfinal state s2. ▲

Given a regular set, a Turing machine that always moves to the right can be built to recognize
this set (as in Example 2). To build the Turing machine, first find a finite-state automaton that
recognizes the set and then construct a Turing machine using the transition function of the
finite-state machine, always moving to the right.

We will now show how to build a Turing machine that recognizes a nonregular set.

EXAMPLE 3 Find a Turing machine that recognizes the set {0n1n | n ≥ 1}.
Solution: To build such a machine, we will use an auxiliary tape symbol M as a marker. We have
V = {0, 1} and I = {0, 1, M}. We wish to recognize only a subset of strings in V ∗. We will
have one final state, s6. The Turing machine successively replaces a 0 at the leftmost position of

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

46 Modeling Computation

the string with an M and a 1 at the rightmost position of the string with an M , sweeping back
and forth, terminating in a final state if and only if the string consists of a block of 0s followed
by a block of the same number of 1s.

Although this is easy to describe and is easily carried out by a Turing machine, the machine
we need to use is somewhat complicated. We use the marker M to keep track of the leftmost
and rightmost symbols we have already examined. The five-tuples we use are (s0, 0, s1, M, R),
(s1, 0, s1, 0, R), (s1, 1, s1, 1, R), (s1, M, s2, M, L), (s1, B, s2, B, L), (s2, 1, s3, M, L),
(s3, 1, s3, 1, L), (s3, 0, s4, 0, L), (s3, M, s5, M, R), (s4, 0, s4, 0, L), (s4, M, s0, M, R), and
(s5, M, s6, M, R). For example, the string 000111 would successively become M00111,
M0011M , MM011M , MM01MM , MMM1MM , MMMMMM as the machine operates
until it halts. Only the changes are shown, as most steps leave the string unaltered.

We leave it to the reader (Exercise 13) to explain the actions of this Turing machine and to
explain why it recognizes the set {0n1n | n ≥ 1}. ▲

It can be shown that a set can be recognized by a Turing machine if and only if it can be
generated by a type 0 grammar, or in other words, if the set is generated by a phrase-structure
grammar. The proof will not be presented here.

Computing Functions with Turing Machines

A Turing machine can be thought of as a computer that finds the values of a partial function.
To see this, suppose that the Turing machine T , when given the string x as input, halts with
the string y on its tape. We can then define T (x) = y. The domain of T is the set of strings
for which T halts; T (x) is undefined if T does not halt when given x as input. Thinking of a
Turing machine as a machine that computes the values of a function on strings is useful, but
how can we use Turing machines to compute functions defined on integers, on pairs of integers,
on triples of integers, and so on?

To consider a Turing machine as a computer of functions from the set of k-tuples of non-
negative integers to the set of nonnegative integers (such functions are called number-theoretic
functions), we need a way to represent k-tuples of integers on a tape. To do so, we use unary rep-
resentations of integers. We represent the nonnegative integer n by a string of n + 1 1s so that,
for instance, 0 is represented by the string 1 and 5 is represented by the string 111111. To repre-
sent the k-tuple (n1, n2, . . . , nk), we use a string of n1 + 1 1s, followed by an asterisk, followed
by a string of n2 + 1 1s, followed by an asterisk, and so on, ending with a string of nk + 1 1s.
For example, to represent the four-tuple (2, 0, 1, 3) we use the string111 ∗ 1 ∗ 11 ∗ 1111.

We can now consider a Turing machine T as computing a sequence of number-theoretic
functions T , T 2, . . . , T k, The function T k is defined by the action of T on k-tuples of
integers represented by unary representations of integers separated by asterisks.

EXAMPLE 4 Construct a Turing machine for adding two nonnegative integers.

Solution: We need to build a Turing machine T that computes the function f (n1, n2) = n1 + n2.
The pair (n1, n2) is represented by a string of n1 + 1 1s followed by an asterisk followed
by n2 + 1 1s. The machine T should take this as input and produce as output a tape with
n1 + n2 + 1 1s. One way to do this is as follows. The machine starts at the leftmost 1 of the
input string, and carries out steps to erase this 1, halting if n1 = 0 so that there are no more 1s
before the asterisk, replaces the asterisk with the leftmost remaining 1, and then halts. We can use
these five-tuples to do this: (s0, 1, s1, B, R), (s1, ∗, s3, B, R), (s1, 1, s2, B, R), (s2, 1, s2, 1, R),
and (s2, ∗, s3, 1, R). ▲

Unfortunately, constructing Turing machines to compute relatively simple functions can
be extremely demanding. For example, one Turing machine for multiplying two nonnegative
integers found in many books has 31 five-tuples and 11 states. If it is challenging to construct
Turing machines to compute even relatively simple functions, what hope do we have of building

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

5 Turing Machines 47

Turing machines for more complicated functions? One way to simplify this problem is to use a
multitape Turing machine that uses more than one tape simultaneously and to build up multitape
Turing machines for the composition of functions. It can be shown that for any multitape Turing
machine there is a one-tape Turing machine that can do the same thing.

Different Types of Turing Machines

There are many variations on the definition of a Turing machine. We can expand the capabilities
of a Turing machine in a wide variety of ways. For example, we can allow a Turing machine to
move right, left, or not at all at each step. We can allow a Turing machine to operate on multiple
tapes, using (2 + 3n)-tuples to describe the Turing machine when n tapes are used. We can allow
the tape to be two-dimensional, where at each step we move up, down, right, or left, not just right
or left as we do on a one-dimensional tape. We can allow multiple tape heads that read different
cells simultaneously. Furthermore, we can allow a Turing machine to be nondeterministic, by
allowing a (state, tape symbol) pair to possibly appear as the first elements in more than one
five-tuple of the Turing machine. We can also reduce the capabilities of a Turing machine in
different ways. For example, we can restrict the tape to be infinite in only one dimension or we
can restrict the tape alphabet to have only two symbols. All these variations of Turing machines
have been studied in detail.

The crucial point is that no matter which of these variations we use, or even which combi-
nation of variations we use, we never increase or decrease the power of the machine. Anything
that one of these variations can do can be done by the Turing machine defined in this section,
and vice versa. The reason that these variations are useful is that sometimes they make doing
some particular job much easier than if the Turing machine defined in Definition 1 were used.
They never extend the capability of the machine. Sometimes it is useful to have a wide variety
of Turing machines with which to work. For example, one way to show that for every nonde-
terministic Turing machine, there is a deterministic Turing machine that recognizes the same
language is to use a deterministic Turing machine with three taps. (For details on variations of
Turing machines and demonstrations of their equivalence, see [HoMoUl01].)

Besides introducing the notion of a Turing machine, Turing also showed that it is possible to
construct a single Turing machine that can simulate the computations of every Turing machine
when given an encoding of this target Turing machine and its input. Such a machine is called a
universal Turing machine. (See a book on the theory of computation, such as [Si06], for more
about universal Turing machines.)

The Church–Turing Thesis

Turing machines are relatively simple. They can have only finitely many states and they can
read and write only one symbol at a time on a one-dimensional tape. But it turns out that Turing
machines are extremely powerful.We have seen that Turing machines can be built to add numbers
and to multiply numbers. Although it may be difficult to actually construct a Turing machine to
compute a particular function that can be computed with an algorithm, such a Turing machine
can always be found. This was the original goal of Turing when he invented his machines.
Furthermore, there is a tremendous amount of evidence for the Church–Turing thesis, which
states that given any problem that can be solved with an effective algorithm, there is a Turing
machine that can solve this problem. The reason this is called a thesis rather than a theorem is that
the concept of solvability by an effective algorithm is informal and imprecise, as opposed to the
notion of solvability by a Turing machine, which is formal and precise. Certainly, though, any
problem that can be solved using a computer with a program written in any language, perhaps
using an unlimited amount of memory, should be considered effectively solvable. (Note that
Turing machines have unlimited memory, unlike computers in the real world, which have only
a finite amount of memory.)

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

48 Modeling Computation

Many different formal theories have been developed to capture the notion of effective
computability. These include Turing’s theory and Church’s lambda-calculus, as well as theories
proposed by Stephen Kleene and by E. L. Post. These theories seem quite different on the surface.
The surprising thing is that they can be shown to be equivalent by demonstrating that they define
exactly the same class of functions. With this evidence, it seems that Turing’s original ideas,
formulated before the invention of modern computers, describe the ultimate capabilities of these
machines. The interested reader should consult books on the theory of computation, such as
[HoMoUl01] and [Si96], for a discussion of these different theories and their equivalence.

For the remainder of this section we will briefly explore some of the consequences of the
Church–Turing thesis and we will describe the importance of Turing machines in the study of the
complexity of algorithms. Our goal will be to introduce some important ideas from theoretical
computer science to entice the interested student to further study. We will cover a lot of ground
quickly without providing explicit details. Our discussion will also tie together some of the
concepts discussed in previous parts of the book with the theory of computation.

Computational Complexity, Computability, and Decidability

Throughout this book we have discussed the computational complexity of a wide variety of
problems. We described the complexity of these problems in terms of the number of operations
used by the most efficient algorithms that solve them. The basic operations used by algorithms
differ considerably; we have measured the complexity of different algorithms in terms of bit
operations, comparisons of integers, arithmetic operations, and so on. In Section 3.3, we defined
various classes of problems in terms of their computational complexity. However, these defini-
tions were not precise, because the types of operations used to measure their complexity vary so
drastically. Turing machines provide a way to make the concept of computational complexity
precise. If the Church–Turing thesis is true, it would then follow that if a problem can be solved
using an effective algorithm, then there is a Turing machine that can solve this problem. When
a Turing machine is used to solve a problem, the input to the problem is encoded as a string
of symbols that is written on the tape of this Turing machine. How we encode input depends
on the domain of this input. For example, as we have seen, we can encode a positive integer
using a string of 1s. We can also devise ways to express pairs of integers, negative integers, and
so on. Similarly, for graph algorithms, we need a way to encode graphs as strings of symbols.
This can be done in many ways and can be based on adjacency lists or adjacency matrices.
(We omit the details of how this is done.) However, the way input is encoded does not matter
as long as it is relatively efficient, as a Turing machine can always change one encoding into
another encoding. We will now use this model to make precise some of the notions concerning
computational complexity that were informally introduced in Section 3.3.

The kind of problems that are most easily studied by using Turing machines are those
problems that can be answered either by a “yes” or by a “no.”

DEFINITION 3 A decision problem asks whether statements from a particular class of statements are true.
Decision problems are also known as yes-or-no problems.

Given a decision problem, we would like to know whether there is an algorithm that can
determine whether statements from the class of statements it addresses are true. For example,
consider the class of statements each of which asks whether a particular integer n is prime.
This is a decision problem because the answer to the question “Is n prime?” is either yes or no.
Given this decision problem, we can ask whether there is an algorithm that can decide whether
each of the statements in the decision problem is true, that is, given an integer n, deciding
whether n is prime. The answer is that there is such an algorithm. In particular, in Section 3.5
we discussed the algorithm that determines whether a positive integer n is prime by checking
whether it is divisible by primes not exceeding its square root. (There are many other algorithms
for determining whether a positive integer is prime.) The set of inputs for which the answer to

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

5 Turing Machines 49

the yes–no problem is “yes” is a subset of the set of possible inputs, that is, it is a subset of the
set of strings of the input alphabet. In other words, solving a yes–no problem is the same as
recognizing the language consisting of all bit strings that represent input values to the problem
leading to the answer “yes.” Consequently, solving a yes–no problem is the same as recognizing
the language corresponding to the input values for which the answer to the problem is “yes.”

DECIDABILITY When there is an effective algorithm that decides whether instances of a
decision problem are true, we say that this problem is solvable or decidable. For instance, the
problem of determining whether a positive integer is prime is a solvable problem. However, if no
effective algorithm exists for solving a problem, then we say the problem is unsolvable or un-
decidable. To show that a decision problem is solvable we need only construct an algorithm that
can determine whether statements of the particular class are true. On the other hand, to show
that a decision problem is unsolvable we need to prove that no such algorithm exists. (The fact
that we tried to find such an algorithm but failed, does not prove the problem is unsolvable.)

By studying only decision problems, it may seem that we are studying only a small set of
problems of interest. However, most problems can be recast as decision problems. Recasting the
types of problems we have studied in this book as decision problems can be quite complicated,
so we will not go into the details of this process here. The interested reader can consult references
on the theory of computation, such as [Wo87], which, for example, explains how to recast the
traveling salesperson problem (described in Section 9.6) as a decision problem. (To recast the
traveling salesman problem as a decision problem, we first consider the decision problem that
asks whether there is a Hamilton circuit of weight not exceeding k, where k is a positive integer.
With some additional effort it is possible to use answers to this question for different values
of k to find the smallest possible weight of a Hamilton circuit.)

In Section 3.1 we introduced the halting problem and proved that it is an unsolvable problem.
That discussion was somewhat informal because the notion of a procedure was not precisely
defined. A precise definition of the halting problem can be made in terms of Turing machines.

DEFINITION 4 The halting problem is the decision problem that asks whether a Turing machine T eventually
halts when given an input string x.

With this definition of the halting problem, we have Theorem 1.

THEOREM 1 The halting problem is an unsolvable decision problem. That is, no Turing machine exists
that, when given an encoding of a Turing machine T and its input string x as input, can
determine whether T eventually halts when started with x written on its tape.

The proof of Theorem 1 given in Section 3.1 for the informal definition of the halting problem
still applies here.

Other examples of unsolvable problems include:

(i) the problem of determining whether two context-free grammars generate the same set
of strings;

(ii) the problem of determining whether a given set of tiles can be used with repetition
allowed to cover the entire plane without overlap; and

(iii) Hilbert’s Tenth Problem, which asks whether there are integer solutions to a given
polynomial equation with integer coefficients. (This question occurs tenth on the famous
list of 23 problems Hilbert posed in 1900. Hilbert envisioned that the work done to
solve these problems would help further the progress of mathematics in the twentieth
century. The unsolvability of Hilbert’s Tenth Problem was established in 1970 by Yuri
Matiyasevich.)

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

50 Modeling Computation

COMPUTABILITY A function that can be computed by a Turing machine is called com-
putable and a function that cannot be computed by a Turing machine is called uncomputable.
It is fairly straightforward, using a countability argument, to show that there are number-theoretic
functions that are not computable (see Exercise 39 in Section 2.5). However, it is not so easy
to actually produce such a function. The busy beaver function defined in the preamble to Ex-
ercise 31 is an example of an uncomputable function. One way to show that the busy beaver
function is not computable is to show that it grows faster than any computable function. (See
Exercise 32.)

Note that every decision problem can be reformulated as the problem of computing a
function, namely, the function that has the value 1 when the answer to the problem is “yes” and
that has the value 0 when the answer to the problem is “no.” A decision problem is solvable if
and only if the corresponding function constructed in this way is computable.

THE CLASSES P AND NP In Section 3.3 we informally defined the classes of problems called
P and NP. We are now able to define these concepts precisely using the notions of deterministic
and nondeterministic Turing machines.

We first elaborate on the difference between a deterministic Turing machine and a nonde-
terministic Turing machine. The Turing machines we have studied in this section have all been
deterministic. In a deterministic Turing machine T = (S, I, f, s0), transition rules are defined
by the partial function f from S × I to S × I × {R, L}. Consequently, when transition rules
of the machine are represented as five-tuples of the form (s, x, s′, x′, d), where s is the current
state, x is the current tape symbol, s′ is the next state, x′ is the symbol that replaces x on the
tape, and d is the direction the machine moves on the tape, no two transition rules begin with
the same pair (s, x).

In a nondeterministic Turing machine, allowed steps are defined using a relation consisting
of five-tuples rather than using a partial function. The restriction that no two transition rules
begin with the same pair (s, x) is eliminated; that is, there may be more than one transition
rule beginning with each (state, tape symbol) pair. Consequently, in a nondeterministic Turing
machine, there is a choice of transitions for some pairs of the current state and the tape symbol
being read. At each step of the operation of a nondeterministic Turing machine, the machine
picks one of the different choices of the transition rules that begin with the current state and
tape symbol pair. This choice can be considered to be a “guess” of which step to use. Just
as for deterministic Turing machines, a nondeterministic Turing machine halts when there is
no transition rule in its definition that begins with the current state and tape symbol. Given
a nondeterministic Turing machine T , we say that a string x is recognized by T if and only
if there exists some sequence of transitions of T that ends in a final state when the machine
starts in the initial position with x written on the tape. The nondeterministic Turing machine T

recognizes the set A if x is recognized by T if and only if x ∈ A. The nondeterministic Turing
machine T is said to solve a decision problem if it recognizes the set consisting of all input
values for which the answer to the decision problem is yes.

DEFINITION 5 A decision problem is in P, the class of polynomial-time problems, if it can be solved by a
deterministic Turing machine in polynomial time in terms of the size of its input. That is, a
decision problem is in P if there is a deterministic Turing machine T that solves the decision
problem and a polynomial p(n) such that for all integers n, T halts in a final state after no
more than p(n) transitions whenever the input to T is a string of length n. A decision problem
is in NP, the class of nondeterministic polynomial-time problems, if it can be solved by a
nondeterministic Turing machine in polynomial time in terms of the size of its input. That
is, a decision problem is in NP if there is a nondeterministic Turing machine T that solves
the problem and a polynomial p(n) such that for all integers n, T halts for every choice of
transitions after no more than p(n) transitions whenever the input to T is a string of length n.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

5 Turing Machines 51

Problems in P are called tractable, whereas problems not in P are called intractable. For
a problem to be in P, a deterministic Turing machine must exist that can decide in polynomial
time whether a particular statement of the class addressed by the decision problem is true. For
example, determining whether an item is in a list of n elements is a tractable problem. (We
will not provide details on how this fact can be shown; the basic ideas used in the analyses
of algorithms earlier in the text can be adapted when Turing machines are employed.) For a
problem to be in NP, it is necessary only that there be a nondeterministic Turing machine that,
when given a true statement from the set of statements addressed by the problem, can verify its
truth in polynomial time by making the correct guess at each step from the set of allowable steps
corresponding to the current state and tape symbol. The problem of determining whether a given
graph has a Hamilton circuit is an NP problem, because a nondeterministic Turing machine can
easily verify that a simple circuit in a graph passes through each vertex exactly once. It can
do this by making a series of correct guesses corresponding to successively adding edges to
form the circuit. Because every deterministic Turing machine can also be considered to be a
nondeterministic Turing machine where each (state, tape symbol) pair occurs in exactly one
transition rule defining the machine, every problem in P is also in NP. In symbols, P ⊆ NP.

One of the most perplexing open questions in theoretical computer science is whether every
problem in NP is also in P, that is, whether P = NP. As mentioned in Section 3.3, there is an
important class of problems, the class of NP-complete problems, such that a problem is in this
class if it is in the class NP and if it can be shown that if it is also in the class P, then every problem
in the class NP must also be in the class P. That is, a problem is NP-complete if the existence of
a polynomial-time algorithm for solving it implies the existence of a polynomial-time algorithm
for every problem in NP. In this book we have discussed several different NP-complete problems,
such as determining whether a simple graph has a Hamilton circuit and determining whether a
proposition in n-variables is a tautology.

Exercises

1. Let T be the Turing machine defined by the five-
tuples: (s0, 0, s1, 1, R), (s0, 1, s1, 0, R), (s0, B, s1, 0, R),
(s1, 0, s2, 1, L), (s1, 1, s1, 0, R), and (s1, B, s2, 0, L).
For each of these initial tapes, determine the final
tape when T halts, assuming that T begins in initial
position.

a) · · · B B 0 0 1 1 B B · · ·
b) · · · B B 1 0 1 B B B · · ·
c) · · · B B 1 1 B 0 1 B · · ·
d) · · · B B B B B B B B · · ·

2. Let T be the Turing machine defined by the five-
tuples: (s0, 0, s1, 0, R), (s0, 1, s1, 0, L), (s0, B, s1, 1, R),
(s1, 0, s2, 1, R), (s1, 1, s1, 1, R), (s1, B, s2, 0, R), and
(s2, B, s3, 0, R). For each of these initial tapes, deter-
mine the final tape when T halts, assuming that T begins
in initial position.

a) · · · B B 0 1 0 1 B B · · ·
b) · · · B B 1 1 1 B B B · · ·
c) · · · B B 0 0 B 0 0 B · · ·
d) · · · B B B B B B B B · · ·

ALONZO CHURCH (1903–1995) Alonzo Church was born in Washington, D.C. He studied at Göttingen
under Hilbert and later in Amsterdam. He was a member of the faculty at Princeton University from 1927 until
1967 when he moved to UCLA. Church was one of the founding members of the Association for Symbolic
Logic. He made many substantial contributions to the theory of computability, including his solution to the
decision problem, his invention of the lambda-calculus, and, of course, his statement of what is now known
as the Church–Turing thesis. Among Church’s students were Stephen Kleene and Alan Turing. He published
articles past his 90th birthday.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

52 Modeling Computation

3. What does the Turing machine described by the five-
tuples (s0, 0, s0, 0, R), (s0, 1, s1, 0, R), (s0, B, s2, B, R),
(s1, 0, s1, 0, R), (s1, 1, s0, 1, R), and (s1, B, s2, B, R) do
when given
a) 11 as input?
b) an arbitrary bit string as input?

4. What does the Turing machine described by the five-
tuples (s0, 0, s0, 1, R), (s0, 1, s0, 1, R), (s0, B, s1, B, L),
(s1, 1, s2, 1, R), do when given
a) 101 as input?
b) an arbitrary bit string as input?

5. What does the Turing machine described by the five-
tuples (s0, 1, s1, 0, R), (s1, 1, s1, 1, R), (s1, 0, s2, 0, R),
(s2, 0, s3, 1, L), (s2, 1, s2, 1, R), (s3, 1, s3, 1, L),
(s3, 0, s4, 0, L), (s4, 1, s4, 1, L), and (s4, 0, s0, 1, R) do
when given
a) 11 as input?
b) a bit string consisting entirely of 1s as input?

6. Construct a Turing machine with tape symbols 0, 1,
and B that, when given a bit string as input, adds a 1
to the end of the bit string and does not change any of the
other symbols on the tape.

7. Construct a Turing machine with tape symbols 0, 1,
and B that, when given a bit string as input, replaces
the first 0 with a 1 and does not change any of the other
symbols on the tape.

8. Construct a Turing machine with tape symbols 0, 1,
and B that, given a bit string as input, replaces all 0s
on the tape with 1s and does not change any of the 1s on
the tape.

9. Construct a Turing machine with tape symbols 0, 1,
and B that, given a bit string as input, replaces all but
the leftmost 1 on the tape with 0s and does not change
any of the other symbols on the tape.

10. Construct a Turing machine with tape symbols 0, 1,
and B that, given a bit string as input, replaces the first two
consecutive 1s on the tape with 0s and does not change
any of the other symbols on the tape.

11. Construct a Turing machine that recognizes the set of all
bit strings that end with a 0.

12. Construct a Turing machine that recognizes the set of all
bit strings that contain at least two 1s.

13. Construct a Turing machine that recognizes the set of all
bit strings that contain an even number of 1s.

14. Show at each step the contents of the tape of the Turing
machine in Example 3 starting with each of these strings.
a) 0011 b) 00011 c) 101100 d) 000111

15. Explain why the Turing machine in Example 3 recognizes
a bit string if and only if this string is of the form 0n1n

for some positive integer n.
∗16. Construct a Turing machine that recognizes the set

{02n1n | n ≥ 0}.
∗17. Construct a Turing machine that recognizes the set

{0n1n2n | n ≥ 0}.

18. Construct a Turing machine that computes the function
f (n) = n + 2 for all nonnegative integers n.

19. Construct a Turing machine that computes the function
f (n) = n − 3 if n ≥ 3 and f (n) = 0 for n = 0, 1, 2 for
all nonnegative integers n.

20. Construct a Turing machine that computes the function
f (n) = n mod 3 for every nonnegative integer n.

21. Construct a Turing machine that computes the function
f (n) = 3 if n ≥ 5 and f (n) = 0 if n = 0, 1, 2, 3, or 4.

22. Construct a Turing machine that computes the function
f (n) = 2n for all nonnegative integers n.

23. Construct a Turing machine that computes the function
f (n) = 3n for all nonnegative integers n.

24. Construct a Turing machine that computes the function
f (n1, n2) = n2 + 2 for all pairs of nonnegative integers
n1 and n2.

∗25. Construct a Turing machine that computes the function
f (n1, n2) = min(n1, n2) for all nonnegative integers n1
and n2.

26. Construct a Turing machine that computes the function
f (n1, n2) = n1 + n2 + 1 for all nonnegative integers n1
and n2.

Suppose that T1 and T2 are Turing machines with disjoint sets
of states S1 and S2 and with transition functions f1 and f2,
respectively. We can define the Turing machine T1T2, the com-
posite of T1 and T2, as follows. The set of states of T1T2 is
S1 ∪ S2. T1T2 begins in the start state of T1. It first executes
the transitions of T1 using f1 up to, but not including, the step
at which T1 would halt. Then, for all moves for which T1 halts,
it executes the same transitions of T1 except that it moves to
the start state of T2. From this point on, the moves of T1T2 are
the same as the moves of T2.

27. By finding the composite of the Turing machines you
constructed in Exercises 18 and 22, construct a Turing
machine that computes the function f (n) = 2n + 2.

28. By finding the composite of the Turing machines you
constructed in Exercises 18 and 23, construct a Turing
machine that computes the function f (n) = 3(n + 2) =
3n + 6.

29. Which of the following problems is a decision problem?
a) What is the smallest prime greater than n?

b) Is a graph G bipartite?

c) Given a set of strings, is there a finite-state automaton
that recognizes this set of strings?

d) Given a checkerboard and a particular type of poly-
omino (see Section 1.8), can this checkerboard be tiled
using polyominoes of this type?

30. Which of the following problems is a decision problem?
a) Is the sequence a1, a2, . . . , an of positive integers in

increasing order?

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

5 Turing Machines 53

b) Can the vertices of a simple graph G be colored using
three colors so that no two adjacent vertices are the
same color?

c) What is the vertex of highest degree in a graph G?

d) Given two finite-state machines, do these machines
recognize the same language?

Let B(n) be the maximum number of 1s that a Turing machine
with n states with the alphabet {1, B} may print on a tape that
is initially blank. The problem of determining B(n) for partic-
ular values of n is known as the busy beaver problem. This
problem was first studied by Tibor Rado in 1962. Currently it
is known that B(2) = 4, B(3) = 6, and B(4) = 13, but B(n)

is not known for n ≥ 5. B(n) grows rapidly; it is known that
B(5) ≥ 4098 and B(6) ≥ 3.5 × 1018267.

∗31. Show that B(2) is at least 4 by finding a Turing machine
with two states and alphabet {1, B} that halts with four
consecutive 1s on the tape.

∗∗32. Show that the function B(n) cannot be computed by any
Turing machine. [Hint: Assume that there is a Turing ma-
chine that computes B(n) in binary. Build a Turing ma-
chine T that, starting with a blank tape, writes n down
in binary, computes B(n) in binary, and converts B(n)

from binary to unary. Show that for sufficiently large n,
the number of states of T is less than B(n), leading to a
contradiction.]

Key Terms and Results

TERMS

alphabet (or vocabulary): a set that contains elements used
to form strings

language: a subset of the set of all strings over an alphabet
phrase-structure grammar (V, T, S, P): a description of a lan-

guage containing an alphabet V , a set of terminal symbols
T , a start symbol S, and a set of productions P

the production w → w1: w can be replaced by w1 whenever
it occurs in a string in the language

w1 ⇒ w2 (w2 is directly derivable from w1): w2 can be ob-
tained from w1 using a production to replace a string in w1
with another string

w1
∗⇒ w2 (w2 is derivable from w1): w2 can be obtained from

w1 using a sequence of productions to replace strings by
other strings

type 0 grammar: any phrase-structure grammar
type 1 grammar: a phrase-structure grammar in which every

production is of the form w1 → w2, where w1 = lAr and
w2 = lwr, where A ∈ N , l, r, w ∈ (N ∪ T)∗ and w �= λ, or
w1 = S and w2 = λ as long as S is not on the right-hand
side of another production

type 2, or context-free, grammar: a phrase-structure gram-
mar in which every production is of the form A → w1,
where A is a nonterminal symbol

type 3, or regular, grammar: a phrase-structure grammar
where every production is of the form A → aB, A → a, or
S → λ, where A and B are nonterminal symbols, S is the
start symbol, and a is a terminal symbol

derivation (or parse) tree: an ordered rooted tree where the
root represents the starting symbol of a type 2 grammar,
internal vertices represent nonterminals, leaves represent
terminals, and the children of a vertex are the symbols on
the right side of a production, in order from left to right,
where the symbol represented by the parent is on the left-
hand side

Backus–Naur form: a description of a context-free grammar
in which all productions having the same nonterminal as

their left-hand side are combined with the different right-
hand sides of these productions, each separated by a bar,
with nonterminal symbols enclosed in angular brackets and
the symbol → replaced by ::=

finite-state machine (S, I, O, f, g, s0) (or a Mealy ma-
chine): a six-tuple containing a set S of states, an input
alphabet I , an output alphabet O, a transition function f

that assigns a next state to every pair of a state and an input,
an output function g that assigns an output to every pair of
a state and an input, and a starting state s0

AB (concatenation of A and B): the set of all strings formed
by concatenating a string in A and a string in B in that order

A∗ (Kleene closure of A): the set of all strings made up by
concatenating arbitrarily many strings from A

deterministic finite-state automaton (S, I, f, s0, F): a five-
tuple containing a set S of states, an input alphabet I , a
transition function f that assigns a next state to every pair
of a state and an input, a starting state s0, and a set of final
states F

nondeterministic finite-state automaton (S, I, f, s0, F): a
five-tuple containing a set S of states, an input alphabet I ,
a transition function f that assigns a set of possible next
states to every pair of a state and an input, a starting state
s0, and a set of final states F

language recognized by an automaton: the set of input strings
that take the start state to a final state of the automaton

regular expression: an expression defined recursively by spec-
ifying that ∅, λ, and x, for all x in the input alphabet, are
regular expressions, and that (AB), (A ∪ B), and A∗ are
regular expressions when A and B are regular expressions

regular set: a set defined by a regular expression (see page 820)
Turing machine T = (S, I, f, s0): a four-tuple consisting of a

finite set S of states, an alphabet I containing the blank sym-
bol B, a partial function f from S × I to S × I × {R, L},
and a starting state s0

nondeterministic Turing machine: a Turing machine that
may have more than one transition rule corresponding to
each (state, tape symbol) pair

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

54 Modeling Computation

decision problem: a problem that asks whether statements
from a particular class of statements are true

solvable problem: a problem with the property that there is
an effective algorithm that can solve all instances of the
problem

unsolvable problem: a problem with the property that no ef-
fective algorithm exists that can solve all instances of the
problem

computable function: a function whose values can be com-
puted using a Turing machine

uncomputable function: a function whose values cannot be
computed using a Turing machine

P, the class of polynomial-time problems: the class of prob-
lems that can be solved by a deterministic Turing machine
in polynomial time in terms of the size of the input

NP, the class of nondeterministic polynomial-time prob-
lems: the class of problems that can be solved by a nonde-

terministic Turing machine in polynomial time in terms of
the size of the input

NP-complete: a subset of the class of NP problems with the
property that if any one of them is in the class P, then all
problems in NP are in the class P

RESULTS

For every nondeterministic finite-state automaton there is a de-
terministic finite-state automaton that recognizes the same
set.

Kleene’s theorem: A set is regular if and only if there is a
finite-state automaton that recognizes it.

A set is regular if and only if it is generated by a regular gram-
mar.

The halting problem is unsolvable.

Review Questions

1. a) Define a phrase-structure grammar.

b) What does it mean for a string to be derivable from a
string w by a phrase-structure grammar G?

2. a) What is the language generated by a phrase-structure
grammar G?

b) What is the language generated by the grammarGwith
vocabulary {S, 0, 1}, set of terminals T = {0, 1}, start-
ing symbol S, and productions S → 000S, S → 1?

c) Give a phrase-structure grammar that generates the set
{01n | n = 0, 1, 2, . . . }.

3. a) Define a type 1 grammar.

b) Give an example of a grammar that is not a type 1
grammar.

c) Define a type 2 grammar.

d) Give an example of a grammar that is not a type 2
grammar but is a type 1 grammar.

e) Define a type 3 grammar.

f) Give an example of a grammar that is not a type 3
grammar but is a type 2 grammar.

4. a) Define a regular grammar.

b) Define a regular language.

c) Show that the set {0m1n | m, n = 0, 1, 2, . . . } is a reg-
ular language.

5. a) What is Backus–Naur form?

b) Give an example of the Backus–Naur form of the
grammar for a subset of English of your choice.

6. a) What is a finite-state machine?

b) Show how a vending machine that accepts only quar-
ters and dispenses a soft drink after 75 cents has been
deposited can be modeled using a finite-state machine.

7. Find the set of strings recognized by the deterministic
finite-state automaton shown here.

s0
Start s1

0 0 0, 1
s2

11

s3 0, 1

8. Construct a deterministic finite-state automaton that rec-
ognizes the set of bit strings that start with 1 and end
with 1.

9. a) What is the Kleene closure of a set of strings?
b) Find the Kleene closure of the set {11, 0}.

10. a) Define a finite-state automaton.
b) What does it mean for a string to be recognized by a

finite-state automaton?
11. a) Define a nondeterministic finite-state automaton.

b) Show that given a nondeterministic finite-state au-
tomaton, there is a deterministic finite-state automaton
that recognizes the same language.

12. a) Define the set of regular expressions over a set I .
b) Explain how regular expressions are used to represent

regular sets.
13. State Kleene’s theorem.
14. Show that a set is generated by a regular grammar if and

only if it is a regular set.
15. Give an example of a set not recognized by a finite-state

automaton. Show that no finite-state automaton recog-
nizes it.

16. Define a Turing machine.
17. Describe how Turing machines are used to recognize sets.
18. Describe how Turing machines are used to compute

number-theoretic functions.
19. What is an unsolvable decision problem? Give an example

of such a problem.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

Supplementary Exercises 55

Supplementary Exercises
∗1. Find a phrase-structure grammar that generates each of

these languages.
a) the set of bit strings of the form 02n13n, where n is a

nonnegative integer
b) the set of bit strings with twice as many 0s as 1s
c) the set of bit strings of the form w2, where w is a bit

string
∗2. Find a phrase-structure grammar that generates the set

{02n | n ≥ 0}.
For Exercises 3 and 4, letG = (V , T , S, P)be the context-free
grammar with V = {(,), S, A, B}, T = {(,)}, starting sym-
bol S, and productions S → A, A → AB, A → B, B → (A),
and B → (), S → λ.

3. Construct the derivation trees of these strings.
a) (()) b) ()(()) c) ((()()))

∗4. Show that L(G) is the set of all balanced strings of paren-
theses, defined in the preamble to Supplementary Exer-
cise 55 in Chapter 4.

A context-free grammar is ambiguous if there is a word in
L(G) with two derivations that produce different derivation
trees, considered as ordered, rooted trees.

5. Show that the grammar G = (V , T , S, P) with V =
{0,S}, T = {0}, starting state S, and productions S → 0S,
S → S0, and S → 0 is ambiguous by constructing two
different derivation trees for 03.

6. Show that the grammar G = (V , T , S, P) with V =
{0,S}, T = {0}, starting state S, and productions S → 0S

and S → 0 is unambiguous.

7. Suppose that A and B are finite subsets of V ∗, where V

is an alphabet. Is it necessarily true that |AB| = |BA|?
8. Prove or disprove each of these statements for subsets A,

B, and C of V ∗, where V is an alphabet.
a) A(B ∪ C) = AB ∪ AC

b) A(B ∩ C) = AB ∩ AC

c) (AB)C = A(BC)

d) (A ∪ B)∗ = A∗ ∪ B∗
9. Suppose that A and B are subsets of V ∗, where V is an

alphabet. Does it follow that A ⊆ B if A∗ ⊆ B∗?

10. What set of strings with symbols in the set {0, 1, 2} is
represented by the regular expression (2∗)(0 ∪ (12∗))∗?

The star height h(E) of a regular expression over the set I is
defined recursively by

h(∅) = 0;
h(x) = 0 if x ∈ I ;
h((E1 ∪ E2)) = h((E1E2)) = max(h(E1), h(E2))

if E1 and E2 are regular expressions;
h(E∗) = h(E) + 1 if E is a regular expression.

11. Find the star height of each of these regular expressions.
a) 0∗1
b) 0∗1∗
c) (0∗01)∗
d) ((0∗1)∗)∗

e) (010∗)(1∗01∗)∗((01)∗(10)∗)∗
f) (((((0∗)1)∗0)∗)1)∗

∗12. For each of these regular expressions find a regular ex-
pression that represents the same language with minimum
star height.
a) (0∗1∗)∗
b) (0(01∗0)∗)∗
c) (0∗ ∪ (01)∗ ∪ 1∗)∗

13. Construct a finite-state machine with output that produces
an output of 1 if the bit string read so far as input contains
four or more 1s. Then construct a deterministic finite-state
automaton that recognizes this set.

14. Construct a finite-state machine with output that produces
an output of 1 if the bit string read so far as input contains
four or more consecutive 1s. Then construct a determin-
istic finite-state automaton that recognizes this set.

15. Construct a finite-state machine with output that produces
an output of 1 if the bit string read so far as input ends
with four or more consecutive 1s. Then construct a deter-
ministic finite-state automaton that recognizes this set.

16. A state s′ in a finite-state machine is said to be reach-
able from state s if there is an input string x such that
f (s, x) = s′. A state s is called transient if there is no
nonempty input string x with f (s, x) = s. A state s is
called a sink if f (s, x) = s for all input strings x. An-
swer these questions about the finite-state machine with
the state diagram illustrated here.

s0

s1

Start

s6

s2

s4

0
0

1

1 1

1

0

0

1

0, 1

0, 1

0

s5 s3

a) Which states are reachable from s0?
b) Which states are reachable from s2?
c) Which states are transient?
d) Which states are sinks?

∗17. Suppose that S, I , and O are finite sets such that |S| = n,
|I | = k, and |O| = m.
a) How many different finite-state machines (Mealy ma-

chines) M = (S, I, O, f, g, s0) can be constructed,
where the starting state s0 can be arbitrarily chosen?

b) How many different Moore machines M =
(S, I, O, f, g, s0) can be constructed, where the start-
ing state s0 can be arbitrarily chosen?

∗18. Suppose that S and I are finite sets such that |S| = n

and |I | = k. How many different finite-state automata
M = (S, I, f, s0, F) are there where the starting state s0

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

56 Modeling Computation

and the subset F of S consisting of final states can be
chosen arbitrarily
a) if the automata are deterministic?
b) if the automata may be nondeterministic? (Note: This

includes deterministic automata.)
19. Construct a deterministic finite-state automaton that is

equivalent to the nondeterministic automaton with the
state diagram shown here.

s0 s1 s2 s3

0
0

0

1

0

1 11

00

Start

20. What is the language recognized by the automaton in Ex-
ercise 19?

21. Construct finite-state automata that recognize these sets.
a) 0∗(10)∗
b) (01 ∪ 111)∗10∗(0 ∪ 1)

c) (001 ∪ (11)∗)∗
∗22. Find regular expressions that represent the set of all strings

of 0s and 1s
a) made up of blocks of even numbers of 1s interspersed

with odd numbers of 0s.
b) with at least two consecutive 0s or three consecutive

1s.

c) with no three consecutive 0s or two consecutive 1s.
∗23. Show that if A is a regular set, then so is A.
∗24. Show that if A and B are regular sets, then so is A ∩ B.
∗25. Find finite-state automata that recognize these sets of

strings of 0s and 1s.
a) the set of all strings that start with no more than three

consecutive 0s and contain at least two consecutive 1s
b) the set of all strings with an even number of symbols

that do not contain the pattern 101
c) the set of all strings with at least three blocks of two

or more 1s and at least two 0s
∗26. Show that {02n | n ∈ N} is not regular. You may use the

pumping lemma given in Exercise 22 of Section 13.4.
∗27. Show that {1p | p is prime} is not regular. You may use

the pumping lemma given in Exercise 22 of Section 13.4.
∗28. There is a result for context-free languages analogous to

the pumping lemma for regular sets. Suppose that L(G)

is the language recognized by a context-free language G.
This result states that there is a constant N such that if z

is a word in L(G) with l(z) ≥ N , then z can be written
as uvwxy, where l(vwx) ≤ N , l(vx) ≥ 1, and uviwxiy

belongs to L(G) for i = 0, 1, 2, 3, Use this result
to show that there is no context-free grammar G with
L(G) = {0n1n2n | n = 0, 1, 2, . . . }.

∗29. Construct a Turing machine that computes the function
f (n1, n2) = max(n1, n2).

∗30. Construct a Turing machine that computes the function
f (n1, n2) = n2 − n1 if n2 ≥ n1 and f (n1, n2) = 0 if
n2 < n1.

Computer Projects

Write programs with these input and output.

1. Given the productions in a phrase-structure grammar, de-
termine which type of grammar this is in the Chomsky
classification scheme.

2. Given the productions of a phrase-structure grammar, find
all strings that are generated using twenty or fewer appli-
cations of its production rules.

3. Given the Backus–Naur form of a type 2 grammar, find
all strings that are generated using twenty or fewer appli-
cations of the rules defining it.

∗4. Given the productions of a context-free grammar and a
string, produce a derivation tree for this string if it is in
the language generated by this grammar.

5. Given the state table of a Moore machine and an input
string, produce the output string generated by the ma-
chine.

6. Given the state table of a Mealy machine and an input
string, produce the output string generated by the ma-
chine.

7. Given the state table of a deterministic finite-state automa-
ton and a string, decide whether this string is recognized
by the automaton.

8. Given the state table of a nondeterministic finite-state au-
tomaton and a string, decide whether this string is recog-
nized by the automaton.

∗9. Given the state table of a nondeterministic finite-state au-
tomaton, construct the state table of a deterministic finite-
state automaton that recognizes the same language.

∗∗10. Given a regular expression, construct a nondeterminis-
tic finite-state automaton that recognizes the set that this
expression represents.

11. Given a regular grammar, construct a finite-state automa-
ton that recognizes the language generated by this gram-
mar.

12. Given a finite-state automaton, construct a regular gram-
mar that generates the language recognized by this au-
tomaton.

∗13. Given a Turing machine, find the output string produced
by a given input string.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

Writing Projects 57

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Solve the busy beaver problem for two states by test-
ing all possible Turing machines with two states and
alphabet {1, B}.

∗2. Solve the busy beaver problem for three states by testing
all possible Turing machines with three states and alphabet
{1, B}.

∗∗3. Find a busy beaver machine with four states by testing
all possible Turing machines with four states and alphabet
{1, B}.

∗∗4. Make as much progress as you can toward finding a busy
beaver machine with five states.

∗∗5. Make as much progress as you can toward finding a busy
beaver machine with six states.

Writing Projects

Respond to these with essays using outside sources.

1. Describe how the growth of certain types of plants can be
modeled using a Lidenmeyer system. Such a system uses
a grammar with productions modeling the different ways
plants can grow.

2. Describe the Backus–Naur form (and extended Backus–
Naur form) rules used to specify the syntax of a program-
ming language, such as Java, LISP, orAda, or the database
language SQL.

3. Explain how finite-state machines are used by spell-
checkers.

4. Explain how finite-state machines are used in the study
of network protocols.

5. Explain how finite-state machines are used in speech
recognition programs.

6. Compare the use of Moore machines versus Mealy ma-
chines in the design of hardware systems and computer
software.

7. Explain the concept of minimizing finite-state automata.
Give an algorithm that carries out this minimization.

8. Give the definition of cellular automata. Explain their ap-
plications. Use the Game of Life as an example.

9. Define a pushdown automaton. Explain how pushdown
automata are used to recognize sets. Which sets are rec-
ognized by pushdown automata? Provide an outline of a
proof justifying your answer.

10. Define a linear-bounded automaton. Explain how linear-
bounded automata are used to recognize sets. Which sets
are recognized by linear-bounded automata? Provide an
outline of a proof justifying your answer.

11. Look up Turing’s original definition of what we now call
a Turing machine. What was his motivation for defining
these machines?

12. Describe the concept of the universal Turing machine.
Explain how such a machine can be built.

13. Explain the kinds of applications in which nondetermin-
istic Turing machines are used instead of deterministic
Turing machines.

14. Show that a Turing machine can simulate any action of a
nondeterministic Turing machine.

15. Show that a set is recognized by a Turing machine if and
only if it is generated by a phrase-structure grammar.

16. Describe the basic concepts of the lambda-calculus and
explain how it is used to study computability of functions.

17. Show that a Turing machine as defined in this chapter can
do anything a Turing machine with n tapes can do.

18. Show that a Turing machine with a tape infinite in one
direction can do anything a Turing machine with a tape
infinite in both directions can do.

CH13WEB Rosen-2311T Rosenweb.cls April 13, 2012 9:45

