Show All Solutions

Rosen, Discrete Mathematics and Its Applications, 7th edition, Global Edition Extra Examples
Section 7.1-An Introduction to Discrete Probability
Extra - Page references correspond to locations of Extra Examples icons in the textbook.

p.432, icon at Example 1

\#1. A computer password consists of five lower case letters, with repeated letters allowed. Find $p(E)$ where E is the event that the password begins with c.

See Solution

p.432, icon at Example 1

\#2. A computer password consists of five lower case letters, with repeated letters allowed.
(a) Find $p\left(F_{1}\right)$, where F_{1} is the event that the password contains no vowels.
(b) Find $p\left(F_{2}\right)$, where F_{2} is the event that the password contains only vowels.

See Solution

p.432, icon at Example 1
\#3. A professor teaches two sections of a calculus course and gave a quiz to the students in each section. In Section 1, 8 students out of 35 got a score of 90 or higher. In Section 2, 11 students out of 28 got a score of 90 of higher.

Find the probability that the student:
(a) is in Section 1, if the student is chosen at random from among all 63 students.
(b) is not in Section 1, if the student is chosen at random from among all 63 students.
(c) scored at least 90 on the quiz, if the student is chosen at random from those in Section 1.
(d) is in Section 1 and scored at least 90 on the quiz, if the student is chosen at random.
(e) is in Section 1, if the student is chosen at random from those who scored at least 90 on the quiz.

See Solution

p.432, icon at Example 1

\#4. You flip a coin twice. Find the following:
(a) $p(E)$ where E is the event of getting heads on the first flip and tails on the second flip.
(b) $p(F)$ where F is the event of getting one head and one tail in the two flips.

See Solution

p.432, icon at Example 1

\#5. A tetrahedral die is a regular polyhedron consisting of 4 equilateral triangles, with the four faces numbered $1,2,3,4$. You roll the pair of tetrahedral dice. Find the probability that the sum is: (a) 2 , (b) 3 , (c) 4 , (d) 5 , (e) 6 , (f) 7 , (g) 8 .

See Solution

p.432, icon at Example 1

\#6. You pick five numbers, without replacement, from the set $\{1,2,3, \ldots, 24,25\}$. What is the probability that the product of the numbers chosen is odd?

See Solution

p.432, icon at Example 1

\#7. Suppose $S=\{1,2, \ldots, 20\}$. You select a subset $T \subseteq S$ of size three. Find the probability that T consists of two odd numbers and one even number.

See Solution

p.432, icon at Example 1

\#8. Suppose $S=\{1,2, \ldots, 20\}$. You select a subset $T \subseteq S$ of size three. Find the probability that T consists of three prime numbers.

See Solution

p.432, icon at Example 1

\#9. Suppose $S=\{1,2, \ldots, 20\}$. You select a subset $T \subseteq S$ of size three. Find the probability that the three numbers in T have a sum that is less than nine.

See Solution

p.432, icon at Example 1

\#10. A class has 20 women and 13 men. A committee of five is chosen at random. Find
(a) p (the committee consists of all women).
(b) p (the committee consists of all men)
(c) p (the committee consists of all of the same sex)

See Solution

p.432, icon at Example 1

\#11. What is the probability of getting more heads than tails, if you toss a fair coin
(a) nine times?
(b) ten times?

See Solution

p.432, icon at Example 1

\#12. A family has two children. They are not twins. You ring the doorbell of the house they live in and a girl answers the door. What is the probability that the other child in the family is a girl? Assume that in the births of two children the probability of the birth of a girl or a boy are independent events and that the probability of the birth of a child of either sex is $1 / 2$.

See Solution

p.436, icon at Example 9

\#1. Suppose $S=\{1,2, \ldots, 20\}$. You select a subset $T \subseteq S$ of size three. Find the probability that T has at least one even number in it.

See Solution

p.436, icon at Example 9

\#2. Suppose $S=\{1,2, \ldots, 20\}$. You select a subset $T \subseteq S$ of size three. Find the probability that T contains the numbers 10 or 20 .

See Solution

p.436, icon at Example 9

\#3. A true/false quiz has 10 questions. If you randomly answer each question, what is the probability that you score at least 70% ?

p.436, icon at Example 9

\#4. In a lottery game, a winning set of five numbers is chosen from the set $\{1,2, \ldots, 44\}$. To play, you pick a set of five numbers. If your five numbers match the five winning numbers, you win first prize. If exactly four match, you win second prize. If exactly three match, you win third prize. If two or fewer numbers match, you win nothing. Find
(a) p (win first prize).
(b) p (win second prize).
(c) p (win third prize).
(d) p (win no prize).

p.436, icon at Example 9

\#5. Several states play a lottery game call Mega Millions. A Mega Millions lottery game ticket has two halves: you pick a set of five numbers from the numbers 1 through 56 on the top half of the ticket, and one number (the Mega Ball number) from 1 through 46 on the bottom half of the ticket. (The Mega Ball number can be the same as one of the five numbers picked on the top half of the ticket.) Six winning numbers are chosen: five numbers from 1 through 56 and one Mega Ball number from the numbers 1 through 46. You win a prize if your choices match some or all of the winning numbers, as follows: five and Mega Ball, five and no Mega Ball, four and Mega Ball, four and no Mega Ball, three and Mega Ball, three and no Mega Ball, two and Mega Ball, one and Mega Ball, only the Mega Ball.

Suppose you purchase one ticket. Find the probability that you win each of these prizes.

See Solution

p.436, icon at Example 9

\#6. Six cards, numbered $1,2,3,4,5,6$, are placed in a row. Let E be the event that 1 and 2 are next to each other or 3 and 4 are next to each other. Which is more likely: E or \bar{E} ?

p.436, icon at Example 9

\#7. You pick five numbers, without replacement, from the set $\{1,2,3, \ldots, 24,25\}$. What is the probability that the sum of the numbers chosen is odd?

See Solution

