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WEB CHAPTER 9

Adequately Braced Compact Beams

W9.1 Plastic Analysis of Beams

Wo.1.1 Behavior of a Simply Supported Beam Under Central Concentrated Load

Figure W9.1.1: Behavior of a simply supported beam under a central

concentrated load.

Consider a simply supported beam AB of length L and of a rectangular cross section, subjected to
a concentrated load O at midspan (Fig. W9.1.1). The structure is determinate and the bending

moment diagram is triangular with the maximum bending moment occurring at the center C:
M = % (W9.1.1)

As the load is increased, the most highly siressed section, namely the section at the center of the
span, changes successively from: a completely elastic state (Fig. 9.2.2a) under a load of say, Oy;
to the fully elastic state (Fig. 9.2.2b) under the load Q,, to a partially plastic state (Fig. 9.2.2¢)

under a load of say, O,; and finally to the fully plastic state (Fig. 9.2.2d) under the load Q,,. Here,

0 < Q< O < O < Oy (W9.1.2)
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As the load approaches Q,, and the central section C approaches the fully plastic state, other
nearby sections (such as F to the left) become partially plastic, while to the left of D (and to the
right of E) the beam remains fully elastic. Although ductile yielding has begun between sections
D and E, the load point will not deflect uncontrollably as long as section C can absorb some
additional moment resulting from an increase in load. Only the central section C reaches the
fully plastic state. Once that section becomes fully plastic, all fibers yield without further
increase in stress, thereby permitting the two segments of the beam on either side of C to rotate
freely relative to one other and a plastic hinge is said to form at C. A plastic hinge can be
defined as a yielded section of a beam which acts as if it were hinged with a constant moment
M,
Static equilibrium of the loaded beam cannot be maintained once the load reaches (), because the
moment capacity of the section is limited to M,. The moment-curvature relationship of Fig. 9.2.5
indicates that once M, has been reached, the angle change at the point of loading may take on
infinite values. Due to this hinge-like action (hence the term, plastic hinge), the beam will
continue to deflect at constant load Q,; and so fails by plastic collapse. The load at which this
occurs is calied the plastic limit load or the plastic collapse load and is denoted by O, The
constancy of the load during collapse and therefore of the bending moments over the segments
AC and BC implies constancy of curvatures during collapse over these segments. The increases

of deflection during collapse are due therefore solely to the rotation at the central plastic hinge.

In Fig. W9.1.1e curve i represents the deflected form of the beam just before the collapse load Q)
is attained, but before any rotation has occurred at the central plastic hinge. Curve ii is the

position of the beam after the central hinge has undergone rotation through an arbitrary angle 26
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and each half of the beam undergoes a rigid body motion of & about the supports. The curved
shape of each half of the beam is the same in case ii and in case i. Fig. W9.1.1fshows the
changes of deflection which have occurred during collapse and represent the difference between
the deflections in case ii and case i; each half of the beam is straight in this figure. The
deformations occurring during collapse, shown in Fig. W9.1.1f; are due solely to the rotation at
the central plastic hinge. This figure represents the collapse mechanism for the simple beam

considered.

The shaded area in Fig. W9.1.15 denotes that part of the beam that has been strained into the
plastic range. At section D, the outside fibers have just reached yield stress, but the stress
distribution is still linearly elastic. Applying the flexure formula, the resisting moment at this

section is:

M, = M,= SF,= ——F (W9.1.3)

At section F, the scction is elastic over a depth 2y,, but plastic beyond this depth, as shown by
the stress distribution in sketch 9.2.2¢. Using Eq. 9.2.13 the resisting moment at section F can be

written as:

M (W9.1.4)

- - - 2
M.= M, = ZF, = —bd* F, (W9.1.5)
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Plastic zones extend over the region where the bending moment exceeds the yield moment M,. If
the value of the shape factor is &, the length of that region (from similar triangles of

Fig.W9.1.16), is

M, - M), (@-1,_ (A5-1, _

Mp o

AL 0.33L (W9.1.6)
In view of the shape of the moment-curvature diagram OABD of Fig. 9.2.3, the curvature
remains very small near ends D and E of the plastic region of Fig. W9.1.1c. On the other hand,
in the neighborhood of point C, where the force is applied, the curvature is extremely high. The
beam therefore deforms very nearly as if it consisted of two rigid segments AC and BC

connected by a hinge at C (Fig. W9.1.1 f).

W9.1.2 Behavior of a Fixed-Ended Beam Under Uniformly Distributed Load
Consider a fixed-ended beam AB of length, L, subjected to a uniformly distributed load of
intensity, ¢ (Fig. W9.1.2a). The beam has a uniform cross section with an idealized bilinear,
moment-curvature relationship such as is defined by curve OED shown in Fig. 9.2.4. The load ¢

is increased slowly from zero until collapse occurs at g,

Figure W9.1.2: Behavior of a fixed-ended beam under uniformly

distributed load.

In general, the degree of statical indeterminacy of a fixed-ended beam is 3, but because of the
symmetry of loading and supports and the absence of axial forces, the indeterminacy / of the

beam considered is one. Consider the unknown redundant to be the common value of the
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bending moments M, and Mj at the ends of the beam.

a. Stage 1 Loading

As load g is increased steadily from zero, the beam behavior is, at first, wholly elastic. The
bending distribution will be parabolic, with the maximum negative bending moments occurring
at the supports A and B and the maximum positive bending moment occurring at the center C, as
shown in Fig. W9.1.2b. The bending distribution can be determined using standard methods for
solving indeterminate structures. Alternatively, from Case 15 in LRFDM Table 5-17: Shears,

Moments and Deflections:

(W9.1.13)

where M,, M, and M. are the magnitudes of the bending moments at A, B and C, respectively.
Also, d. is the maximum deflection at the center of the beam. Note that the bending moment at

C is only half the magnitude of the clamping moment.

From the bending moment diagram, it is evident that as the load is increased steadily, the first
two plastic hinges form simuitaneously at supports A and B, corresponding to a load g = ¢, (Fig.

W9.1.2 ¢), and

L*? 12 M
ql — M - ql — p
L2

W9.1.14
T o ( )

With ¢ = g, applied, one can consider that part of the moment capacity at section C has been

used up (Fig. W9.1.2d ). The available moment capacity remaining at section C 1s:
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M M ol M M, . Y, (W9.1.15)
ac = T T4 TP 2 2 -
Also, the central deflection under load ¢ = ¢, 1s:
L 2M\r+ ML?
= Wt _ 1 plL_ T (W9.1.16)
384 EI 384 L* ) El 32FE1
The stiffness of the beam, in this stage, is:
5, = 4o 38EI (W9.1.17)
8, L?

To summarize Stage 1: load g,, just sufficient to cause the development of M, at the beam ends,
but not yet enough load to induce any rotation of either A or B, has been determined. From the
moment diagram in Fig. W9.1.2¢ it is seen that the remainder of the beam, i.e., the portion
spanning between A and B, is still in the elastic domain. Finally, the central deflection
corresponding to g, was calculated, and the effective stiffness of the beam during this stage was

obtained.

b. Stage 2 Loading

If the load is increased by a small amount Ag above g, the two plastic hinges at the ends of the
beam undergo rotation, while the bending moment at each of these hinges remains constant at the
value M,. Thus, for any additional load beyond g,, the changes of bending moment at the ends of
the beam are therefore zero. The changes of bending moment throughout the beam which are
caused by increasing the load from g, to ¢, + Ag must therefore be the same as the bending

moments which would be produced by the application of a load Ag to the same beam if it were
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simply supported at its ends (Fig. W9.1.2¢e). This follows from the fact that in the case ofa
simply supported beam the end moments would of necessity remain zero, while end rotations

would be freely permitted.

The structure is now statically determinate, i.c., the degree of indeterminacy has been reduced
from 1 to 0, due to the formation of hinges at A and B. From Case 1 in LRFDM Table 5-17:
Shears, Moments and Deflections (Fig. W9.1.3 f }:

Aqu,

5 AglL*?
o Aﬁczm_‘l__

AM,. =
c 384 EI

(W9.1.18)

where AM,. is the additional bending moment and AJ. the additional deflection that develops at

C under a Stage 2 loading Agq.

As the load Ag is increased, the available moment capacity of M, = 2 M, atCat the end of

Stage 1 is exhausted and a third plastic hinge forms at a load Aq = Ag, such that:

Ag,L* M 4M
- - Ag, = P (W9.1.19)

_r
8 2
The additional deflection AJ, of point C, at the end of Stage 2, is:

2
£i__5_MpL

= (W9.1.20)
EI 9 EI

Ag,L* 4 M
A62 — 5 qz - 5 14
384 EJI 384 | 72

The stiffness of the beam in Stage 2 is:
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= — (W9.1.21)

To summarize, at the end of Stage 2, there are three plastic hinges; namely at A, B, and C (Figs.

W9.1.2 g and 4). The total load on the beam is:

16 M,
g, = q, ~+ Aq, = FE (W9.1.22)
and the total deflection at midspan is:
1 5\ M L? M L?
d,= 6, + A8, = | —+ =—|-2L = 2 (W9.1.23)
32 9% ) EI 12 EI

¢. Stage 3 Loading

For additional load Ag beyond Stage 2 (i.e., for values of ¢ = g, + Ag), the three plastic hinges
at A, B and C undergo rotation while the bending moment at each of these hinges remains
constant at the value M,. The changes of bending moment throughout the beam which are caused
by increasing the load from ¢, to ¢, + Ag must therefore be the same as the bending moment that
would be produced by the application of a load Ag to the same beam if it were simply supported
at its ends with an additional hinge at C. This structure however is a mechanism (indeterminacy,
I = - 1) and so cannot carry any additional transverse load (i.e., Ag = 0). The plastic limit load

or collapse load of the beam therefore equals g, and is given by Eq. W9.1.22, or

16Mp
L2

9, - (W9.1.24)

Since the beam behaves elastically except where the bending moment is of magnitude M, the
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two segments of the beam between plastic hinges (i.c., segments AC and BC) do not undergo
any change of curvature while collapse is occurring, as the bending moment distribution remains
unchanged. Thus, the mechanism shown in Fig. W9.1.2i represents the changes of deformation
which occur due to additional rotations @ at the end hinges during plastic collapse. The beam

now enters the range of unrestricted plastic flow or fully plastic range.

The behavior of the beam can be summarized by a diagram of the midspan deflection, J versus
the total load g (Fig. W9.1.3). This diagram consists of three straight lines Oa, ab and bc,
corresponding to elastic behavior (Stage 1), elastic-plastic behavior (Stage 2), and fully plastic
behavior (Stage 3), respectively. Figure W9.1.3 shows that the stiffness of the beam reduces
with the formation of each additional plastic hinge. The stiffness equals zero when the plastic

limit load is reached and the structure is reduced to a mechanism.

Figure W9.1.3: Load-deflection relation for a fixed ended beam under

uniformly distributed load.

Ww9.1.3 Behavior of a Fixed-Ended Beam Under Off-Center Concentrated Load
The behavior of a fixed-ended beam subjected to an off-center concentrated load will be

explained below, with the help of a numerical example.

EXAMPLE W9.1.1 Step-by-Step Method
A W24x68 of A992 steel beam AB is 40 ft long. It is fixed at both ends and subjected to a single

concentrated load Q at a section C, 16 ft from the end A as shown in Fig. WX9.1.1a. Determine
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the collapse load of the beam using step-by-step method.
Figure WX9.1.1: Behavior of a fixed-ended beam under a

concentrated load.

Solution
a. Data
Span, L= 40.0ft; a= 1601 b= 2401t

From Table 1-1 of the LRFDM, for a W24x68 of A992 steel:

I = 1830in%;, S, = 154in’% Z. = 177in’
F, = 50ksi
M= 13460 - g4 fokips
y 12
M o= 77069 _ 538 fokips
p 12

b. Stage 1 loading

The member is elastic and indeterminate to the second degree (/= 2). From Case 17 in

LRFDM Table 5-17: Shears, Moments and Deflections:

M - Qab? M. - 20a%b? M- Qa’b
A 12 ’ C - L_—3 > B IE
6 ~ Qa3b3
c =

3EIL?

Substituting for @, b and L,

M, = 576Q; M.= 4610Q; My = 3840
From the bending moment diagram (Fig. WX9.1.1¢), it is evident that the first plastic
hinge occurs at support A, corresponding to a load @ = @), such that

576 0, = M, = M, = 738 fi-kips - 0, = 128 kips

With 0= Q, = 128 kips applied (Fig. WX9.1.1d), part of the available moment capacity
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at points C and B has been used up. The available moment capacity remaining at these
points is

M,.= M, - 461 Q, = 738 - 4.61 (128) = 148 ft-kips

p

M,y = M, - 3.840, = 738 - 3.84(128) = 246 fi-kips

The deflection of load point C under load Q, is
128 (163)(243) (12%)

3(29,000) (1830) (40%)

The stiffness of the beam during Stage 1 is

5, = % - 128 104 kips/in.
) 1.23

1

o 1.23 in.

1

Stage 2 loading

As the load is increased above O = Q,= 128 kips, the moment at support A remains
constant at the plastic moment 738 ft-kips. So, the added load AQ, in Stage 2, actson a
different elastic system as shown in Fig. WX9.1.1e. The indeterminacy of the structure is

now equal to one (/= 1). From Case 14 in LRFDM Table 5-17: Shears, Moments and

Deflections:
2
aM, = B2907 oy, am, - 8290,
213 217
213
Ad, = M(g@ + a)
12EIL?

or (Fig. WX9.1.1f'):

AM. = 691 AQ;, AM; = 6.72 AQ
As the load AQ is increased, the available moment capacity of M, . = 148 ft-kips at C at
the end of Stage 1 is exhausted and a second plastic hinge forms at C at a load AQ =

AQ,, such that:
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6.91 40, = 148 - AQ, = 21.4kips
Corresponding to this load, the moment capacity left at support B is:

M,

a

s = 246 - 6.72(21.4) = 102 fi-kips

The additional deflection at the load point at the end of Stage 2 is:
21.4(16%)(24%) (3x40 + 16)(12%) _

Ad, 0.437 in.
12 (29,000 ) (1830) (40°)
The stiffness of the beam during Stage 2 is
A
5, - 9 _ 214 490 kipsiin. - 5, = 04715,
Ad 0.437

2
At the end of Stage 2 the load on the beamis O, = Q,+ AQ,= 128+ 21.4= 1494

kips as shown in Fig. WX9.1.1g.

Stage 3 loading

As the load Q on the beam is increased above (J,, the moment at points A and C remains
constant at the plastic moment 738 fi-kips. So, the added load AQ, in Stage 3, acts on a
yet different elastic system as shown in Fig. WX9.1.14 (Segment BC now acts as a
cantilever beam). The structure is now determinate, 1.¢., the indeterminacy I equals zero.

From Case 21 in LRFDM Table 5-17: Shears, Moments and Deflections :

AQ b?

AM, - bAQ; AS. = SEo

As the load AQ is increased the remaining moment capacity at B of 102 ft-kips, available
at the end of Stage 2, is eventually exhausted and a third plastic hinge forms at B at a load
AQ = AQ, such that (Fig. WX9.1.1i):
240A0Q, = 102 - AQ, = 4.25kips
The additional deflection at the load point at the end of Stage 3 is:
4.25(24*)(12%)

AB, = = 0.638 in.
3(29,000) (1830 )
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The stiffness of the beam during Stage 3 is

A
5, = 9y _ 425 _ ceckips/in -~ s, = 0.064s,
A5, 0638

So, at the end of Stage 3, the beam is subjected to a total load of O, = O, + AQ; = 149.4

+4.25 = 154 kips, and three plastic hinges have developed; namely, at A, C and B (Fig.

WX9.1.1/). The cumulative bending moment is as shown in Fig. WX9.1.1%.

e. Stage 4 loading
For additional load AQ beyond Stage 3, the structure acts as a simple beam with an
additional hinge at load point C (Fig. WX9.1.1/); that is, the beam has been transformed
into a mechanism and no additional load AQ, can be supported (AQ, =0). So, the plastic

limit load of the beam is 154 kips.

The behavior of the beam can be summarized by a diagram of the deflection, & ,versus the load Q
(Fig. WX9.1.1m). This diagram consists of four straight lines corresponding to elastic behavior
(Stage 1), elastic-plastic behavior (Stages 2 and 3), and fully plastic behavior (Stage 4). Figure
WX9.1.1m shows that the stiffness of the beam reduces with the formation of each additional
plastic hinge. The stiffness equals zero when the plastic limit load is reached and the structure is

reduced to a mechanism.

WI.1.4 Plastic Limit Load
General
Consider a statically indeterminate rigid-jointed, planar, steel structure with degree of

indeterminacy 7 subjected to a set of proportional loads. A set of proportional loads is a set in
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which all loads are kept in constant proportion to one another. Quite simply, proportional
loading occurs when all loads are multiplied by the same (load) factor. As the loads increase,
plastic hinges appear in succession at sections where the absolute value of the bending moment
has a local maximum, equal to the plastic moment. If the structure does not carry any distributed
loads, the only possible locations of plastic hinges are at the end sections of the members and at
sections where concentrated loads are applied. Once a plastic hinge forms at a section, the
magnitude of the bending moment at this section remains constant at the known value M, = ZF,
and the degree of redundancy of the structure is reduced by one. The structure therefore becomes
statically determinate when the /-th plastic hinge forms. The next plastic hinge transforms this
statically determinate system into a mechanism with one degree of freedom which can deform
under virtually constant load. Thus, the formation of the (/+ 1)th hinge represents the collapse of
the structure. The load at which the (/+ 1)th hinge appears is known as the plastic limit load or
collapse load. Note that for symmetrically loaded symmetric structures, hinges that do not lie on
an axis of symmetry will always form in symmetric pairs. There may therefore be more than (I+

1) plastic hinges at failure.

The plastic limit load is greater than the elastic limit load because complete plastificatin of a
cross section requires more load than what is merely needed to initiate yielding at the extreme
fibers. Moreover (assuming that a mechanism has not yet developed), redistribution of bending
moment within the structure occurs as each plastic hinge develops and transforms the structure
into one which possesses one less degree of indeterminancy. The redistribution process is
dependent upon: the overall geometry and support conditions of the structure; the geometry and
material properties of member cross sections; and the particular arrangement of the applied loads.

Therefore the ratio of collapse load to yield load varies from structure to structure and for a given
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structure from load to load, and must be determined (in most instances at least) by performing a

structural analysis.

Direct Calculation of the Plastic Limit Load

Plastic analysis of planar structures is based on many of the assumptions employed for elastic
analysis. The structure is assumed to be composed of straight, rod-like members. Each member
contains at least one axis of symmetry: this axis and all external loads and reactions are assumed
to lie in the same plane. The displacements and rotations are small, and their effect upon the
equations of equilibrium is negligible. The primary forces are flexural; the effects of axial and
shear forces are not considered insofar as stresses on the cross section are concerned. The
material is assumed to be homogenous and isotropic. Furthermore, the material must also be

ductile so that members possess adequate rotation capacity in the yield range.

Unlike elastic analysis in which stress is always proportional to strain, the behavior of members
in the inelastic domain is nonlinear and thus precludes the use of the principle of superposition.
Thus, only proportional loadings are valid. Proportional loadings occur when the proportional
ratios which exist among the various given loads are maintained throughout all subsequent

loadings by use of a common (i.e., single) load factor, applied simultaneously to all loads.

The disposition of plastic hinges, together with any given elastic hinges, that is effective at
collapse is known as the collapse mechanism. 1t is clearly defined for any given structure and
proportional loading. Real (or elastic) hinges are assumed to be ideal frictionless pins and are
indicated in figures by the customary hollow circles. Solid circles are used for plastic hihges,

where the hinge moment equals A,. Plastic hinges are likely to occur at support points, under
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concentrated loads, or where the shear in a member is zero. Generally the locations of possible

plastic hinges may be determined by inspection.

The basic beam mechanism occurs when three hinges (at least one of which must be a plastic
hinge) transform a previously stable flexural member into two adjoining hinged beam segments.
The end hinges are fixed against transverse displacement while the middle hinge is not. (All
hinges may translate laterally, as would occur for an upper beam of a frame which experiences
sway movement due to wind or other lateral loads). The three hinges permit rotation of either
segment to freely occur without any corresponding increase in load. This rigid body

displacement, or displacement without strain, is tantamount to collapse.

There are three conditions which must be satisfied by a collapse mechanism [ASCE, 1971]: the
equilibrium condition where the applied loads and reactions must be in equilibrium; the
mechanism condition which requires that sufficient plastic hinges form to convert the structure
(or part of it) into a mechanism; and the plastic moment condition which dictates that the

moment nowhere may exceed the plastic moment M,

There are two basic methods or approaches used to determine the collapse mechanism for a given

structure, namely, the equilibrium method, and the virtual work method.

The static or equilibrium method consists of constructing an equilibrium moment diagram in
which M < M, throughout the structure and which contains sufficient number and locations of

plastic hinges to form a mechanism.
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The mechanism method or the method of virtual displacements consists of equating the internal
work absorbed by the plastic hinges to the external work done by the loads when a virtual
displacement is given to the mechanism. Note that, when two members meeting at a plastic
hinge rotate through an angle &relative to each other, the work absorbed by the plastic hinge

equals M, 6, where M, is the plastic moment of the section.

In applying the mechanism method, a trial mechanism is first assumed. Equations expressing the
external work done by the given loads and the internal work absorbed at the plastic hinges are
then equated, resulting in a value for the collapse load that corresponds to the mechanism
assumed. The bending moment diagram is then constructed using the value of the calculated
collapse load. If the plastic moment condition is everywhere satisfied (i.c., M < M) for the
resultant bending moment diagram, then the assumed mechanism is the true collapse mechanism,
and the calculated collapse load is the true plastic limit load. When there are two or more
possible mechanisms, the true collapse mechanism is the one that yields the greatest value of M,
(where M, is expressed in terms of the given loading). Alternatively, the true collapse
mechanism may be identified as the one that is associated with the smallest collapse load (where

the collapse load is expressed in terms of M).

EXAMPLE W9,1.2 Mechanism Method

Calculate the plastic limit load, Q,, for the beam of Example W9.1.1 using the mechanism

pi?

method.

Figure WX9.1.2
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Solution

Note:

From Table 1-1 of the LRFDM, the plastic section modulus of a W24x68 shape is 177
in.> The plastic moment of this section, for F, =50 ksi, is:

177 (50) _
2

M, = ZF = 738 ft-kips

P
A fixed-ended beam is indeterminate to the third degree. As there are no externally
applied horizontal loads, the indeterminacy reduces to two. Assume that plastic hinges
form at support points A and B and also at load point C, converting the structure into a
mechanism {(/ = - 1). Give a virtual displacement to the beam mechanism so that the
rigid segment BC rotates through an angle & (Fig. WX9.1.2a). The virtual displacement,
&, at C equals 248, and the rotation at A of the rigid segment AC therefore equals 246
/16 = 1.50. The angle at C is the sum of the angles at A and B; thus the angle at C equals
2.50.
The virtual work done by the external load is

0,06 = 0,040) = 24 Q.0
The virtual work absorbed by the plastic hinges

= M,(1560) + M, (2.5 0) + M, (8) = SM,0
Equating the external work to the internal work

240,60 = 5M,6 = 5(7380)
5(738)
4

>0, - 154 kips (Ans.)
The bending moment diagram at the plastic limit load is as shown in Fig. WX9.1.25. As

the bending moment at any point does not exceed the plastic moment of the beam, the

mechanism selected is the true collapse mechanism.

The virtual rotation @ cancels out from the work equation, as is the case with all
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applications of the virtual work principle.
2. The value of 154 kips obtained for the plastic limit load tallies with the value obtained

from the step-by-step method of Example W9.1.1.

EXAMPLE W9.1.3 Mechanism Method
Calculate the plastic moment for a fixed-ended beam of span, £, under uniformly distributed
plastic limit load, ¢,. Use the mechanism method.

Figure WX9.1.3

Solution
A fixed-ended beam under transverse loads only, is indeterminate to the second degree (/
= 2), and thus requires three plastic hinges to convert the structure into a mechanism (7 =
~1). Two of these form at the supports A and B and a third at midspan (in view of the
symmetry of the structure and loading), converting the structure into a mechanism. Give
a virtual displacement to the beam mechanism (Fig. WX9.1.3a), so that the rigid segment
AB rotates through an angle &. The virtual displacement, &, at C equals (Z /2)&and the
rotation at B of the rigid segment BC equals &. The angle at C is the sum of the angles at
A and B, and equals 2 6.
Consider an elemental load, q,, dz, acting at a distance z from A where the deflection
equals &,. Virtual work done by the elemental load is

6! 25

9,dz5, = qpldzmz = qul(zdz)

Virtual work of the external load on segment AC

26 2 g,L 18
= qulj;zdz = p2

2
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Virtual work of the external load on the beam AB therefore equals
2| In L 5 ELL_ Lgl - Elﬁ 0
2 )2 2 2 4

Virtual work absorbed by the plastic hinges is

MOB+ M,Q26) + M6 = 4M,0

Equating the internal work to the external work done by the loads, we obtain
L? L?
4 P 16

The bending moment diagram at collapse is shown in Fig. WX9.1.35. As the bending

4M O =

moment at any point does not exceed the plastic moment of the beam, the mechanism
selected is the true collapse mechanism.

Note:
The M, value obtained here corresponds with the value derived in Section W9.1.2, using

the step-by-step method.

W9.2 Open Web Steel Joists and Joist Girders

W9.2.1 Introduction

Open web steel joists are standardized, prefabricated, welded steel trusses used as simply
supported beams briefly introduced in Section 3.5.2 (Fig. 3.5.2). They are particularly well
suited for single story structures with high ceilings such as gymnasiums, factories , and shopping

centers, where fire proofing and acoustic needs are minimal. The 41* edition of the Standard
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Specifications, Load Table & Weight Tables for Steel Joists and Joist Girders [SJI, 2002]
developed by the Steel Joist Institute (SJT) give details for three types of open web steel joists
(Standard K-series, longspan LH-series, and deep longspan DLH- series), and for open web joist
girders (G-series). For any particular span length and loading, the structural engineer simply
selects an appropriate joist from load tables that have been developed with due consideration for
moments, shears, and deflections involved in simple spans. To prevent lateral buckling during

construction, lateral bracing known as bridging is provided at regular intervals.

W9.2.2 Comparative Summary of Joists and Joist Girders

Figure W9.2.1: Longspan and deep longspan steel joists [SJI, 2002].

The following is a comparative summary of K-, LH- and DLH-series open web joists and G-

series open web joist girders [SJI, 2002]:

1. K-series and LH-series joists are used for the direct support of roof or floor decks in
buildings. DLH joists are used for the direct support of roof decks only. Joist girders are
used for the support of equally spaced concentrated loads (reactions of roof or floor joists)
acting at the panel points of the joist girders.

2. There are 64 separate designations in the load tables for K-series joists representing
depths from 8 in. through 30 in. in 2inch increments and spans from 8 ft through 60 ft.
Longspan series joists have been standardized in depths from 18 in. to 48 in. (with 4 inch
increments between 20 in. to 48 in.), for clear spans from 25 to 96 feet. Deep longspan
series joists have been standardized in depths from 52 in. to 72 in. in 4 inch increments

for clear spans from 89 to 144 ft. Joist girders have been standardized for depths from 20
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in. to 72 in. and spans from 20 to 60 f{t.
Joists are designed as simple span trusses under gravity loads, when they are located
between members of a primary bracing system. The depth-to-span ratio of a joist must
not be less than 1/24. It is commonly 1/20.
For K-series joists, chords are essentiaily parallel. Longspan and deep longspan steel
joists can be furnished with parallel chords or with single or double pitched top chords to
provide sufficient slope for roof drainage (Fig. W9.2.1). Standard pitch, if desired, is V&
in. per foot. The nominal depth (and the joist designation) is determined by its depth at
the center of the span.
For K-series joists, camber may be provided at the manufacturer's option; for other series
it is required (standard).
K-series joists are furnished with underslung ends. LH and DLH joists can be furnished
with either underslung or square ends. Square ends are primarily intended for bottom
chord bearing. Joist girders are furnished with underslung ends and lower chord
extensions.
K-series joists have a 2¥%; in. end bearing depth so that, regardless of the overall joist
depths, the tops of all the joists lie in the same plane, facilitating the placement of the
deck. The depth of the end bearing portion of the underslung joists is 5 in. for LH- series.
For the DLH-series, the end bearing depths is 5 in. for chord sizes through 17, and 7% in.
for chord sizes 18 and 19. For joist girders the depth of the bearing portion is 6 inches.
The bottom chord is designed as an axially loaded tension member.
For design, the top chords of K-, LH-, and DLH-series joists are considered to be fully
(continuously) braced against lateral buckling by the roof or floor deck construction. The

top chord of a joist girder is considered as stayed laterally by the steel joists which are
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located at panel points only.
The top chord of a joist series is designed for only axial compressive force when the
panel length ¢ does not exceed 24 in. When the panel length exceeds 24 in., the top chord
is designed as a continuous member subjected to combined axial load and bending
moments. The top chord of a joist girder is designed as an axially loaded compression
member laterally supported by roof or floor joists. The radius of gyration of the top chord
about the vertical axis shall not be less than /575.
Ends of K-series joists resting on steel supports shall be attached thereto with a minimum
of two V& in. fillet welds 1 in. long, or with a % in. bolt. The corresponding values for
LH- or DLH-series joists and joist girders are two Y4 in. fillet welds 2 inches long, or two
% in. bolts. Where columns are not framed in at least two directions with structural steel
members, joists and joist girders at column lines shall be field bolted to the column to
provide lateral stability during construction.
The ends of K-series joists shall extend a distance of not less than 2% inches over the
steel supports. The corresponding bearing length for LH- and DLH- series is 4 inches.
When the bearing is less than the above criteria, such as in the case of two opposite joists
resting on a narrow steel beam, special joist end attachments must be provided with
attachments to the support by bolting or welding. Due consideration of the end reactions
and all other vertical and lateral forces shall be taken by the specifying engineer in the
design of the steel support.
The deflection due to the design live load shall not exceed 1/360 of span for floors and
roofs where a plaster ceiling is attached or suspended, and shall not exceed 1/240 of span

for all other cases of roof support.
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W9.2.3 Bridging
Steel joists are slender flexural members. Under gravity loads, the top chord of a joist is in
compression and the bottom chord is in tension. In the finished stage, the metal decking or
concrete slab acts as a continuous lateral bracing to the top flange. However, they require
positive lateral bracing to the top flange, prior to placement of the decking. This bracing, called
bridging, stiffens the steel joists sufficiently to support the construction stage loads safely. The
bridging spans transversely between the steel joist spans, and also helps keep the joists in their
desired positions as shown in the plans. If joists are subjected to a net uplift (under load
combination L.C-6), the bottom chords of the joists will be in compression and bridging is
required to provide lateral stability to the bottom chord. The specifications require joists
subjected to uplift have a line of bridging near each of the first bottom chord panel points.

Depending on the actual amount of uplift, additional bridging may be required.

There are two types of bridging, namely, horizontal and diagonal [see SJI, 2002]. Horizontal
bridging consists of two continuous horizontal steel members, one attached to the top chord and
the other attached to the bottom chord. The bridging is attached to the joists by welding or
mechanical means. The ends of all bridging lines, terminating at a wall or a beam, should be
anchored. The bolts or welds should be capable of resisting a minimum horizontal force of 0.7
kips. The maximum spacing and minimum number of rows of bridging are given in the
specifications. In the case of bottom chord bearing joists, the ends of the joists must be
restrained laterally by a row of diagonal bridging near the support to provide lateral stability. All
bridging and bridging anchors shall be completely installed before construction loads are placed
on the joists. Where diagonal bridging is required, the hoisting cables shall not be released until

the diagonal bridging is completely installed and anchored. The ends of the joists shall be bolted
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or welded to the support as required.

Ww9.2.4 LRFD Load Tables for Steel Joists

In SJI publications [SJI, 2002; and SJI, 2000], designation of a K-series joist consists of a
number (indicating the depth in inches) and the letter K followed by a number indicating the
chord size. Example: 18K6. The longspan and deep longspan joists are designated by two digits
(indicating the depth in inches) and the letters LH or DLH (indicating the series), followed by
one or two digits (indicating the chord size designation). Examples: 24LH06, S6DLH16. Joist
girders are designated by two digits (indicating the depth in inches) and the letter G (indicating
joist girder), followed by one or two digits and an N (indicating the number of joist spaces),
followed by one or two digits and a K (indicating the number of kips of each concentrated
factored panel load). For example, a designation 60G10N12K indicates a 60 inch deep joist

girder with 10 joist spaces, having panel point concentrated loads of 12 kips each.

Figure W9.2.2: LRFD load table and weight table for steel joists [SJI,

2000].

The existing design specification for steel joists and joist girders is based on the ASD format
[SJL, 2002]. However, SJI currently offers and allows the use of either the ASD Load Tables
[SJL, 2002] or the LRFD Load Tables [SJI, 2000] for the selection of joists and j oist girders.

Only use of LRFD Load Tables is described and used in this text book. In these load tables, there
are two numbers that are listed for a given joist and span length. In the actual load tables found
in the SJ1 Guide [SJ1, 2000], the top number is in black and the bottom number is in red. The top

number represents the total uniformly distributed factored load, ¢, gy, in pounds per linear foot,
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that this joist can safely support. It is obtained by multiplying the nominal strength of the joist,
g, (usually determined from full scale tests), by a resistance factor (= 0.9). The bottom number
(in red, in Load Tables) is the service live load (in plf) that would produce an approximate
deflection of L/360, the maximum live load deflection permitted for floors and roofs having
attached or suspended plaster ceilings. Live loads which will produce a deflection of £/240, the
maximum permissible live load deflection for cases of roofs with other than plastered ceilings,
may be obtained by multiplying the tabulated figures in red by a factor of 1.5. Special deflection
requirements may be necessary for perimeter steel joists loaded with building cladding and
interior joists carrying folding partition walls. Figure W9.2.2 shows a typical page from the

LRFD Load Table for the K-series joists.

The following procedure is used in the SJI LRFD Load Tables [SJI, 2000]. Let

qirip = SJI LRFD Load Table load

design strength of the joist, LRFD method

q, = required strength of the joist, LRFD method
We have

qu = max[l.4D; 12D+ 1.6(L, orL, orS, orR)] (W9.2.1)
where D, L, S, ... etc. are the service dead load, live load, snow load, etc. as defined in Section

4.10.3. From the LRFD format, we have

dirrp 2 Gu (W9.2.2)

Enter the SJI LRFD Load Table at the given span with a value of ¢, for the load, and select a

suitable joist that satisfies Eq. W9.2.2. The SJI Specification recommends a maximum span-to-
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depth ratio for joists of all series equal to 24 (and a preferred value of 20). The designer should
also examine bridging requirements for the selected joists. It is possible that by selecting a
slightly heavier joist, a line of bridging can be eliminated, thus resulting in a substantial decrease
in the total cost of the erected steel. If possible, for joists spanning less than 40 ft, selection
should be made so that X-bracing is not required. The optimum joist girder depth in inches 1s
approximately equal to the span of the girder in feet. The designer should generally follow this
rule of thumb. However, for expensive wall systems a one foot savings in height of the structure
may prove to be more economical as compared to the extra cost of shallower joist girders. Wide
spacing of joists maximizing the roof deck or floor slab design, often results in fewer pieces to

erect translating to a more economical solution.

EXAMPLE W9.2.1 Open Web Steel Joist and Joist Girder Selection
Select open web steel joists and joist girders for a roof system of a school building, as shown in
Fig. WX9.2.1. The plan dimensions of the building are 252 fix110 ft, with a 36{tx44 ft column
grid. The building is located in Green Bay, Wisconsin. Use ASCE Standards, SJI and LRFD
Specifications. Use A325-N type %-dia. bolts and E70 electrodes. Limit the depth of joists to
24 in. Gross wind uplift is 25 psf.
Figure WX9.2.1

Solution
a. Loads

If a standing seam roof is used, a 5 foot clear spacing between joists is to be used. This is

due to the fact that UL 90 uplift requirements for most standing seam roof systems can

only be met with a 5 ft. clear spacing for joists. Assume 5' 6" center-to-center spacing for
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joists.

The roof dead load is estimated, with the help of ASCES Tables C3-1 and C3-2, as

follows:
Standing seam metal roof 2.0 psf
Wide rib steel deck 1%,” - 22 gage 2.0 psf
3" rigid insulation boards (3 x 1.5) 4.5 psf
Suspended ceiling 8.0 psf
Mechanical, electrical, piping, say 3.5 psf

Total dead load = 20.0 psf
Snow load (from ASCES Fig. 7.1 corresponding
to Green Bay, Wisconsin) 40.0 psf

Roof live load (maintenance load from workers) 20.0 psf

Selection of steel joists

5' 6”

Spacing of joists

Span of joists 36'0"

The dead load of joists is given as a minimum of 3 psf in the Code of Standard Practice.
Whenever the actual weight of the joist exceeds this value the actual load must be used.
Joist loads:

Roof, deck, insulation and ceiling 20 psfx 5.5 = 110 plf

Joist, say 3psfx55=17plf

Dead load, D 127 plf



W9-29
Snow load, § 40 psf x 5.5 = 220 plf
Roof live load, L, 20 psf x5.5 =110 plf
The maximum factored load on the joist is

g, = 12D+ 1.6(L L, S R) = 12(127)+ 1.6 (220) = 504 plf

The SJI Specification recommends a maximum span-to-depth ratio for all series equal to
24 (and a preferred value of 20). For the 36 ft span the recommended minimum depth is
36x12 /24 = 18 in. (and a preferred value of 36x12/20 = 22 in.). Entering Standard
Load Table/ Open Web Steel Joists, for LRFD K-Series joists with a span of 36 ft and
reading across until a load equal to or greater than the required load capacity of 504 plf is
reached, the information given in the table below is obtained. The number of rows of

bridging, #, is read from the Table on page 9 of the publication [SJI, 2000].

Girep | 9s | weight n Remarks
20K10 | 547 | 193 12.2 2 NG
22K9 | 510 | 20! 11.3 3 NG
24K8 | 513 | 222 | 115~ 3 OK
26K7 | 504 | 240 10.9 3 OK
28K7 | 544 | 280 11.8 3 OK

Joists 24K8, 26K 7 and 28K 7 are adequate for strength and serviceability, and require the
same number of bridging. However, as the depth of the steel joists is to be limited to 24

inches, we will select a 24K8.

Il

dirRrp T 513 plf > qreq 504 plf OK.

222plf > ds 220 pIf OK.

qs

Also, as the assumed weight of joists (= 16.5 plf) is greater than the actual weight (=
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11.5 ptf) of the joist selected, no redesign is necessary.
Net wind uplift from load combination LC-6 = 1.6 (25) - 0.9 (20) = 22.0 psf
= 22.0(5.5) = 121 plf
The factored net uplift value of 121 plf must be specified on the contract documents.

So, select 24K 8 open web steel joists. (Ans.)

Selection of joist girders

Span of joist girder = 44' 0" (centerline of column to centerline of column)
Panel length = joist spacing = 5'6"

Number of actual joist spaces, N = 8

Contributory area for interior panel of joist girders = 5.5 (36) = 198 ft*

Panel load from:

Roof, deck, insulation, ceiling = 2—(%1095—2 3.96 kips
Joist = L5G6) . 414 kips
1000
L 2(198) .
Joist girder (say, 2 ps = - 0.396 kips
girder (say, 2 psf) 1600 p
Total dead load, 0, = 4.77 kips
40(198) .
Snow load, = = 7.92 kips
Os 1000 P

Factored panel load, Q, = 120, + 1.6 Q5 = 1.2(4.77)+ 1.6(7.92) = 18.4 kips

The required SJI Joist/ Factored Load Table panel load, 0, is taken as 19.5 kips. The
optimum joist girder depth in inches is approximately equal to the span of the girder in
feet. Deeper girders generally result in lighter girders but the increased cost resulting
from the added height of structure (columns, walls, etc.) may nullify the cost savings in

girder weight. Therefore, select a depth of 44 inches. The LRFD joist girder will then be
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designated as 44G8N19.5K

The LRFD Joist Girder Weight Table gives the weight for a 44G8N19.5K as 56 plf. As
this value is less than the value 2 psf x 36 ft = 72 plf assumed in the load calculation, the

girder selection is O.K. The live load deflection of girder is calculated next.

40.0 (36.0)
1000

Approximate joist girder moment of inertia,

Live load on girder, g; = 1.44 kif

J= 0018NPLd = 0.018(8)(19.5)(44) (44) = 5,440 in.*

5qL* |53 _ 115(5)(1.44) (444 (12%) _

0.885 in.

Deflection, 6, = 1.15

384 E] 384 (29,000} (5440)
Allowable deflection, 8, = = = U2} 44740 > 5 - 0885in OK.
360 360
So, select a 44G8N19.5K joist girder. (Ans.)
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Figure W9.1.1: Behavior of a simply supported beam under a
central concentrated load.
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Figure W9.1.3: Load-deflection relation for fixed-ended beam
under a uniformly distributed load.
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Figure W9.2.1 Longspan and deep longspan steel joists
TO COME SHORTLY.

Figure W9.2.2 LRFD load table and weight table for steel joists
TO COME SHORTLY.
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