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1. Construct a monoid using the operation max which has no zero and an
infinite carrier.
Solution: Let N = {0,1,2,...}
b ifb>a
a ifb<a
This has no zero element and an infinite carrier.

max(a,b) =

2. For each of the following digraphs, let R be the binary relation
represented by the digraph and let S = {R"|n € [+} be the carrier of
the algebra in which composition of relations is the binary operation.
In each case determine whether the algebra can be presented as a
semigroup, monoid or group and state the cardinality of the carrier.

(a) Q/ @/ R=R*=R3...  group with one element
a d
(b) D R%* R3 R*  are given by

e e G0
s

This can be represented by a group with 4 elements. R* is the
identity:.

a



R? is given by
b 6 c
R3 is given by _R

b
R R?

The tableis R | R R group with R? as the identity.
R*| R R?

3. State necessary and sufficient condition on a binary relation R so that
the set {R"|n € I+} can be made the carrier of a monoid using the
operation of composition.

The algebra < R" o > is a monoid if and only if RFR/ = R’ for all
positive j. R is the identity. ie., R*'R = R or R**!' = R. The
necessary and sufficient condition is that there exists a k such that
RFY = R. Tt is not necessary that R¥ = R° as seen by (c) of the
previous example.

(@]

4. Consider the group G of 2 x 2 matrices with rational entries and non
zero determinant. Let H be the subset of G consisting of matrices
whose upper right entry is 0. Then show that H is a subgroup of G
but not a normal subgroup.

Solution: The operation is matrix multiplication
a 0] [a 0] [ ad 0
b oc| |V ] |bd b o
Hence if we take A,B € H, AB € H closure is proved. Matrix

10
0 1]

multiplication is associative. the identity € H. Inverse of

1

{Z 2} is { Eb 0} € H. Hence H is a subgroup of G.

b 1
ac c

If H is a normal subgroup for any a in G aha™! should be in H for

heH.



aH = Ha if H is a normal subgroup.
soah=b="NWafor W e H

aha ' =h € H. Also a *ha € H

1 2 10
Takea—(1 3>,h— 11

—1
1 2 1 0\ /1 2 -1 —4

1y, _ _

ah“(1 3> (1 1)(1 3>(1 3>¢H'

Hence H is not a normal subgroup.

. Let H be a normal subgroup of G. Then the cosets of H in G form a
group under coset multiplication defined by

(aH)(bH) = abH

Solution: (aH)(bH) = a(Hb)H = a(bH)H = abHH = abH.
Closure is proved.

(aH)((bH)(cH)) = abcH

~ ((aH)(bH))(cH)

Inverse of aH is a 'H

H is the identity.
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2. Show that S5 is non abelian.
S3 can be given by the table given in page 790.
If we look at it as the variations of a triangle by rotating about 120°,
240° and reflecting about a; A, as B and a3C' as given in p. 790 and if
we represent the original position of the triangle as C' and rotations as
r1 and ry and reflections by f fo f3 respectively the table can be given
by

e . re fi fa fs

ele rmn 1 fi f2 f3

rijrore e fs o fi f

T2 e o fo fs fi

Hlh o fs e mor

folfo fs fi T2 e m

fslfs i a1 o e

It can be seen that rif3 = fo
f37”1 = f1

Hence S5 is not abelian.

This is the smallest non abelian group. There is only one nonisomorphic
group of order 2, 3 and 5 and they are cyclic. There are 2 nonisomorphic
groups of order 4 and both are abelian. S3; having 6 elements is the
smallest nonabelian group. But all its proper subgroups are abelian, in
fact cyclic.

{e}, {e,m,m2}, {e, f1}, {e, f2}, {e, f3} are the proper subgroups.

For &k > 3 S} is of order £!.

This is because with n elements we can have k! permutations. All of




them are non abelian. This can be shown as follows:

Lot — (L 23456 ...k
“Pr=\9 31456 ... k
(123456 k
P2=\1 34 925%6 ... k
123456 ... k
thenprp=1y 1 4 3 5 ¢ k:)
123456
5 6

L\

b2.P1 = (3

S0 p1.p2 # p2-p1
Hence S}, is not abelian.

Cyclic Notation for Permutations
Another way of describing a permutation is by means of cycles.

Consider f € Ss.

Fo 12345678

8 276 5 4 1 3
Consider the images of 1 when f is applied repeatedly. The images
F), 20, £2(1),... are 8,3, 7,1,8,3,7,.... If j > 1 and fI(1) is

an element of
8
1

)

3
N 7<—/

then f/t1(1) is the next element in the indicated direction. The
numbers 1, 8, 3, 7 make up a cycle of length 4. The above figure
illustrates how the cycle can be represented. It canbe also represented
as (8,3,7,1)or (3,7, 1,8) or (7, 1,8, 3) or (1, 8, 3, 7). Though as a
figure it is more easy to understand the second way of representation
is the one which is usually used. The last number in the list has as its
image the first number. The other cycles in f are (2), (4, 6) and (5).
We can express f as a product of disjoint cycles.

J= (17 8,3, 7)(2) (47 6)(5>

or f=(1,8,3,7)(4,6)

2



The absence of 2 and 5 implies that f(2) =2 and f(5) = 5.

Disjoint cycles: We say that two cycles are disjoint if no number
appears in both cycles. We can easily see that in the representation
of a permutation by cycles, we get only disjoint cycles. Disjoint cycles
can be written in any order. f can also be written as

f=(4,6)(1,8,3,7)

Let us now see how to deal with composition of permutations in this
new representation.
Suppose f is as above and ¢ is given by

g=1(1,5,6)(8,3,7,4)

To calculate fg, we start with simple concatenation
fg=1(1,8,3,7)(4,6)(1,5,6)(8,3,7,4) - 1.

Now we want to express fg as a product of disjoint cycles as f and g
were individually written. We will start with the cycle that contains
1. The four cycles in I are read from right to left. The first cycle does
not contain 1. Thus we move to the second. The image of 1 under the
cycle is 5. Now move on to the next cycle in I, looking for 5. It does
not appear. The fourth cycle also does not contain 5. So fg(1) = 5.
At this point we have fg = (1,5,...). Repeat the steps to find fg(5)
which is seen to be 4. fg(4) is similarly found as 4. fg(3) is 1 and now
we have a cycle (1,5,4,3). Similarly we find another cycle (6,8,7), (2)
is a cycle and need not be written. So fg can be written as (1, 5,4, 3)
(6,8,7) as product of disjoint cycles.

Similarly we find

(1,2,3,4) (1, 2,3,4) = (1, 3) (2, 4)

(1,4) (1,3) (1, 2) = (1, 2, 3, 4)

It should be noted that the cyclic notation does not indicate the set
which is being permuted. The examples above could be in S5 where
the image of 5 is 5. This ambiguity is usually overcome by making the
context clear.

A cycle of length 2 is called a transposition (1, 2) (4, 5) are
transpositions (1, 5, 4) is not. It can be seen that every cycle of length
greater than 2 can be expressed as a product of transpositions.

(1, 5, 4) can be represented as (1, 4) (1, 5) (ay,. .., ax) canbe expressed
as



(a1,ar)(ar,ax—1) ... (a1, as)(a,az).

The order is important here. It cannot be changed. Even and
odd permutations are defined in p. 794. It is also seen that every
permutation in a finite set can be expressed as the product of an even
number of transpositions or an odd number of transpositions but not
both. This is seen as follows. Every permutation is expressed as disjoint
cycles omitting the cycles having only one element. If the length of the
cycle is > 3, each cycle is written as a product of transpositions. Hence
every permutation is represented as a product of transpositions. If the
number of transpositions is odd, it is called an odd permutation. If it
is even it is called an even permutations.

Let n > 2. The set of even permutations in S,, is a proper subgroup
of S,, called the alternating group on {1,...,n} denoted as A,. The
order of A, is %'

This can be seen as follows:
Let A, denote the set of even permutations of S,, and let B,, denote
the set of odd permutation of S,. If f,g € A, we can write fg as
51...8pt1...t, where s;’s and ¢;’s denote transposition.
Since p is even and ¢ is even p + ¢ is even and so fg € A,,. Since A, is
a finite set, by theorem. By Theorem 1 in p. 785, it is enough to prove
closure alone. A, is a subgroup of S,,. To show that the order of A, is
n!/2, we consider the following mapping 6 : A, — B,. Let t = (1,2),
O(h) = ht.
It can be easily seen that 6 is an injection because if
O(h) =0(1)
ht = h't
hit' = h'tt' so h = h'.
To show @ is a surjection. Let h in B,, be the image of an element g in
A,.
0(g) = h.
Specifically g = ht
O(ht) = (ht)t

= h(tt)

= hi

=h
Since 6 is a bijection #A, = #B,, = %'
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The sliding-tile puzzle explained in Example 8 of section 2.2 illustrates
the use of even and odd permutations.
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100110
1. Find the group code given by the generator matrix |0 1 0 0 1 1
001101

Find the encoding scheme e : B3> — BS. Draw the coset table. How

will you decode 000011, 001111, 0011107

Solution.

¢(000) = 000000 e(100) = 100110
e(001) = 001101 e(101) = 101011
e(010) = 010011 e(110) = 110101
e(011) = 011110 e(111) = 111000

Coset table is
000000 100110 010011 001101 110101 101011 011110 111000

000001 100111 010010 001100 110100 101010 011110 111000
000010 100100 010001 001111 110111 101001 011100 111010
000100 100010 010111 001001 110001 101111 011010 111100
001000 101110 011011 000101 111101 100011 010110 110000
010000 110110 000011 011101 100101 111011 001110 101000
100000 000110 110011 101101 010101 001011 111110 011000
100001 000111 110010 101100 010100 001010 111111 011001

1 0 01
Encoding matrixis E= [0 1 0 0 aE =
00 11

(a) d(000011) : This is located in the 3" column, 6" row. Coset
leader is 010000
000011 @ 010000 = 010011
d(010011) = 010.

(b) Similarly d(001111) = 001

(¢) d(001110) = 011



2. A code C is said to be equivalent to a code C*, when there is a distance
preserving bijections between the code words of C' and those of C*.
Given an encoding (generator) matrix G for a code, show that any (a)
permutations of the rows of G (b) permutations of the columns of G,
or (c) addition of a scalar multiple of a row of G to another row will
result in the new matrix G* for a code which is equivalent to a code
generated by G.

(a)

We shall consider a (3,6) code. The result can be extended to
any (m,n) code. The generator matrix is of size 3 x 6. Let us
consider row 1, row 2, row 3 of this matrix. The eight code words
are obtained as 000000, row 1, row 2, row 3, row 1 & row 2, row
1 @ row 3, row 2 @ row 3, row 1 & row 2 @ row 3. If we permute
the rows still we get the same codewords. Hence G* generates the
same set, of codewords.

The weight of a code word is the number of 1’s in the code
word. If we permute the columns the number of 1’s in each row
remains the same. Let us consider the permutation as sequence
of transpositions. Suppose the " column and j** column are
interchanged. We are considering row p and row ¢. Now p; and p;
will be exchanged. ¢; and ¢; will be exchanged. If a codeword is
represented by row p® row ¢. This has as the i*" element p; ® ¢;
and as the j element p; @ ¢;. In the new codeword in ¢* obtained
by interchanging i** and j** column, the codeword represented by
row p® row ¢ will have the " and j** element interchanged. It
will have p; @ ¢; as the i bit and p; @ ¢; as the j bit. Thus we
see that the number of 1’s in the codeword is not affected i.e., the
weights are maintained.

If a scalar multiple of one row of GG is added to another row of G.
If the scalar is 0 no change is obtained. Without loss of generality
assume that row 2 is added to row 1 (scalar is 1 in this case).

row 1 in GG is now replaced by row 1 @ row 2. So the code words
are 000000, row 1 @ row 2, row 2, row 3, row 1 & row 2 @ row 2,
row 1 @ row 2 @ row 3, row 2 & row 3, row 1 & row 2 ¢ row 2
@ row 3 respectively. They are equal to 000000, row 1 & row 2,
row 2, row 3, rowl, row 1 & row 2 b row 3, row 2 P row 3, row
1 & row 3. Thus the set of codewords in C* is the same as in C.



Hence there is a proper bijection from C' to C*, and the weight of
the code is maintained.
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