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WEB CHAPTER W8

Axially Loaded Columns

WS8.1 Stiffness of a Pin-ended Column as a Function of the Axial Load

Figure W8.1.1: Model for evaluating rotational stiffness of a column.

Consider the initially straight pin-ended column AB, subjected to an axial compressive force

P, and two equal and opposite end moments M ° as shown in Fig. W8.1.1a. As a result of

this loading, the column takes the deformed shape shown in Fig. W8.1.15. The deflection

at D, distance z from A, is indicated by u. Moment equilibrium of segment AD of this beam-

column gives:

B(M),= 0 -~ M= M°+ Pu (W8.1.1)

The differential equation governing the deflected shape of the member is therefore given by:

~EIu" = (M°+ Pu) (W8.1.2)

By dividing both sides of this equation by EJ and rearranging, we obtain:
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where a® = P/EI. The general solution of this second-order differential equation is given

by:

u= Csinagz + C,cosaz - (W8.1.4)

Note that P (and hence &) and M° are known quantities, while C, and C, are the integration

constants to be determined from the boundary conditions. We have:

u=0 atz= 0 - G = (W8.1.5)
P
u=0 atz= L - Cysinal + C,cos al =
Lo - MI(-cosel) M ol (W8.1.6)
P sino L P 2

The deflection u is therefore given by the expression:

u = A}{ [tana—zL sinez + coS®z - ll (W8.1.7)

The maximum deflection, &, occurs at C, that is, atz= L /2, and is given by the expression:

5 - (MO][seca—L— 11 (W8.1.8)
P 2
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2 2
Also, since P, = n*EI/L?, «*L? = PL” _ nzi = 112i
EI w2 E] P
Or,
ol - = |L (W8.1.9)
PE
Now
sec®l L o L. T (W8.1.10)
2 2 2

From Eq. W8.1.8 we observe that the deflection & therefore approaches infinity when oL

approaches 7, or as:

(WS8.1.11)

Hence, the Euler load P, is also the maximum axial load the elastic, pin-ended member can

sustain in the presence of the applied bending moments M.

By dividing both sides of Eq. W8.1.8 by L, and by dividing the numerator and denominator

of the term within the first brackets by P, and substituting ©v \/P/P . for «L,the maximum

deflection & given by Eq. W8.1.8 can be rewritten in the non-dimensional form:

MO

P.L
8 _ Tt ™| P o (W8.1.12)
L P 24 P,

‘PE

Figure W8.1.2 gives a graphic representation of Eq. W8.1.12 for three different values of
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Figure W8.1.2: Variation of deflection with axial load for a pin-ended

column with end moments.

From Eq. W8.1.7 we obtain the slope at any point as:

; M°

octanglz£ cosqz - osinoz (W8.1.13)

In particular, the end slope is given by:

, M?° al
GA = u(z=0) = ?atan—z" (W8.114)
The rotational stiffness k of the column with respect to end moments may be defined as the

ratio of the applied moment M ° to end rotation &,. With the help of Eqs. W8.1.14 and

W8.1.9, the rotational stiffness of the beam-column may be written as:

[:22
k:M"z P :EIa:2E12

eA cztam.—qc£ tana—L L tana—L

2

Defining k, = (2EI/L) and utilizing Eq. W8.1.9,

(W8.1.15)

[P

2P
L
P

Eae
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Here k, is the rotational stiffness of the pin ended member under symmetric single curvature
moments M°, with P= 0. The variation of k /k, with P/P, is schematically shown in Fig.
WS.1.3. Tt can be seen that the stiffniess of the member reduces from k, to zero as the axial
load on the column increases from zero to the Euler load, P,.. The critical load of a column
may thus be interpreted as that axial load at which the rotational stiffness of the column

becomes zero.

Figure W8.1.3: Variation of rotational stiffness with axial load for a

pin-ended column.

We observe from Eq. W8.1.15 that the stiffness of the isolated member considered is a
function of the axial load only and is independent of the magnitude of the end moments A/°.
For values of P > P, the stiffness k becomes negative, implying that the column must be
provided with end moments that oppose the column end rotations. Such moments, called
restraining moments, are generally provided by suitably connecting the column ends to other
members of the structure. It is only when such restraints are provided that any column will
support an axial compressive load greater than its failure load as a pin- ended column (i.e.,

Euler load).

WS8.2 Influence of Geometrical Imperfections on the Behavior of a Pin Ended Column

Figure W8.2.1: Imperfect pin-ended column.
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Practical steel members almost always contain small, unavoidable geometrical imperfections
as a result of rolling, fabrication, and erection. Such slight imperfections can be safely
disregarded in tension members as the tensile loads will tend to straighten those members
(see Section A5.1). On the other hand, slight imperfections in columns may be of major
significance. In this section, the planar behavior of an imperfect column is studied by
considering a pin-ended column with a centroidal axis that is initially bent (Fig. W8.2.1).

The initial (unloaded) shape of such a column can be represented by the Fourier series:

Q

u, = Y 8, sinZZZ (W8.2.1)
n=1 L
where u, is the perpendicular distance from the chord joining the two ends of the member

measured to the centroidal axis of the member.

The member is concentrically loaded by an end compressive force P, causing additional
deflection u, at section z. The total deflection is represented by u = u, + u,. Since bending
strains are caused by the change in curvature, u,”, and not by the total curvature, u,” + u,",

the internal resisting moment at section z is:

M.

nt

- ETu," (W8.2.2)

The externally applied bending moment at this section (Fig. W8.2.1) is:

M

ext

= P(u

]

+ou) (W8.2.3)
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The equilibrium equation obtained by combining Eqs. W8.2.2 and W8.2.3 is:
Elu = Pu, v w) -~ ut+ u = -2 (W8.2.4)

This is a nonhomogeneous, second-order differential equation with constant coefficients.
The nonzero right hand side of Eq. W8.2.4 is simply a constant, and thus indicates that the
imperfect column, unlike the perfect column, bends immediately upon application of axial
load. That is, the solution of Eq. W8.2.4 can be obtained for all values of P rather than only

for critical loads.

We can also use a Fourier series to describe the additional deflection, #,, under the axial load
P. Thus:
nmz

u, = 3y 6ansinT (W8.2.5)

a
n=1

Note that both Eqs. W8.2.1 and W8.2.5 satisfy the boundary conditions of the problem,
namely, u,=u,=0atz=0andz=L. By substituting Eqs. W8.2.1 and W8.2.5 and the

second derivative of Eq. W8.2.5 into Eq. W8.2.4, we obtain:

an

b 2
Y -6, ¢ X (5, +8,) 22 = 0 (W8.2.6)
n= 1 n*n?El L

For this relation to be true for all values of P, the term within the bracket must equal to zero

for all values of n. By introducing the relation for P,,, given in Eq. 8.4.12, we have:
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(W8.2.7)
5
_6371 + 1(60" 60’1) = O - 60” = =2
crn orn 1}
or P
5 - 8,48, = ———8, = A8, (W8.2.8)
{1 _ P

The factors 4, by which the initial deflection components in the Fourier series are magnified
due to the presence of the axial load P in the member, are called the amplification factors.

The total deflection at any distance z can now be written as:

u = %8 sin"T2 - % on__ gin 212 (W8.2.9)
n=1 L nely P L
Cri
_ 5, . mz 0,5 . 2Tz b, . 37nz
= Sin — + sin + sin +
P L P i N L
Py 2’P, 3*P,

As the axial load P approaches the Euler load Py, the amplification factors A, assume the

following values:

From this we see that the first term of the Fourier series (n = 1) contributes most to the value
of the resultant deflection. More generally, the value of n associated with the mode of

buckling of a column when it is perfectly straight is also the value of » that has the most
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influence in determining the resultant deflection of the imperfect column. Thus for the pin-

ended column without intermediate bracing, we can conclude:

u, = 9, sinltiz— (W8.2.10a)
601 . MZ
Uy = ———sin— (W8.2.100)
P L
1- =
Py
60
5 = —9° (W8.2.10¢)
P
- —
Py

For columns constrained to buckle in higher modes as shown in Figs. 8.4.3 b and c, n takes
the values of 2 and 3 respectively. From Eq.W8.2.9 it can be seen that the 2™ and 3" terms
predominate in determining the respective values of the resultant deflections. Thus, of all
the components of the Fourier series present in the initial geometrical imperfection of a
column, only the component that corresponds to the buckling mode of the perfect column is

of importance.

W8.3 Influence of End Fixity on Elastic Buckling of a Column

The elastic critical load for a column with end conditions other than those of a pin-ended
column can be obtained by writing the differential equation describing the equilibrium of a
column segment and solving for the constants of integration through enforcement of the

boundary conditions.
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Figure W8.3.1: Buckling of a pinned-fixed column.

Let us consider the column shown in Fig. W8.3.1a, hinged at the base, A, and restrained
from rotation at its upper end, B. When buckling occurs, a restraining moment ( My ) at B,
and a horizontal reactive force (R) at supports A and B develop (Fig. W8.3.15). The
direction and magnitude of these horizontal reactions are determined by noting that they must

act to oppose the moment at end B. From this we find that the magnitude of R is My /L.

A free body diagram of a segment AD obtained by cutting the column at a distance z from

the support A is shown in Fig. W8.3.1¢. Moment equilibrium of this segment gives

T(M), = 0 M = Pu- My
( )D_ - = U —L"'Z (W8.31)

Assuming small deflections, the internal moment is given by:

M= -EIlu" (W8.3.2)

The equilibrium equation for the column in its buckled shape is therefore given by:

M M
Elu" + Pu = =Bz - u"+ &u = —Z  (W833)
L EIL

where a?= P/( EI ) from Eq. W8.1.9. This equation is a linear, nonhomogeneous, second-
order differential equation with constant coefficients. The solution of the homogencous

portion is the same as that given in Eq. 8.4.6. The particular solution is given by dividing



the term on that side by a>. The complete solution is as follows:

My

u = C, sinotz + C,cos0z + ——
1 2 P

b~ | ta
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(W8.3.4)

We have four unknowns, namely, the integration constants C, and C,, My, and & (or P ). The

boundary conditions are:

il
<

0 at z

BN
I

0 at z=L

<
Il

w =0 at z=1L

Using the first two boundary conditions, we get:

M
¢ = 0, ¢ = --2_1
P sincal
Hence,
_ %i_ sin 0.z
P |L sine L
and
u = % 1 cos oz
P|L sino L

(W8.3.5)

(W8.3.6)

(W8.3.7)

(W8.3.8)

(W8.3.9)
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a trivial condition, or

tinal - ol = 0 (W8.3.10)

The smallest nonzero root of this transcendental equation is:

wl = 4.493 (W8.3.11)

The corresponding buckling load is:

2 2
202E] _ _ mEI __ 2mEl _ .,

L? (0.707L)? L?

P_= «°El = (W8.3.12)

cr

Thus, the effect of fixing one end of a pin-ended column is to increase its elastic critical load

by a factor of 2.

From Eqgs 8.4.14 and Wé.3.12, we observe that the elastic critical load of a column can be

written as:
2
- p = TEH (W8.3.13)
(KL)*
where L = length of the column

K = effective length factor
KL = effective length of the column

The effect of fixing one end of a pin-ended column is therefore to decrease the effective
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length, KL, from L to 0.707L and to increase its load carrying capacity by a factor of 2.

W8.4 Inelastic Stability of Axially Loaded Columns

W84.1 Reduced and tangent modulus loads

To account for the effects of inelasticity on the stability of ideal, pin-ended columns, two
theories were proposed: the reduced modulus theory and the tangent modulus theory. They
were originally developed for columns made from materials having a linear elastic stress-
strain diagram in the elastic region followed by a continuously nonlinear curve in the

inelastic region (see Figs. W8.4.1d and W8.4.2d).

Figure Wg8.4.1: Reduced modulus load.

In the reduced modulus theory (also known as the double modulus theory), the axial load
is assumed to remain constant during buckling. That is, no change in load occurs as the
column displaces from the straight configuration to the bent one. At buckling, the bending
deformation of the column must necessarily cause strain reversal on the convex side of the
member (Fig. W8.4.15), with the elastic modulus £ governing the stress-strain behavior of
those fibers (Fig. W8.4.1c and d). The concave side of the member, on the other hand, must
continue to load inelastically; consequently, the tangent modulus £, govemns the stress-strain
behavior of those fibers (Fig. W8.4.1c and d). The critical load obtained via this model is

known as the reduced modulus load, P,, and is given by [Gerard, 1962; Galambos, 1968]:
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wEI E

P = P = S

E

(W8.4.1)
Ll

E

where E, is known as the reduced modulus. The reduced moduiusis a function of the tangent
modulus, £, the elastic modulus, E, and the geometry of the cross section. For example, for

a column with a rectangular cross section, it can be shown [see Gerard, 1962] that:

4 EE,
s (W8.4.2)

E
" VE~ E)

The reduced modulus load is lower than the Euler load since the ratio E, /E is always less

than unity. The corresponding critical stress is given by:

fo=f = —f (W8.4.3)
Figure W8.4.2: Tangent modulus load.

In the tangent modulus theory, the axial strains are assumed to increase over the entire cross
section during buckling (bending). That is, there is a slight increase in the axial load when
the inelastic column shifts from the straight (pre-buckling) to the bent (post-buckling)
configuration. The amount of load increase is such that strain reversal does not take place
during buckling. So, the tangent modulus E, governs the stress-strain behavior of the entire
cross section. As shown in Fig. W8.4.2, E, is slope of the stress-strain curve at the point of
the applied stress at buckling. The associated critical load obtained is known as the rangent

modulus load, P, and is given by [Gerard, 1962; Galambos, 1968]:
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nE 1 E,
P = P - = 2P (W8.4.4)
L

The tangent modulus load, unlike the reduced modulus load, is independent of the geometry
of the cross section. It depends only on material properties. The corresponding critical stress

is given by:

E
fo= 1 = E’fE (W8.4.5)
Figure W8.4.3: Inelastic behavior of columns.

To reiterate, the theory underlying the reduced modulus load is based upon the concept that
there is no change in load as the column displaces from the straight to the bent configuration.
On the other hand, the theory underlying the tangent modulus load requires that an increase
in load must accompany the displacement from the straight to the bent configuration. It is
therefore not surprising that these two theories produce differing results. The reduced
modulus theory predicts buckling loads that are greater than those predicted by the tangent
modulus theory. Although most engineers advocated the reduced modulus theory
historically, which intuitively had seemed more rational, the scientific consensus reversed
once load test results became available and demonstrated closer agreement with the tangent

modulus theory.

In 1947, Shanley put forth a theory that clarified the phenomenon of inelastic buckling, and
in so doing, resolved the differences between the reduced modulus and the tangent modulus

theories. Using a simplified physical model, Shanley [1947] showed that bifurcation will



W8-16
take place when the axial load reaches the tangent modulus load. After bifurcation, any
increase in latera! deflection is accompanied by a slight increase in load. For any finite
increase in load above the tangent modulus load, the column assumes equilibrium positions
with increasing deflection accompanied by strain reversal on the convex side of the column.
Thus, the maximum load, P,,,, of a perfectly straight column is slightly higher than the
tangent modulus load. Also, it was shown that if a column were artificially held in a straight
position, as the load was gradually increased to a value somewhere in-between the tangent
modulus and reduced modulus loads, and then released, the column would start to bend as
it began to take on a slight increase in axial load. However, the magnitude of the increase
would be less than that which occurs at the tangent modulus load. Finally, if the column was
held in a straight configuration up to the reduced modulus load and then released, it would

buckle with no increase in axial load. Thus, we have:

p < P, < P < P, (W8.4.6)
Figure W8.4.4: Variation of buckling stress for annealed steel
columns.

Unlike the nonlinear stress-strain diagram assumed in the development of the theories
mentioned above, mild structural steels have stress-strain curves that feature linearly elastic-
perfectly plastic behavior until strain hardening occurs at large strains. By strict application
of the tangent modulus concept, the critical stress below F), is then governed by the Euler
formula, and the column curve takes the form shown in Fig. W8.4.4. However, a great

variety of carefully performed tests on relatively straight steel columns with carefully
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centered axial loads have shown that the column strength predicted by Fig. W8.4.4 is usually
higher than the actual strength for hot rolled steel columns of intermediate length. Osgood
[1951] attributed this reduction in column strength to the presence of residual (or locked-in)
stresses in hot-rolled steel sections. The implication of Osgood’s finding is that for structural
steel we cannot go directly from a small compressive test specimen to the column strength
curve, as in the case of aluminum. However, the research of Osgood [1951] and Yang et al.
[1952] made possible the extension of the tangent modulus theory to the analogous critical
load theory for steel columns with bilinear stress-strain curves and bisymmetric patterns of

residual stress.

Figure W8.4.5: Stub column test.

For hot-rolled steel sections, the part of the member cross section that cools most rapidly is
left in residual compression, and the part of the member that cools most slowly is left in
residual tension (see Section 2.6.2). Thus, in the case of a wide flange section, the flange
tips, possessing relatively more surface area and thus cocling most rapidly, contain residual
compressive stresses, whereas the region at the junction between the flange and the web
contains residual tensile stresses (Fig. W8.4.5¢). Maximum compressive residual stresses
at the flange tips of rolled sections are typically of the order of 10 to 15 ksi, although values
higher than 20 ksi have been measured. The yield stress of the steel has little effect on the

magnitude of the residual stress present in rolled shapes.

The presence of residual stresses influences the shape of the average stress vs. average strain

curve of the section, as distinct from the curves obtained from coupons cut from the same
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member. Consider a short length of a hot-rolled W-shape cut with its ends carefully
machined, and placed between the plates of a testing machine. If it is compressed gradually
in a concentric test, called a stub column test, the end faces will remain parallel, as no
bending occurs ( Fig. W8.4.5a). The length of the stub column decreases as the compression
force is increased. This change, A, divided by the original length of the stub column, s,
represents the unit strain € caused by the applied average stress, f~ = P/A. Figure W8.4.5¢
shows the type of curve obtained in this manner [Galambos, 1998]. If a compressive residual
strain of magnitude €,, were present at the flange tips, then yielding would commence when
the applied strain €* equals (€, - €,)= €*,. The corresponding average stress f*;, is known
as the reduced proportional limit. When a stub column is strained above the reduced
proportional limit, portions of the cross section yield. If the yielded parts are perfectly
plastic, the axial stiffness of those zones reduces to zero. The overall stress-strain
relationship for a stub column would therefore be nonlinear. With sufficient straining, the
average stress would eventually reach the yield stress and the load corresponds to the squash

load the cross section, £,, given by:

"o
Il

AF (W8.4.7)

Thus, the influence of residual stresses in columns is to make the yielding over the cross
section a gradual process and to make the stress-strain relationship nonlinear above the
reduced proportional limit, as shown in Fig. W8.4.5¢. The slope of the stub column stress-
strain curve is the tangent modulus E,” of the member. Also shown in the figure is the stress-
strain curve for a coupon. Unlike a stub column, a coupon, is free of residual stress.

Therefore, its stress-strain relationship exhibits elastic-perfectly plastic behavior.
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Figure W8.4.6: Variation of buckling stress for straight, pin-ended,

rolled steel columns.

There are two general methods by which the strength of pin-ended hot-rolled steel columns

loaded into the plastic domain can be obtained:

. The first method is experimental in that, to start with, an average stress-average strain
diagram is determined from a stub column test. Column strength can then be
determined using the tangent modulus E, of the average stress-average strain

diagram along with the proper slenderness ratio for strong or weak axis bending (Fig.

W8.4.6).
. nE [
P =P = (W8.4.8)
cr L2
f.o= f = v E, = —-EL*]% (W8.4.9)
“ (L/r) E

Figure W8.4.6 shows a typical tangent modulus column curve f, "vs. (L/r). Dueto
the effects of residual stress, the tangent modulus column curve falls below the yield
plateau and the Euler hyperbola in the short and intermediate slenderness ranges.

. The second approach to the problem is an analytical solution [Huber and Beedle,
1954]. It makes use of the residual stress distribution, either measured or assumed,
along with the stress-strain (f- €) diagram for the material as obtained from a coupon
test. When a column is strained above the reduced proportional limit, portions of the
cross section yield. As the yielded parts are perfectly plastic, the bending stiffness

of those zones reduces to zero. The theoretical buckling strength will be equal to that
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of a new column having a moment of inertia equal to the moment of inertia of the

remaining elastic portion of the cross section.

»o- _ mEI, A
= P, = e (W8.4.10)
P n2E(Ie/I) ) Ief (WE4.11)
cr H (L/r)2 ] E e

The above equations are the basic equations for determining the inelastic strength of a
straight, pin-ended steel column containing residual stresses [Huber and Beedle, 1954].
Based on the methods described above, column strength curves have been developed for
weak and strong axis buckling with various distributions of residual stress. The results show
that the residual stresses are of particular importance for columns with slenderness ratios
varying from 50 to 120, a range that includes a large percentage of practical columns. As
previously mentioned, residual stresses in rolled shapes tend to be independent of the yield
stress. Thus, reductions in axial strength tend to be smaller for rolled shapes of higher
strength steels. The results also show that for the same slendemess ratio, I-shaped column
sections bent about the weak axis carry less load than columns bent about the strong axis.
Since 1961, structural steel design based on the AISC Allowable Stress Design Specification
has used column curves developed by applying the experimental tangent modulus method

described above.

The limiting slenderness ratio for columns of intermediate length is generally defined as the
boundary between elastic and inelastic buckling. That boundary is dependent on the level

of the maximum residual compressive stress, f,. (or the residual proportional limit, fp]* ). We
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n’E . ’E
F = ———3 o= (F,~f)= _-“—2 (W8.4.12)
(KLY, (KL/r),

L KLy B 1 (W8.4.13)
’ 4.
(KL/r), (F,- 1) 1 - (f,]F)

Forf, = 0.5F, weobtain: A, =2 = 1.414.

W8.4.2

Maximum Strength

The concept of a constant tangent modulus for a particular axial load is only applicable to

perfectly straight columns and is therefore an unsatisfactory means of dealing with real

members having geometric imperfections and load eccentricities. The maximum strength

of a nominally straight, nominally axially loaded, pin-ended, hot-rolled steel column may,

in principle, be expressed by the function, F:

where L

S

Py = F(L fo o 1o Jo f) (W8.4.14)

= length of the column

= function representing the geometry of the cross section (dimensions
by, t;, d and t, for a W-shape, for example)

= function representing the yield stress distribution in the cross section

= function representing the residual stress distribution in the cross

section
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function representing the initial geometry of the unloaded column

fi
Je

1

function representing the end eccentricity of the axial load
These parameters can be divided into two groups. The first group, f,, f,, and £, influences
the internal flexural resistance. The second group, f; and f,, affects the external moment at

a section.

The European Convention for Constructional Steelwork (ECCS) recommends the use of

multiple column curves to determine the strength of columns. These curves are based on:

. A very extensive program of experimental research into the mechanical properties
of steel and the buckling strength of columns of various cross sections and
slenderness ratios. The test program has included well over 1000 column tests
[ECCS, 1972; ECCS, 1977; Sfintesco, 1970; Beer and Schulz, 1970]. The columns
were taken at random from various stockyards of steel fabricators in several
European countries in an effort to furnish representative samples of columns
normally used in actual structures. They were tested under conditions very close to
those found in actual structures, and in sufficient number to obtain mean ultimate
loads and standard deviations possessing statistical validity.

. An equally comprehensive program of theoretical research using computer models
to study the inelastic behavior of columns with and without geometrical or structural
imperfections.

The criteria adopted by ECCS is that the nominal failure load for a series of specimens is the

mean measured value minus two standard deviations. Thus, assuming that the data is

normally distributed, there is a 97.7 percent probability that the nominal failure load will be

below the member’s actual strength and a 2.3 percent probability that it will be above.
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Major research conducted by Bjorhovde [1972] at Lehigh University examined the
deterministic and probabilistic characteristics of column strength in general and developed
an extensive database for the maximum strength of centrally loaded compression members.
The shapes studied encompassed the major shapes used for columns, including rolled and

welded shapes for which measured residual-stress distributions were available.

The maximum strength of these columns was determined assuming that the initial
crookedness was of sinusoidal shape having a maximum amplitude of 1/1000 of the column
length, and that the end restraint was zero. Column curves were then developed using the
column-slenderness parameter, A, = (KL/rm )m . The value 4, = 1 corresponds
to the value of KL /r for which the elastic flexural buckling stress is equal to the yield stress.
The set of 112 column curves thus obtained represent essentially the whole spectrum of steel
column behavior. After a detailed study of these results, the sections were divided into three
groups. The first group included 30 curves, and the second and the third groups, 70 and 12
curves, respectively. The resulting three curves for these subgroups are known as SSRC
column strength curves 1, 2, and 3 (Fig. 8.6.2). Bjorhovde [1972] also developed multiple
column curves where the initialout-of-straightness was equal to its mean value of 1/1470 of
the column length. Those curves are known as SSRC column strength curves 1P, 2P, and
3P. The single column curve that is used in Chapter E of the LRFD specification for design
of columns (discussed in Section 8.10.1) is identical to SSRC 2P [Galambos, 1998; Tide,

1985].
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WS8.5 Elastic Buckling of a Uniformly Compressed Rectangular Plate with Simply
Supported Edges
The stability of a rectangular plate that is simply supported on all four edges and subjected
to uniform compressive forces in one direction will be considered (Fig. W8.5.1). We will
assume:

1. The plate is originally perfectly flat.

2. The plate is made of a linearly elastic, homogeneous material.

3. The compressive loads are applied along the plane of the middle surface of
the plate.

4, Deflections considered are small; the significant deflection at buckling is of

the order of the thickness of the plate or less.

Figure W8.5.1: Rectangular plate with simply supported edges under

uniform compression in x-direction.

The equilibrium equation for abuckled plate is given by a fourth-order, homogeneous, partial
differential equation [Bleich, 1952; Timoshenko and Gere, 1961; Gerard, 1962; Chajes,
1974]:

Et3 Htw Mtw d*w Fw

+ 2 + + N=-2= = 0 (W8.5.1)
12(1 - p2) | ox* dx?ay? ay* ox?

with

N, = tf (W8.5.2)
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where E = modulus of elasticity
J7 = Poisson's ratio
t = thickness of the plate
w = deflection of the plate normal to its original orientation
N, = load per unit width of plate
I = uniform compressive stress in the x direction

A solution to Eq. W8.5.1 is obtained when the deflection, w, and the compressive load, N,
are found such that the equation is satisfied both at the boundaries and also over the entire
surface of the plate. One solution is to assume the deflection w to be given by a series, each
term of which initially and automatically satisfies the boundary conditions. The task, then,
is to determine the coefficients of the terms in the series and the loading, N,, that satisfy the
differential equation at every point on the surface of the plate. A convenient series for the

simply supported plate under consideration is the double sine series:

w o= Y Y 4 sinlTE Gp Y (W8.5.3)
m=1 n=1 a b

where m and » are the number of half sine waves in the x and y directions, respectively; 4,

is the unknown coefficient for cach m-n pair; and @ and b are the length and width of the

plate, respectively. The above series satisfies the boundary conditions for deflections

because forx = 0 and x = a, as well as for y= 0 and y = b, the computed edge deflection

equals zero.

Edge moments for a rectangular plate are given by [Chajes, 1974; Gerard, 1962]:
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2 2 2 2
Mo=-D/Z¥ . Iy - pP L, ¥ (W8.5.4)
ox? ay? dy? Ox 2
3
p- —E° (W8.5.5)
121~ )

where M, and M, are bending moments per unit width of plate and D is the flexural rigidity
o Fw Fw
per unit width of plate. From Eq. W8.5.3, — = 0 and — = 0 at the four edges. So,
ox dy
Eq. W8.5.3 also satisfies the simple support boundary conditions that the edge moments
equal zero. By substituting f, ¢ for N, and the appropriate derivatives of Eq. W8.5.3 into Eq.
W8.5.2, we obtain:

(W8.5.6)

°° > 2
A b
mz=:l nz=:l " a 2 b z

2
n4(m2 . n) o tfomin?

The left hand side of this equation consists of a sum of an infinite number of independent
functions. The only way such a sum can vanish is if the coefficient of every one of the terms

is equal to zero. Thus:

[ 8]
(o8]

" = 0 (W8.5.7)

Al m n?)’ tf, mtn?
T T
b? D

This relation can be satisfied in one of two ways: either 4,,, = 0 or the term in the brackets
equals zero. If A, ,= 0, f, can have any value. This is a trivial solution indicating that the
plate remains in equilibrium at all loads, provided that the plate remains perfectly straight.

The nontrivial solution that leads to the critical load 1s obtained by setting the expression in

the brackets equal to zero. Thus,

(W8.5.8)
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fowe = o= EEC_afmtm ) om-
’ 12(1 - pu2) m*\ a? b2 no=

*]
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According to Eq. W8.5.8, f,, is a function of the dimensions and the physical properties of
the plate, and the number of half-waves into which the plate buckles (7 and ). Since we are
interested in the lowest critical load, the values of m and » that minimize Eq. W8.5.8 must
be determined. Itis evident that ., increases as » increases and that n = 1, therefore, results
in a minimum value for ;.. Thus, the plate buckles in a single half-wave in the y-direction.

Consequently, the critical compressive stress is:

2 k
fo = fymy = (WS.5.9)
’ 12(1 - p?) (b/t)?
where
2
kc = (_@ + _a_) (W8.5.10)
a mb

The term k, is generally referred to as the buckling coefficient. 1t depends upon the ratio a/b,

called the aspect ratio of the plate, and the parameter m, an integer, which denotes the
number of half-waves into which the plate buckles longitudinally. The smallest value of f,,
corresponds to the smallest value of k, and is obtained by minimizing Eq. W8.5.10 with

respect to m. Thus,

(W8.5.11)

Substituting into Eq. W8.5.10 results in:

k.. = 4 (W8.5.12)

¢ min
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Equation W8.5.9 then becomes
n'E 4

_ W8.5.13
12(1 - p?) (b/1)? ( )

cr

Since a simply supported plate must buckle into a whole number of half-waves, to satisty
edge conditions, the aspect ratio a/b, which according to Eq. 8.2.11 is equal to 7z, must be
an integer. The critical stress given by Eq. W8.5.13 is thus valid only when a/b is a whole
number. For plates that fall into this category, the buckling pattern consists of a single half-
wave in the y-direction and a/b half-waves in the x-direction. In other words, the plate
buckles into a/b half waves, each having a length equal to its width (thus dividing the plate

into a/b squares), as shown in Fig. W8.5.2.

Figure W8.5.2: Buckling of a long thin rectangular plate under edge
compression.
Figure W8.5.3: Buckling coefficients for a simply supported,

rectangular flat plate under edge compression.

Figure W8.5.3 shows the variation of k, with a/b for different values of m. Settingm = 11in
Eq. 8.2.10, the variation of &, with a/b given by the curve labeled m = 1 is obtained. Ina
similar manner, by letting m in Eq. W8.5.10 take on successively higher values, the curves
for m = 2,3, 4 are obtained. Because values of m vary from one to infinity, it is seen that
there exists an unlimited number of values for &, corresponding to any given a/b. We are
interested in only the smallest value — the value that results in the smallest critical stress at

which a given plate buckles. The solid line in Fig. W8.5.3, obtained by connecting the lower
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branch of the various curves gives the critical value of &, as a function of a/b. In addition,
for any noninteger value of a/b, the solid line indicates the number of half-waves that will
form in the longitudinal direction. Thus, between aspect ratios of 1 and 2, k, rises along the
m = 1 curve, and the buckled form of the plate is that of one half-wave until the intersection
with m = 2. Beyond the intersection, the plate buckles into two half-waves, and £, decreases
to the minimum value of 4 and later rises until the intersection with m = 3. At that point
another half-wave appears in the buckled form in the longitudinal direction, and the process
is repeated. From Fig. W8.5.3 we observe that the transition from m to m + 1 half sine waves

occurs at the point at which the two corresponding curves have equal ordinates; that is:

(W8.5.14)
m,a_(m+1, _ o « a= Jymm+ D)
o m o (m+ 1)
where &= a/b. For a long plate,
o = mim+ 1) = m (W8.5.15)
or
E = 2 = b (W8.5.16)
m

where £ is the length of the half sine wave. Eqs. W8.5.14 and W8.5.15 indicate that the
number of half-waves increases with the aspect ratio. For a long plate, we see from Eq.
W8.5.6 that the length of the longitudinal half sine wave equals approximately the width of

the plate, and therefore the buckled plate is partitioned into squares as mentioned earlier.

In steel structures, the behavior of long plates having relatively large aspect ratios is of great
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interest, because such plates are representative of the individual elements that comprise the
cross sections of rolled and built-up column shapes. As seen from Fig. W8.5.3, whenever
a/b exceeds 4, a value of k, = 4 can be assumed for determining the critical buckling stress
of a plate simply supported along four edges and subjected to uniform compressive stress in
the longitudinal direction. That is:

an’E

for = for

B0 T > 4 (W8.5.17)

o

The compressive buckling stress of flat plates with various types of boundary conditions can
be represented in the following format:
szE kc

= W8.5.18
= 12(1 - p?) (b/1) ( :

where E = modulus of elasticity

7 = Poisson's ratio

t = thickness of the plate

b = width of the plate

k. = plate buckling coefficient
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Figure W8.1.1: Model for evaluating rotational stiffness of a
column.
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Figure W8.1.2: Variation of deflection with axial load for a
pin-ended column with end moments.
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Figure W8.1.3: Variation of rotational stiffness with axial load
for a pin-ended column.



Figure W8.2.1: Imperfect pin-ended column.
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Figure W8.3.1: Buckling of a pinned-fixed column.
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Figure W8.4.3 Inelastic behavior of columns.
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Figure W8.4.4: Variation of buckling stress for annealed
steel columns.
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Figure W8.5.1: Rectangular plate with simply supported edges
under uniform compression in x-direction.
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Figure W8.5.2: Buckling of a long thin rectangular plate under
edge compression.
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Figure W8.5.3;: Buckling coefficients for a simply supported,
rectangular flat plate under edge compression.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

