Show All Solutions

Rosen, Discrete Mathematics and Its Applications, 7th edition, Global Edition Extra Examples
Section 1.5-Nested Quantifiers
Extra - Page references correspond to locations of Extra Examples icons in the textbook.

p.53, icon at Example 1

\#1. Write the following statements in English, using the predicate $S(x, y)$: " x shops in y ", where x represents people and y represents stores:
(a) $\forall y S($ Margaret, $y)$.
(b) $\exists x \forall y S(x, y)$.
p.53, icon at Example 1
\#2. Write in symbols using predicates and quantifiers: "Every Junior in this class scored above 90 on the first exam."

[^0]
p.53, icon at Example 1

\#3. Write the following statement in English, using the predicates

$$
\begin{aligned}
& S(x, y): " x \text { shops in } y " \\
& T(x): " x \text { is a student" }
\end{aligned}
$$

where x represents people and y represents stores:

$$
\exists y \forall x(T(x) \rightarrow \neg S(x, y))
$$

See Solution

p.53, icon at Example 1

\#4. Write the following statement in English, using the predicates

$$
\begin{aligned}
& S(x, y): " x \text { shops in } y " \\
& T(x): " x \text { is a student" }
\end{aligned}
$$

where x represents people and y represents stores:

$$
\forall y \exists x(T(x) \wedge S(x, y))
$$

See Solution

p.53, icon at Example 1

\#5. Write the following statement in English, using the predicate $S(x, y)$ for " x shops in y ", where x represents people and y represents stores:

$$
\exists x_{1} \exists y \forall x_{2}\left[S\left(x_{1}, y\right) \wedge\left(x_{1} \neq x_{2} \rightarrow \neg S\left(x_{2}, y\right)\right)\right] .
$$

See Solution

p.53, icon at Example 1

\#6. Write the following statement in English, using the predicates

$$
\begin{aligned}
& C(x): \text { " } x \text { is a Computer Science major" } \\
& M(y): \text { " } y \text { is a math course" } \\
& T(x, y): \text { " } x \text { is taking } y "
\end{aligned}
$$

where x represents students and y represents courses:

$$
\forall x \exists y(C(x) \rightarrow M(y) \wedge T(x, y))
$$

See Solution

p.53, icon at Example 1

\#7. Write the following statement in English, using the predicates
$C(x): " x$ is a Computer Science major"
$T(x, y): " x$ is taking $y "$
where x represents students and y represents courses:

$$
\forall y \exists x(\neg C(x) \wedge T(x, y))
$$

See Solution

p.53, icon at Example 1

\#8. Write the following statement in English, using the predicates
$F(x): " x$ is a Freshman"
$M(y): " y$ is a math course"
$T(x, y): " x$ is taking $y "$
where x represents students and y represents courses:

$$
\neg \exists x[F(x) \wedge \forall y(M(y) \rightarrow T(x, y))] .
$$

See Solution

p.53, icon at Example 1

\#9. Write the following statement using quantifiers and the predicate $S(x, y)$ for " x shops in y ", where the universe for x consists of people and the universe for y consists of stores:
"Will shops in Al's Record Shoppe."

See Solution

p.53, icon at Example 1

\#10. Write the following statement using quantifiers and the predicates

$$
\begin{aligned}
& S(x, y): " x \text { shops in } y " \\
& T(x): " x \text { is a student" }
\end{aligned}
$$

where the universe for x consists of people and the universe for y consists of stores:
"There is no store that has no students who shop there."

See Solution

p.53, icon at Example 1

\#11. Write the following statement using quantifiers and the predicates

$$
\begin{gathered}
S(x, y): " x \text { shops in } y " \\
T(x): " x \text { is a student" }
\end{gathered}
$$

where the universe for x consists of people and the universe for y consists of stores:
"The only shoppers in some stores are students."

See Solution

p.53, icon at Example 1

\#12. Suppose that the universe for x and y is $\{1,2,3\}$. Also, assume that $P(x, y)$ is a predicate that is true in the following cases, and false otherwise: $P(1,3), P(2,1), P(2,2), P(3,1), P(3,2), P(3,3)$. Determine whether each of the following is true or false:
(a) $\forall y \exists x(x \neq y \wedge P(x, y))$.
(b) $\forall x \exists y(x \neq y \wedge \neg P(x, y))$.
(c) $\forall y \exists x(x \neq y \wedge \neg P(x, y))$.

See Solution

p.53, icon at Example 1
\#13. Suppose that the universe for x and y is $\{1,2,3,4\}$. Assume that $P(x, y)$ is a predicate that is true in the following cases and false otherwise: $P(1,4), P(2,1), P(2,2), P(3,4), P(4,1), P(4,4)$. Determine whether each of the following is true or false:
(a) $\exists y \forall x P(x, y)$.
(b) $\forall x P(x, x)$.
(c) $\forall x \exists y(x \neq y \wedge P(x, y))$.

See Solution

p.53, icon at Example 1

\#14. Consider this sentence, which is Amendment 3 to the U.S. Constitution:"No soldier shall, in time of peace, be quartered in any house, without the consent of the owner, nor in time of war, but in a manner to be prescribed by law."
(a) The sentence has the form of a conjunction of two conditional sentences. Write the given sentence in this form.
(b) Using the six predicates, $S(x)$:" x is a soldier," $P(t)$ " t is a peaceful time," $Q(x, y, h)$:" x is required to allow y to be quartered in $h, " O(x, h)$: " x owns $h, " C(x, y, h)$:" x consents to quarter y in $h,{ }^{\prime}, A(x, h)$: "the law allows x to be quartered in h," where the universe for x and y consists of all people, the universe for t consists of all points in time, and the universe for h consists of all houses, rewrite the sentence using quantifiers and predicates.

See Solution

p.53, icon at Example 1

\#15. Consider these lines of code from a C++ program:

```
if (!(x!=0 && y/x < 1) || x==0)
    cout << "True";
else
    cout << "False"
```

(a) Express the code in this statement as a compound statement using the logical connectives $\neg, \vee, \wedge, \rightarrow$, and these predicates

$$
\begin{aligned}
E(x): & x=0 \\
L(x, y): & y / x<1 \\
A(z): & " z \text { is assigned to cout" }
\end{aligned}
$$

where x and y are integers and z is a Boolean variable (with values True and False).
(b) Use the laws of propositional logic to simplify the statement by expressing it in a simpler form.
(c) Translate the answer in part (b) back into $\mathrm{C}++$.

See Solution
p.54, icon at Example 3
\#1. What are the truth values of each of these? Assume that in each case the universe consists of all real numbers.
(a) $\exists x \exists y(x y=2)$
(b) $\exists x \forall y(x y=2)$
(c) $\forall x \exists y(x y=2)$
(d) $\forall x \forall y(x y=2)$

p.54, icon at Example 3

\#2. Write the following statements in English, using the predicate $S(x, y)$: " x shops in y ", where x represents people and y represents stores:
(a) $\exists y \forall x S(x, y)$.
(b) $\forall x \exists y S(x, y)$.

See Solution

p.54, icon at Example 3
\#3. Suppose that the universe for x and y is $\{1,2,3\}$. Also, assume that $P(x, y)$ is a predicate that is true in the following cases, and false otherwise: $P(1,3), P(2,1), P(2,2), P(3,1), P(3,2), P(3,3)$. Determine whether each of the following is true or false:
(a) $\exists x \forall y(y<x \rightarrow P(x, y))$.
(b) $\forall y \exists x(y<x \vee P(x, y))$.
(c) $\exists x \exists y(P(x, y) \wedge P(y, x))$.
(d) $\forall y \exists x(P(x, y) \rightarrow \neg P(y, x))$.
p.54, icon at Example 3
\#4. Suppose $P(x, y, z)$ is a predicate where the universe for x, y, and z is $\{1,2\}$. Also suppose that the predicate is true in the following cases $P(1,1,1), P(1,2,1), P(1,2,2), P(2,1,1), P(2,2,2)$, and false otherwise. Determine the truth value of each of the following quantified statements:
(a) $\forall x \exists y \exists z P(x, y, z)$.
(b) $\forall x \forall y \exists z P(x, y, z)$.
(c) $\forall y \forall z \exists x P(x, y, z)$.
(d) $\forall x \exists y \forall z P(x, y, z)$.

See Solution
p.54, icon at Example 3
\#5. Suppose $P(x, y, z)$ is a predicate where the universe for x, y, and z is $\{1,2\}$. Also suppose that the predicate is true in the following cases $P(1,1,1), P(1,2,1), P(1,2,2), P(2,1,1), P(2,2,2)$, and false otherwise. Determine the truth value of each of the following quantified statements:
(a) $\exists x \forall y \forall z P(x, y, z)$.
(b) $\forall x \exists z \forall y P(x, y, z)$.
(c) $\forall y \exists x \exists z \neg P(x, y, z)$.
(d) $\exists x \forall z \neg \forall y P(x, y, z)$.

p.54, icon at Example 3

\#6. Suppose that the universe for x and y is $\{1,2,3,4\}$. Assume that $P(x, y)$ is a predicate that is true in the following cases and false otherwise: $P(1,4), P(2,1), P(2,2), P(3,4), P(4,1), P(4,4)$. Determine whether each of the following is true or false:
(a) $\forall x \exists y P(x, y)$.
(b) $\forall y \exists x P(x, y)$.
(c) $\exists x \forall y P(x, y)$.

See Solution

p.56, icon at Example 6

\#1. Write this fact about numbers using predicates and quantifiers: "Given a number, there is a number greater than it."

See Solution

p.56, icon at Example 6

\#2. Express the following statement using predicates and quantifiers: "The product of two positive numbers is positive."

See Solution

p.56, icon at Example 6
\#3. Write these statements in symbols using the predicates:
$S(x): x$ is a perfect square; $\quad N(x): x$ is negative.
Assume that the variable x is an integer.
(a) No perfect squares are negative.
(b) No negative numbers are perfect squares.

See Solution

p.56, icon at Example 6

\#4. Write the following statement in symbols using the predicates

$$
S(x): x \text { is a perfect square } P(x): x \text { is positive }
$$

where the universe for x is the set of all integers:
"Perfect squares are positive."

See Solution

p.56, icon at Example 6

\#5. Write the following statement in symbols using the predicate $P(x)$ to mean " x is positive", where the universe for x is the set of all integers.
"Exactly one number is positive."

See Solution

p.56, icon at Example 6

\#6. Write the following statements in symbols, using $P(x)$ to mean " x is positive" and $F(x)$ to mean " x ends in the digit 5 ". Assume that the universe for x is the set of all integers.
(a) Some positive integers end in the digit 5 .
(b) Some positive integers end in the digit 5 , while others do not.

See Solution

p.56, icon at Example 6

\#7. Write in symbols: There is no smallest positive number.
See Solution

p.56, icon at Example 6

\#8. Write in symbols: If $a<b$, then $\frac{a+b}{2}$ lies between a and b.

p.56, icon at Example 6

\#9. Write in symbols: For all choices of a and $b, \frac{a+b}{2}$ lies between a and b.

See Solution

p.59, icon at Example 14
\#1. Write the negation of the statement $\exists x \forall y(x y=0)$ in symbols and in English. Determine the truth or falsity of the statement and its negation. Assume that the universe for x and y is the set of all real numbers.

See Solution

p.59, icon at Example 14
\#2. Write the statement "There is a largest number" using predicates and quantifiers. Then give its negation in symbols.

See Solution

[^0]: See Solution

