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WEB CHAPTER 10

Unbraced Beams

W10.1 Influence of Various Parameters on Elastic Lateral Buckling of Beams
The elastic lateral-torsional buckling moment of a doubly symmetric I-shaped beam with

torsionally simple end conditions, under the action of constant moment in the plane of the web is

given by
M° = %m\]l + z_z EG%” (W10.1.1)

where M°, = critical, uniformly distributed major-axis moment

L = distance between lateral supports

E = modulus of elasticity

G = shear modulus

I, = moment of inertia about the minor axis

J = St. Venant torsional constant

C, = warping torsional constant

EI, = minor axis flexural rigidity of the beam cross section

EC, = warping rigidity of the beam cross section

GJ = torsional rigidity of the beam cross section

W10.1.1 Influence of the Ratio , /I, on Lateral-Torsional Buckling of I-Beams
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Equation W10.1.1 is independent of the major axis flexural rigidity EI. This is a consequence of
employing the assumption that the pre-buckling deflections in the vertical plane are small enough
to be neglected in writing the equilibrium equations. Such an assumption is justifiable when the
major axis flexural rigidity E1, is very much greater than the minor axis flexural rigidity EI,
Including the effect of pre-buckling deflections in the formulation of the problem results in a

more precise value of the critical moment [Vacharajittiphan et al., 1974; Vinnakota et al., 1975]

as.
2 EC
M - 71_—.2_ EIyGJJl - L (W10.1.2)
1 L
where
I
noe 1o 2 (W10.1.3)

This correction factor, 1, is just less than unity for most beam shapes but may be significantly
less than unity for most column shapes. Regardless it is usually neglected in design. As the
value of 1, approaches that of I, the parameter 1 tends to zero and the value of M., given by Eq.
W10.1.2 approaches infinity. Also, for the special case where /, exceeds 7, no solution exists
indicating that lateral-torsional buckling (LTB) of doubly symmetric shapes is only possible if:
(1) the cross section of the beam possesses different rigidities in the two principal planes; and (2)
the applied loading causes bending in the stiffer plane. Thus, lateral-torsional buckling cannot
occur if the moment of inertia about the bending axis is equal to or less than the moment of
inertia out of plane. That is, for shapes bent about the minor axis, and shapes for which [, =1,
such as square or circular shapes, the limit state of lateral-torsional buckling is not applicable and

yielding controls if the section is compact.
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W10.1.2 Influence of the End Support Conditions

Figure W10.1.1: Laterally and torsionally fixed I-beam under uniform

moment,

First, let us consider a doubly symmetric I-shaped beam whose ends are free to rotate about the
major axis, but are fully restrained against all other deformations at the ends (Fig. W10.1.1). The

boundary conditions are therefore

v=0; v'=0 at z=0 and z=1L
u=0;, u' =0 at z=0 and z=1L (W10.1.4)
Pp=0;, ¢' =0 at z=0 and z=1

The beam is subjected to pure bending by moments M” at each end. The lateral-torsional
buckling strength of the torsionally fixed beam considered can be shown to be [Chajes, 1974], for

example):

a2 EC,
(L12)? GJ

M = -~ JELGJ |1 + W10.1.5
crF L/2 y J ( )
The simple beam with torsionally simply supported end conditions considered in Section 10.2,
and the simple beam with torsionally fixed end conditions considered in this section, represent a
set of limits between which most actual torsional restraint end conditions lie (for a simple beam).
Comparing Eq. W10.1.5 with Eq. W10.1.1, we observe that the critical moment of the torsionally

fixed beam can be anywhere from two to four times as large as the critical moment of the
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torsionally simple beam. Thus, if the warping stiffness is negligible compared to the St. Venant
stiffness, the strength of the fixed beam is twice that of the hinged beam. However, if the St.
Venant stiffness is negligible compared to the warping stiffness, the strength is increased by a
factor of four in going from hinged to fixed conditions. Note that the lateral bending strength
and warping strength vary inversely with the length of the member, whereas the St. Venant
torsional strength does not. Also, the warping and lateral bending strengths are affected by

changes in the boundary conditions whereas the St. Venant torsional strength is not.

The influence of other than simple lateral-torsional boundary conditions on the elastic buckling
of doubly symmetric beams loaded by uniform moment may conveniently be included using the

formula:

n2El mEC
4 GJ + -

Mctr]R = 2 2
(Ky L) (K.L)

(W10.1.6)

Here, the coefficients K, and X, are effective length factors which account for the boundary
conditions of the lateral deflection, u, and rotation, ¢, respectively, on the critical moment of the
I-beam. Thus, for torsionally fixed boundary conditions considered in Fig. W10.1.1 we observe
from Egs. W10.1.5 and W10.1.1 that K, = 0.5 and K, =0.5. Several idealized end restraint
conditions for lateral buckling of beams are shown in Fig. W10.1.2. Values for K, and X, for a

number of boundary conditions are given in Table W10.1.1 [Vlassov, 1961; Galambos, 1968].

Figure W10.1.2: Idealized end restraint conditions for lateral buckling of beams.

TABLE W10.1.1:  Effective Length Factors (K, and K, ) for Laterai-Torsional
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Buckling [Galambos, 1968]

Accurate evaluation of the degree of restraint provided by the actual connections in practice is
difficult. In view of the imprecise nature of our knowledge of the degree of torsional restraint

provided, Eq. W10.1.6 is simplified by assuming that

K, = K. = K, (W10.1.7)

where K, is the effective length factor of the beam. The effective length may be defined as the
length of a torsionally simple beam, of similar section subjected to uniform moment, which will
have the same elastic critical moment as the beam considered. Thus, Eq. W10.1.6 may be

rewritten as:

MS, = % EI, J GJ + (Kn;)z EC, (W10.1.8)
b b
The following conservative values for K, arc sometimes used [BSI 1969]:
« Ends unrestrained against lateral bending K,=1.00
«  Ends partially restrained against lateral bending K,=0.85
+  Ends practically fixed against lateral bending K,=0.70
One reason for the conservatism of the recommended values is that, as in the case of columns
(see Section 8.5), practical beam end supports are unlikely ever to be capable of providing

complete fixity against rotation and warping.

W10.1.3 Influence of the Lateral Supports



W10-6
As discussed qualitatively in Chapter 9, the stability of a beam against lateral-torsional buckling
may be increased by providing intermediate lateral supports. Such lateral supports induce higher

modes of buckling of the compression flange-column.

Let us consider a flexurally and torsionally simply supported beam of length L. The middle
section of the beam is prevented from rotating with respect to the shear center axis of the beam
by providing a lateral brace at midlength (Fig. W10.1.3a and b). Assuming that the beam is
subjected to pure bending in the yz plane, the critical value of the bending moment can be again
obtained from Eq. 10.2.20. However, the presence of the lateral bracing induces an inflection
point in the lateral deflection curve of the buckled beam, as shown in the plan view of the center
line of the compression flange of the buckled beam in Fig. W10.1.3¢. The integration constants
A, 4,, A; and A, may now be determined from the boundary conditions:
(W10.1.9)
$=0 and ¢" =0 at z = 0 due to torsionally simple end conditions

$=0 and ¢" =0 at z = L /2 due to anti-symmetry of the buckled shape

Figure W10.1.3: Lateral buckling of a simple beam with lateral support at midspan.

The eigenvalues of the differential equation are now given by:

Q(L/2) = nm (W10.1.10)

The lowest critical moment corresponds to the lowest value of the integer # (i.e., for » = 1), and

is given by:
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2
0 T T
M° - JEL |GJ+ EC, (W10.1.11)
L2y’ \l (L12)?

By defining the unbraced length L, of the beam as the distance between two adjacent lateral

braces, the above equation may be rewritien as:

TI:2

M, - ~JEI |GJ+ L EC (W10.1.12)
L Y 2 v
b L,
Thus, if the compression flange of a simply supported I-beam subjected to uniform bending is
supported at intermediate points by equally spaced lateral braces, the unbraced length L, shall be

used in the determination of the lateral buckling load of the beam from Eq. W10.1.12.

Ww10.1.4 Influence of the Transverse Loads

Let us reconsider the flexurally and torsionally simply supported beam studied in Section 10.2
and determine its lateral buckling load if the member is bent by a central concentrated load
instead of being subjected to pure moment (Fig. W10.1.4a and b). The point of application of
the load coincides with the shear center of the section (midheight of the shape for the symmetric

I-shape considered).
Figure W10.1.4: Lateral buckling of a simple beam under central concentrated load.

Figure W10.1.4 shows the manner in which the load Q moves as the member deforms. Prior to
buckling (0 < Q,,), as the member bends in the vertical plane, Q moves from position 1 to 2.
Then as buckling oceurs at Q = Q,,, the load moves from position 2 to 3. The movement from

position 2 to 3, at buckling under load Q,,, consists of a horizontal displacement u, additional
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vertical displacement v, and a rotation ¢ The line of action of the load remains vertical during

this movement. The subscript ¢ denotes the fact that the displacements being considered are at

midspan (point C).

The critical value of the load can be shown to be [Chajes, 1974]:

2 2 EC
o - A 3 ErGgs |1 o+ I (W10.1.13)
L? m+e 7 L2 GJ

The critical value of the bending moment at the center of the span (Fig. W10.1.6¢) is therefore

g

0, L T n’
e — = 136|2EL |GJ + S EC, (W10.1.14)

LZ
- M

cr

where M., ° is the lateral buckling load of the same beam under uniform moment (Eq. W10.1.1).
C, is known as the moment modification factor or beam bending coefficient, and accounts for
the effect of nonuniform distribution of major axis bending moment on the critical value of the
bending moment. It is equal to 1 for uniform bending moment, and 1.36 for a concentrated load
at midspan. The elastic flexural-torsional buckling of simply supported beams with other loading
conditions has also been investigated. The factor C, has been found to be equal to 1.13 for a
uniformly distributed load and 1.04 for two equal concentrated loads at the third points [Clark

and Hill, 1962].
Figure W10.1.5: Lateral buckling of a beam under nonuniform moment.

As we have seen in Chapter 9, the compression flange of a beam acts as a pseudo-column, that
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tends to buckle sideways between points of lateral support, resulting in the phenomenon of
lateral- torsional buckling. The bending moment diagram over the unbraced length determines
the amount and distribution of axial load to which the compression flange-column is subjected.

It experiences zero axial force at points of zero bending moment; the axial force increases as the
point of maximum moment in the beam is approached. If a beam is subjected to pure bending
moment, its flange-column experiences a constant axial compressive force along its length. By
way of contrast, for a simply supported beam with a single concentrated load placed off-center of
the span (Fig. W10.1.5a), the flange-column will have zero axial force at its ends and will be
subjected to uniform increments of axial force, transferred from the web to the flange, as we
move towards the load point D (Fig. W10.1.5d). As a result, the maximum axial force P, of the
flange-column occurs at the load point. Now, the critical axial load for a column loaded by
distributed axial forces in the manner of a beam compression flange will always be greater than
that for a column of equal dimensions and supports loaded entirely at its ends. It follows that
lateral-torsional buckling is triggered more readily in segments of the beam where the bending
moment is uniform than in segments with nonuniform distributions of moment. This may be

expressed by the relation:

M = C M (W10.1.15)

where C, is a moment modification factor used to adjust the flexural-torsional buckling strength
for situations in which variations in the moment diagram occur within the unbraced length. The

coefficient C, has been found to be virtually independent of all factors other than the shape of the
moment diagram over the unbraced length, L,. Empirical relations to calculate the coefficient C,

for various beam support and loading conditions have been discussed in Section 10.4.3.
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W10.1.5 Beams Under General Shear Center Loading
The critical moment for doubly symmetric I-shaped beams, when such members are loaded by
end couples in the plane of the web, and/or by transverse loads applied at the shear center axis in

the plane of the web, may be closely approximated, with the help of Eqs. W10.1.8 and 15, by:

2 EC
M, = C|-—"—|ELGJ |1+ —" > (W10.1.16)
K, L, (K,L,)* GJ

Here C,, as just alluded to, is a coefficient that depends on the load distribution and end
conditions, and K, is the notional effective length factor of the beam. An alternate form of this

relation is given by:

2
T

K, L,

K,L,)
FrEC, |1+ Sl GI (W10.1.17)
’ > EC

R w

For hot-rolled sections of normal proportions, the two terms under the second root of Eq.
W10.1.16 are of comparable magnitude. The value of the second radical in Eq. W10.1.16
approaches unity in the case of short beams and girders of very shallow or thick-walled sections,
indicating that the St. Venant torsional resistance is dominant. On the other hand, for long beams
and girders of deep or thin-walled sections, the second radical in Eq. W10.1.17 approaches unity

and the resistance of the compression flange to buckling largely governs.

Wi1d0.1.6 Influence of Continuity in the Major- and Minor-Axis Planes of the Beam

Figure W10.1.6: Laterally and vertically continucus beams.
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Quite often beams are provided with more than two lateral supports (braces), making the
compression flange of the beam continuous in the lateral plane. The lateral-torsional buckling of
such beams often involves interaction between adjacent segments. The discussion below is valid
for single span beams divided into a number of segments by a series of lateral restraints, such as
the beam shown in Fig. W10.1.6a, and also for beams continuous in the vertical plane over
several spans and laterally braced at the support points only, such as the beam shown i Fig.
W10.1.6b. If both the lengths of the individual segments and the patterns of moments within
them are similar, then the interaction between adjacent segments may be slight or nonexistent.
However, if the adjacent segments are shorter than the segment being considered, and/or the
adjacent segments are less severely loaded, then the adjacent segments may provide significant

restraint to the segment under consideration.

The simplest and most conservative solution to this problem is the one first proposed by
Salvadori [1951] which ignores the effects of lateral continuity between adjacent segments.
Lateral buckling moment for each unbraced segment is determined using Eq. W10.1.16 taking X,
= 1.0, and including the modification factor C, corresponding to the moment diagram shape. The
elastic critical moment of each segment so determined is then used to evaluate a corresponding
beam load set, and the lowest of these is taken as the elastic critical load set. The result 1s then a
conservative lower bound to the elastic lateral buckling load because each unbraced segment is
assumed to be laterally and torsionally simply supported. Note that Salvadori’s method 1s
equivalent to assuming a buckled shape for LTB in which the points of inflection are located at
the points of lateral restraint. Hence, in this method, L,, = L,, = L /3 for the laterally continuous
beam shown in Fig. W10.1.64, and L,, = L,, = L for the vertically and laterally continuous beam

shown in Fig. W10.1.65.
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Accounting for the end restraint provided by the adjacent segments on the critical segment at
buckling can substantially increase the buckling load [Nethercot, 1983]. A procedure to account

for this beneficial effect is given in the SSRC Guide [Galambos, 1998].

W10.1.7 Influence of the Level of Application of Transverse Load
Figure W10.1.7: Effect of position of load on lateral buckling.
Figure W10.1.8: Examples of top and bottom flange loading of beams.

When a beam is subjected to a system of transverse loads, its lateral-torsional buckling strength
depends not only on the distribution of the loads along the longitudinal axis but also on the level
of application of such loading relative to the shear center axis of the beam cross section. In
Section W10.1.4, it was assumed that the central concentrated load is applied at the beam shear
center axis. If, however, the transverse load is placed on the top flange of the beam (load Qrin
Fig. W10.1.7) there is an additional destabilizing torsional moment, Q,(d/2)¢ that develops as
soon as the loaded cross section is twisted. Here d is the depth of the section and ¢ is the
rotation of the section at the load point. As a consequence the lateral buckling load will be
reduced. An example is a crane girder where the crane wheel loads are applied to the crane rail
resting on the top of the crane girder (Fig. W10.1.8a). Conversely, if the transverse load is
suspended from the bottom flange (load O, in Fig. W10.1.7), there is a stabilizing torsional
moment, O, (d/2)¢ that increases the lateral buckling load. An example is a runway beam with
the hoist suspended from the bottom flange of the beam (Fig. W10.1.8b), where the loads are free

to move sideway as the beam buckles.
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The elastic lateral buckling strength of a doubly symmetric I-beam that takes into account the

influence of the level of application of the transverse loads may be written as [Galambos, 1968;

Clark and Hill, 1962]: (W10.1.18)
: EC EC
M, - €l JETGH [1+ "l ) s |
&'\ K, L) GJ &, )\ GJ

The coefficient C, represents the stabilizing/destabilizing effect that occurs if the loads are
applied at the bottom flange or top flange of the beam, respectively. The minus sign in the
bracketed term is to be used for loads on the top flange and the plus sign for loads on the bottom
flange. It can be seen from this equation that the effect of the level of application of the
transverse loads is most significant in situations where warping effects are predominant (i.e., for
deep, beam-type sections of short span rather than for shallow, column-type sections of long
span). C,is zero if the load is applied at the centroid of the beam, and Eq. W10.1.18 reduces to
Eq. W10.1.16. Similarly, C, is zero if the beam is loaded by end moments only. For simply
supported beams, C,= 0.55 for a concentrated load at midspan and 0.45 for a uniformly
distributed load. Values of C,, C,and K, for a wide variety of support and loading conditions
from Clark and Hill [1962] are given in Table W10.1.2. If the transverse loading is applied in
such a fashion that twisting of the loaded cross sections is prevented, then the actual level of

application of the loading will have no effect.

TABLE W10.1.2: Values of C, and C, in Eq. W10.1.18 [Adapted from Clark

and Hill, 1962].
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EXAMPLE W10.1.1 Influence of Level of Loading
A W24x104 of A588 Gr 50 steel is to be used as a simply supported beam for a span of 36 ft
with lateral supports at the ends only. Calculate the elastic lateral buckling load if a single

concentrated load at midspan is applied at: (a) top flange; (b) shear center; and (c) bottom flange.

Solution
Data
From LRFDM Table 1-1: W-Shapes, for a W24x104
d = 24.1in; t, = 0.500i1n.

b= 128in; £ = 0.750in.

4= 306in% S

X

258 in.%; I = 259in?
Also, for A588 Gr 50 rolled steel W-shapes:

E = 29,000ksi; G = 11,200ksi; F, = 50ksi

¥
F. = 10ksy F, = F,- F,= 50- 10 = 40ksi

yr

The torsional constants may be calculated as follows:

J = E%bﬁ - 2(%)(12.8)(0.750)3 + %(24.1— 2x0.750) (0.500)°

= 360 + 0940 = 454in?
d- t)° :
c o - I(——-f)— = 259 23357 _ 35,300 in.®
w y 4 4
EC, _  (29000)(35300) _ 49
G (11,200) (4.54)

Alternatively the torsional constants can be obtained from the LRFDM Table 1-25: W-

Shapes Torsional Properties. Tabulated values for the coefficients J, C,, and
EC

w

GJ

are 4.72 in.*; 35,200 in.® and 139, respectively.
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Use, the more exact tabulated values for calculations.
For a flexurally and torsionally simply supported beam K, = 1 and Eq. W10.1.18 for the

lateral buckling strength reduces to

2 EC EC
M - ¢, EJELGT |1+ Zo2+ ) ¢ Z |
¢ LV 12 GJ LN GJ
For the simply supported beam, of length L = 36 ft, we obtain:
T ELGJ = T__ /29,000 (259) (11,200) (4.72)
LV 36 (12)

= 4,580 in.-kips = 382 fi-kips

n | EC, o

(139) = 1.01

L\ GJ 36 (12)

For a central concentrated load on a simply supported beam, with no brace at load point,

we have C, = 1.3 from Table W10.1.2. So

M. = 1.3(382)[‘/1 v 1012(1 + CY) = 1.01cﬂ]

cr

- 497 sz.oz + 1.02¢7 = 101 CJ
Top flange loading
For top flange loading, C, = 0.55 and we have to use the negative sign in the above

relation giving:

M_. = 497{\/2.02 + 1.02(0.557 - 1.01x0.55

crT
= 497(0.97) = 482 ft-kips
Critical top flange load,

Yar- sy - 536k (Ans.)
= . = —_— = . S
chT I 36 ( ) P
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M, 482 (12) , .
= —= = = 224ksi < F_ = 40 ksi
S S, 258 ”
b. Shear center loading

For shear center loading, C,= 0 and we obtain

M, - 497(y202] = 706 fi-kips
Q,, = 4(706) (226) = 78.4 kips (Ans.)
_706(12) . ) .
o = “sg 328 ksi < F, = 40 ksi,as assumed.
c. Bottom flange loading

For bottom flange loading, C, = 0.55, and we have to use the positive sign, resulting in:

497[J2.02 + 1.02(0.55? + 1.01x0.55

Mch -
= 497(2.08) = 1030 ft-kips
0., - 40030) _ 14 kips (Ans.)
36
_1030(12) _ : - ;
fing = —ss " 48.0 ksi > F,_ = 40 ksi

Since f,,,, for case (c) exceeds the reduced yield stress F,, the assumption of elastic
behavior is not valid for bottom flange loading.

Remark
This example shows the influence of level of loading on the lateral buckling strength of

unbraced beams.




W10-17

W10.2 Lateral Torsional Buckling of Cantilever Beams
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Figure W10.2.1: Lateral buckling of a cantilever beam.

A flexural member AB which, in the plane of loading, is built-in at one end (v, = 0;v," = 0) and
free at the other end (vg, vy’ unrestrained) is known as a cantilever. Such a member is restrained
against out-of-plane deformation at the support (1, = 0;u," = 0; g, = 0; ¢’, = 0); however any
such deformation at the free end is permitted (ug, up', ¢y, Py’ unrestrained). The absence of out-
of-plane restraints at the free end of cantilevers drastically changes the buckling mode and
buckling strength of such beams as compared to the simply supported beams considered in carlier
sections. In a cantilever subjected to concentrated or distributed gravity loads, it is the tension
flange which moves farther during buckling, while it is the compression flange in the case of
simple beams (Fig. W10.2.1). Cantilevers with end moments that cause uniform bending are rare
in practice as most bending actions are due to loads rather than moments. The most severe
loading condition for a cantilever normally corresponds to a point load acting at the tip.

Nethercot [1973] has shown that for design applications a simple method using the effective

length factor, K, (in Eq. W10.1.16), is satisfactory to determine the critical moment M,, ¢, of a
cantilever beam. Thus,
T nz E Cw
M. = C EIGJ |1+ (W10.2.1)
K, L, K, L)* GJ

Figure W10.2.2 gives recommended values of effective lengths K, L for a number of cantilever
beams. The table is applicable to both end load and uniformly distributed load cases. It is seen
from the table that prevention of twist at the tip is more effective than prevention of lateral

deflection. The table is valid for both end load and uniformly distributed load cases.
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Figure W10.2.2: Effective lengths K, L, for cantilever beams [Nethercot,

1983].

At first glance the use of a value of K, less than 1.0 for the basic cantilever may seem incorrect.
This can be explained as follows: In a simply supported beam under transverse loads, the
maximum compression in the top flange occurs somewhere near the middle of the span, where
the beam is free to buckle sideways. On the other hand, the maximum compression in the
bottom flange of a cantilever beam is at the support, where the beam is fully restrained against
buckling. The cantilever is free to deflect laterally at points of low bending stress, whereas the
simple beam is free to deflect laterally at points of high bending stress. It follows that the
cantilever has more resistance to lateral buckling than a simple span of equal length, and a
conservative value for the effective unbraced length of a properly braced cantilever can be taken

as the actual length of the beam.

Cantilever spans will also occur in practice as the overhanging span (say, BC) of a beam (ABC)
otherwise continuous in its loaded plane (v, = 0; vg= 0; Vp'ieq = Vg'rign» cONtinuity; and ve, ve'
unrestrained). Nethercot [1973] determined that for such cantilevered end spans, the conditions
of lateral restraint at the fulcrum (the most outward point of the vertical at the support nearest
the free end) are more significant than the conditions of lateral restraint at the root of the support.
More specifically, failure to effectively prevent twist at the fulcrum results in greatly increased K,

values (Fig. W10.2.2).
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W10.3 Flexural Strength of Compact Beams Other Than I - Shapes ( Bars,

Rectangular HSS, C-, Singly-Symmetric I-, and T-Shapes )
I-sections are the most commonly used shapes for beams as they are easier to produce, and more
importantly, are much easier to connect to other members. However, in situations where the
beam is to be used in a laterally unsupported state over long spans such as crane booms, use of
box sections having high torsional stiffness (and hence, high flexural-torsional buckling
strength), instead of I-shapes results in economy. Also, channels are often used as beams
(purlins, girts, eave struts, lintels, trimmers and headers) for stairwells, lift shafts and other

openings.

The beams considered in Sections W10.1 to W10.2 are doubly symmetric beams of uniform
cross section. Singly symmetric shapes are sometimes used in structures for a variety of reasons.
For example, to provide increased lateral resistance to the beam compression flange in situations
where lateral bracing is impossible or expensive. An example is a crane runway beam. Another
example is a steel-concrete composite beam, where the concrete slab acts as a very large
compression flange, allowing the steel top-flange to be just large enough to accommodate the
shear connectors. Here, the small flange is in compression prior to placing of the concrete and
the steel beam may be unusually susceptible to lateral-torsional buckling during construction
stage. The manufacturers of metal building systems use singly symmetric sections extensively n

their effort to optimize rigid frame design.

Behavior and design of these members will be considered in the following sections.

W10.3.1 Rectangular Bars and Rectangular HSS
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For a rectangular section the warping constant C,, = 0, and so from Eq. W10.1.16, we obtain the

critical buckling strength of a beam with a rectangular cross section as:

T
M, = C,—JEIGJ W10.3.1
cr b KbLb y ( )

For a solid rectangular cross section of usual structural proportions (d > 2¢, where d is the depth

and ¢ is the thickness), a sufficiently accurate formula for the torsional constant J is:
J= av (W10.3.2)

The extreme fiber stress at which buckling occurs is obtained by dividing the critical moment

(Eq. W10.3.1) by the section modulus, S, = [ /(d/2) where I = 1—12 td3. Thus:

C, 1 JCF |1
£, = —HTJGE 2 (W10.3.3)

K, (L,/t)

indicating that lateral buckling is more likely to occur in beams that are relatively deep, narrow,

and /or long.

By letting [, = Ar,’, E= 29,000 ksi and G = 11,200 ks1 in Eq. W10.3.1, the lateral-buckling

moment for a solid rectangular bar can be rewritten in the form:

C,JJA4 57,000 C, JJA
= P (56,620) = b (W10.3.4)
(K, L,/7,) (K, Ly /r,)

Equation W10.3.1 for the rectangular cross section can also be used to evaluate the elastic critical
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moment for rectangular hollow structural shapes and box girders of rectangular closed cross
section, bent about the major axis. The following approximate expression for the torsion
constant J of thin-walled box sections, based on Bredt’s theory [Roark, 1965] can be used in Eq.

W10.3.1:

J = 44, 26, d, W10.3.5
B ds (B,/t,) + (d,/t,) (W103.5)
S dt

where 4, is the enclosed area within the middle planes of the plates making up the box perimeter.
By letting [, = Aryz, E= 29,000 ksi and G = 11,200 ksi in Eq. W10.3.1, the lateral buckling
moment of a rectangular box girder can be written as

57,000 C, JA

o = (W10.3.6)
(K, LyIr,)

This is Eq. F1-14 of the LRFDS, for K, = 1. The critical elastic lateral buckling stress of box
girders of usual proportions is far above the yield stress. Failure will therefore usually be by

inelastic lateral buckling or by local buckling.

For solid rectangular bars and box sections, the limiting laterally unbraced length L, for full

plastic bending capacity under uniform moment, is given by LRFDS Eq. F1-5 as:

0.13r. E
_ Yy
e e 2Z (W10.3.7)
4 DX

with

M, = min[ZF,; 158,F,] (W10.3.8)
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where A4 = cross-sectional area
J = torsion constant

Also, for solid rectangular bars and box sections, the limiting laterally unbraced length, L,, for

inelastic lateral-torsional buckling, is given by LRFDS Eq. F1-10 as:

2r. E
L = —X_Jjd (W10.3.9)
er
where
M, = S.F, (W10.3.10)

The design flexural strength of solid rectangular bars and box sections, bent about the major axis

is given by:

M, = ¢M, = min[$Z F,; §(1.58 F,] for L, < L, (W10.3.11a)
= min[ C,M°;; $M,] for L, < L, < L, (W10.3.115)
= min[ C,M°;; @M, ] for L, > L, (W10.3.11¢)

where
o _ (L, - L))
Md] = d)bMpx - (d)bMpx - d)erx)L—_—L_ (W10312)
L - 1)
My = &, 57,000 74 (W10.3.13)

L, /ry

W10.3.2 Channels
For rolled channels used as beams, LRFD Specification permits design strength to be calculated
by equations for doubly symmetric beams, given in Sections 10.4.1 and 2. The effect of

eccentricity of load should be considered in the strength evaluation if the loads are not applied
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through the shear center.

EXAMPLE W10.3.1 Plate and HSS as Beams

A 572 Grade 50 steel beam is to be used as a simply supported beam on a span of 20 ft with
lateral supports at the end only. Calculate the elastic lateral buckling moment and the maximum
bending stress, if the section is:

a. 1 in.x 20 in. rectangular section bent about its major axis.

b. W21x68 shape.

c. HSS20x4xY5.

Solution
Span, L= 20 ft; Unbraced length, L, = 20 ft
Uniform moment over unbraced length. So, C, = 1.0
a. Rectangle
b= 1.00in; d = 20.0in.
A= 200(1.00) = 20.0in5% s, - %(1.00)(20.0)2 - 333 in’

I = _115(20.0)(1.00)3 = 1.67 in%; J = %(20.0)(1.00)3 = 6.67 int

y

For a simply supported beam having a rectangular cross section and laterally supported at

the ends only (Eq. W10.3.1):

o T T
MG = —JEI GJ = 29,000 (1.67) (11,200) (6.67

= 787 in.-kips = 65.6 ft-kips

M, 787
= —* - 8L - 244ksi < F, = 50 ksi
T S, 323 g
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Elastic lateral buckling moment, M°,, = 65.6 fi-kips (Ans.)
W21x68
From LRFDM Tables 1-1: A= 20.0in2% §,= 140in.; [= 64.7 in.*
From LRFDM Table 5-3: L, = 17.3 ft for a W21x68 of Grade 50 steel.
As L, = 20 ft is greater than L,, strength of the beam is limited by elastic lateral buckling.
From LRFDM Table 1-25, for a W21x68:

EC
J = 245in*; C. = 6760 inS; ¥ = 845
ot GJ

For a simply supported I-beam bent about its major axis, and laterally supported at the

ends only (Eq. W10.1.1):

752 Ecw
12 GJ

cr

M = I EIGJJl +
L ¥y

T
20 (12)

T 2
/29,000 (64.7) (11,200) (2.45) J 1+ ( 2 12) ) (84.5)
= 4400 in.-kips = 367 ft-kips
Alternatively, from LRFDM Table 5-5, for a W21%68 of Grade 50 steel and L, = 20 ft,
P,M,° = 332 frkips, resulting in M,,° = 369 fi-kips. (Ans.)
foam = (369%12)/140= 31.6ksi < F, = 40 ksi as assumed.
HSS 20%x4xY%,
Nominal wall thickness = %2 in. ; Design thickness = 0.465 in.
A= 2004 - 19.07(3.07) = 2L.lin?
I = L (200)@.00y7 - L (19.1)(3.07)* = 60.7 in?
Y 12 12
262 b 2(19.5)7 (3.54)?

J = = = 192 in*
b, h 195 | 3.54
ot

o 0465  0.465

0
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Alternatively, from LRFDM Table 1-11, for a HSS 20x4x}5 :
4 = 209in% I, = 587 in.*
S. = 83.8in’; J = 195in.*

Use tabular values.

For a torsionally simply supported beam having a rectangular tube section

o T L
M _ = —EI GJ = 29,000 (58.7) (11,200) (195
v = T, 30 (12, V22000 (58.7) (I1.200) (195)
= 25,200 in.-kips = 2100 ft-kips (Ans.)
25,200 . :
= 2 = 301 ksi >> F, = 50 ksi
T 83.8 7
Remarks
1. By using approximately the same amount of material in a more efficient fashion, (i.e., an

I-shape versus a solid rectangle), the beam’s moment carrying capacity is increased more
than fivefold, although its collapse is still governed by elastic lateral buckling. This
increase stems entirely from the increase in /, (due to the presence of the flange) since the
value of J is actually decreased (because the component plates are thinner), and warping
effects are quite small.

2. Also, by more efficiently using about the same amount of material in the rectangular HSS
as that in the W-shape, the beam’s moment capacity is further increased. This increase is

primarily due to the increase in J (for a closed section as compared to an open section).

EXAMPLE W10.3.2 Channel as Beam

A C10%20 channel of A36 steel is used as a simply supported, uniformly loaded beam. The span
length is 20 ft and there is lateral support at the ends and midspan only. If the ratio of live load to
dead load is 2.0, determine the service dead load and live load capabilities.

Figure WX10.3.2
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Solution

a. Data

From LRFDM Table 1-5: C-Shapes Dimensions and Properties, for a C10x20:

A = 5.87in% Z, = 194in’; S, = 158in.’?
bf = 2.741in.; L = 0.436 1n.; t, = 0379in.
I, = 2.80int r, = 0.690in,; T = 8.0in.

Also, from LRFDM Table 1-29: C-Shapes Flexural-Torsional Properties, for a C10x20:

J = 0.368in.% C, = 569in.!

W

b. Limit state of plate local buckling

For A36 steel, F, = 36 ksi:

A, = 038 E _ g3g [22000 _ 443
n F, 36

v o= 376 | £ - 376 [ 220 - g7
P Fy 36
For the C10x20 channel section
b
A‘f = ._f = Ei = 6_28; A’w = i ~ 1 = ﬂ = 21_1
t 0.436 £, t, 0.379

As A< A, and 4, < A,,, the section is compact and plate local buckling will not control
the strength of the shape.
c. Limit state of lateral buckling
F,~ F,= 36- 10 = 26.0ksi
oM, = @2 F, = 090(194)(36) = 629in-kips = 52.4 ft-kips

G, M, = ¢,S.(F, -~ F) = 090(15.8)(26.0) = 370 in-kips = 30.8 fi-kips

L = 1767 - 1.76(0.69) .M _ 345in - 2.87 fi
P y 36
y

1| ey
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r, X
L = —2"1 1+ 1+ X,(F - F)
r (Fy _ Fr) J ‘/ 2( y r)
where
x - & EGJ4 _ m_|29000(11200)(0.368)(5.87) _ 3794 1
S, 2 15.8 2
c (s, 2
X, = 4-w| x| - 2069) 1.8 - 0.001195
I\ GJ 2.80 | (11,200)(0.368 )

Alternatively, the values of X, and X, can be read from the LRFDM Table 1-29: C-

Shapes Flexural-Torsional Properties, as 3720 and 1190x107°, respectively.

0.690 (3720) /;™

= J1 + 0001190 (26.0)2 = 151 in. = 126 ft
26.0

Alternatively, for the C10x20 with F, = 36 ksi, the value of L, L,, ¢, M,,, and $,M,,
can be obtained from LRFDM Table 5-9: C-Shapes - Maximum Total Factored
Uniformly Distributed Load ( 2.87 ft, 12.6 ft, 52.4 ft-kips, and 30.8 fi-kips,
respectively).

As,(L,= 2.87ft) < (L,= 10ft) < (L,= 12.6 ft), the design bending strength for the

segment L, under uniform moment is obtained as:
(d)bMpx B ¢b Mnc)
L - L)

My = &M, - (L, - L,)

(524 - 308) g
(12.6 - 2.87)

= 524 - - 2.87) = 36.6 ft-kips

Alternatively, the design moment for a C10x20 beam, for L, = 10 ft, C, = 1.0 and F, = 50

ksi, can be read from Beam Design Plots for C-shapes (LRFDM Table 5-11) as
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36.8 ft-kips.
For a simply supported beam with lateral supports at the ends and at midspan, under
uniformly distributed load, C, = 1.30 from Fig. 10.4.1, or from LRFDM Table 5-1.
The design strength of the given beam segment is:
M, = min[C,M°;; $M,] = min[1.3(36.6); 52.4] = 47.6 ft-kips

If g, is the factored distributed load:
LZ
9. - 476 - q, - 476 (8)
202

As the ratio of live load to dead load is 2.0, we can write:

= 0.952 kiIf

12D+ 1.6L = 12D+ 1.6(2D) = ¢, = 0.952

L~ D= 0216kKIf - L = 0216(2) = 0432KkIf (Ans.)

Ww10.3.3 Singly Symmetric I-Shapes

For doubly symmetric I-shapes considered in Sections W10.1 and W10.2, the shear center
coincides with the center of gravity. For singly symmetric beams, such as unequal flanged I-s,
the shear center S and the centroid G do not coincide. When such a singly symmetric I-beam
loaded in its plane of symmetry twists during lateral buckling, the non-coincidence of § and G
results in normal stresses at a section exerting a torque about the shear center. This torque may be

shown to be [Galambos, 1968]:
M, = K& = [jAprdA]q)' - M.’ (W10.3.14)

where fis the normal bending stress at any fiber of the cross section located at a distance p from

the shear center S; f3, is the monosymmetry coefficient of the cross section; M, is the bending
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moment associated with stress, /7 and M, is the resulting torque.

In a doubly symmetric beam such as a I-shape, the destabilizing torque developed by the
compressive bending stresses is exactly balanced by the restoring torque due to the tensile
bending stresses, and P, equals zero. In a singly symmetric beam, on the other hand, there is an
imbalance between these two torque components that is dominated by the stresses in the smaller
flange (which will always be the flange farthest from the shear center). Thus, when the smaller
flange is in compression there is a decrease in the effective torsional rigidity ( My is negative),
while the reverse is true ( M, is positive) when the smaller flange is in tension. As a result, the
resistance to lateral buckling is increased when the larger flange is in compression, and decreased

when the smaller flange is in compression.

Lateral buckling of singly symmetric I-beams has been studied by Anderson and Trahair [1972],
Kitpornchai and Wong-Chung [1987], Kitipornchai et al. [1986], Nethercot [1973], Wang and

Kitipornchai [1986].

The action of the torque M, can be thought of as changing the effective torsional rigidity of the
section from GJ to (GJ+ M, f3,). For a singly symmetric I-beam under uniform moment A°, the

differential Egs. 10.2.4 therefore become:

ELv’+ M =0 (W10.3.15a)
ELu”+ M@ = 0 (W10.3.156)
EC, ¢ - (GJ+ K)p' + M°w = 0 (W10.3.15¢)

[#

The first two of these equations are identical with Egs. 10.2.4a and b. Note that, f = M and
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pl=(x-x,)° + (y -y,)°, where x, and y, are the coordinates of the shear center (with
respect to the centroid). If we limit our discussion to shapes which exhibit symmetry about the

plane of the web, p° = x> + (¥ -¥,)°.

An expression for K may now be obtained from Eq. W10.3.14 as:

MO
1

x

= y{(x2 +y?) - 2yy, yf}dA = M°B, (W10.3.16)

The general expression for the monosymmetry coefficient £, may be written as

B, = ILJ(JC2 + y)ydd

X

- 2y (W10.3.17)

where integration is over the entire cross-sectional area A. Negative values for y, result when the
larger flange is in compression (for these sections the shear center lies between the centroid and
compression flange). The value of B, = 0 for a doubly symmetric shape, such as an I-shape. An
explicit formula for 5, for a general I-shaped singly symmetric beams is given by Kitipornchai

and Trahair [1980] as:

2

I, I

B, = 09AR[ 22X -1[11-|= (W10.3.18)

I I
y X

where # is the distance between the centers of areas of the two flanges, /,. is the minor axis

moment of inertia of the compression flange, and J, is the minor axis moment of inertia of the

whole cross section.
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Equation W10.3.15¢ may be rewritten as:

EC,¢"" - (GJ+MPygd’' + M°uw =0 (W10.3.19)

The effect of monosymmetry is to cause the beam’s effective torsional rigidity to be increased
when the larger flange is in compression or decreased when the smaller flange is in compression
(B, is positive for the former situation and negative for the latter). The more critical loading case
will therefore occur when the smaller flange is in compression. Because the neutral axis will be

farther away from the smaller flange, it is also the flange with the greater stress.

For a singly symmetric I-shape, we have:

I 1
C, = hz—ycl—y—’ (W10.3.20a)
¥y

where [, is the minor axis moment of inertia of the tension flange. Also, the torsional constant J,

of a singly symmeiric I-section may be calculated from:

Jo= Lo Y L (W10.3.206)
3 3 3
Proceeding as in Section 10.2.1, we obtain (W10.3.21)
Brm (£

cr

2
B, n | EI a2 EC
+ L 7y + 1 + = v
2 L\NGJ 1L? GJ

When the moment gradient factor C, and effective length factors for the unbraced length L, are

M° = T EIGJ
LV 2 L\ GJ

included, we obtain the general solution for the critical moment of a singly symmetric beam as
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[Galambos, 1968]: (W10.3.22)
Ely B.{ = Ely 2 n2 EC,
—L + = L + {1 +
GJ 2 KyLb GJ (Ksz)2 GJ

By letting K, = K, = K,, the above equation can be written as [Trahair, 1977]:

T Bx T
M, =C,—JEILGI| 2| —
o TPRL VY J{(Z](Kyl,

n JELGJ
g Cb—y—{Bl v Bl + 1+ BJ (W10.3.23)

M =
KbLb
where
El
B, = L (W10.3.24)
2 K,L,\ GJ
2 EC,
B, = (W10.3.25)
(K,L,)* GJ

by letting K, = 1 and substituting £ = 29,000 ksi, G = 11,200 ksi, we obtain the following

approximate relations for the lateral buckling moment of singly symmetric I-beams:

M, - C 57l000 ‘/IyJ[Bl + B+ 1+ BJ (W10.3.26)
b

where
I, h |1
B, = 225[2| | - 1|2, |2 (W10.3.27)
I L\ J
y
I.\1 B2
By= 251 - 2|22 (W10.3.28)
)7L,
y
I I
C, = 1.0 when -2 < 0.1 and 2> 09
Iy y
125 M .
= max otherwise (W10.3.29)

25M_ + 3M, + 4M, +3M,
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W10.34 Tees and Double Angles as Beams
A T-section beam loaded in the plane of its web (moment about the x-axis) will not exhibit
lateral instability if r, is less than #, for the section. A significant number of rolled steel tees are
in this category. However, when a tee beam is bent in the plane of its web (stem) and r, >r,, the
limit state of lateral-torsional buckling must be considered in design. Lateral buckling strength
of singly symmetric T-beams has been studied by Galambos [1968], Kitipornchai and Trahair
[1980] and Ellifritt et al. [1993]. The relations derived for a singly symmetric [-shape for
determining the lateral buckling moment are also valid for a tee-shaped section or a double angle
section. However, for these latter sections, C,, = 0 and consequently B, = 0 from Eq. W10.3.25.
Also, I, =1, if the flange is in compression and 7, = 0 if the stem is in compression.
Consequently, from Eq. W10.3.18 we obtain:

B = +0.9h if the flange is in compression

- 0.94 if the stem is in compression (W10.3.30)

1 1
B - 23 |2 - s34 |2 (W10.3.31)
L, J 7 L, \] 7

57,000 [T J ;
- s [31 1 Bl] (W10.3.32)

b

resulting in:

cr

Equation W10.3.32 is Eq. F1-15 of the LRFDS into which the values of E (= 29,000 ksi) and G
(= 11,200 ksi) have been substituted. The plus sign in the expression (Eq. W10.3.25) for B,
applies when the flange is in compression and the minus sign applies when the stem is in
compression. It should be noted that the lateral buckling strength of a tee with the stem in

compression is only about one-fourth of the capacity when the stem is in tension. The expression



W10-35
for C, used for I-shaped beams (Eq. 10.3.29) is unconservative for tee beams when the stem is in
compression. Also, when tee beams are bent in double curvature, the portion with the stem in
compression may control the lateral- torsional buckling strength even though these moments may
be smaller relative to those in the other portions of the unbraced length. Since the buckling
strength is sensitive to the moment diagram, the LRFD Specification uses a conservative value of
C, =1 for tee sections. If the tip of the stem is in compression anywhere along the unbraced
length, use of the negative value for B, is recommended. Finally, in situations where the stem is
intended to be in tension, end connection details should be designed to minimize any end

restraining moments which might cause the stem to experience compression.

EXAMPLE W10.3.3 Tee Shape Used as Beam
A WT10.5%x22 of A36 steel was used as a simply supported, uniformly loaded beam. The span
length is 20 ft and there is lateral support at the ends and midspan only. If the ratio of live load to
dead load is 2.0, determine the service dead load and live load capabilities. Consider separately
the cases when the flange and then the stem are in compression.
Figure WX10.3.3

Solution
a. Data

From the LRFDM Table 1-8: WT-Shapes Properties and Dimensions, we have fora WT

10.5%22:

A4 = 649in3 S, = 9.68in.’; y = 2.98in.

d = 10.31n; t, = 0.3501n.

W
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b, = 6.50in,; te = 0.450in.
I, = 71..1in% r., = 3.3lin; Z. = 18.8in’
I, = 103in% r, = 126in.
So
S = o393 s, = L - 971 a3
g 2.98 (10.3 - 2.98)

b
A= L= 7225 A, = - 268
t

From the LRFDM Table 1-32: WT-Shapes Flexural-Torsional Properties, we have for a

WT10.5%22: J = 0.383in.* C. = 1.40in°

w

Flange in compression (Fig. WX10.3.35)

A, = 038 E _ g3 [29000 _ 148
F, 36

As the web is in tension and as (4,= 7.22) < (4,=10.8), the section is compact for this

orientation of the section.
I - 1767 £ _ 1.76 (1.26) | 29,000 - 595 f
7 ¥ Fy 12 36

) _ 18.8(36) _ i
M, = Z,F, = =S50 = 564 fi-kips

M, = min[S, g (F, ~ F); Sigem£,] = min[23.9(36 - 10); 9.71(36)]
= min[621.4; 349.6] = 349.6in.-kips = 29.1 fi-kips
Note that we assumed that the flange tips contains a residual compressive stress of F, and

that there will be no significant residual stress at the tip of the web.
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¢b M, )23

¢b M rx

0.90 (56.4) 50.8 ft-kips

It

0.90 (29.1) = 26.2 fi-kips

W10-37

We note that since 7, > r,, the limit state of lateral-torsional buckling must be considered.

Thus, we will calculate the limiting value of L, = L, at which the elastic lateral buckling

moment, M, equals A,. We have:

with

I
B - +239 |2
L\ J

where we have omitted the subscript as given in Eq. W10.3.31 since T-sections do not

warp, and thus C, and consequently B,, as given in Eq. W10.3.25 are zero. For the WT

10.5%22 under consideration, we obtain, with L, expressed in units of feet:

L 23(103) | 103 _ 102
12L, \ 0383 L,

B =

The positive sign is to be used when the flange is in compression. Also, with M.,

expressed in ft-kips, we obtain:

M - 000 (03)(11200)(0383) [p . 5 7]
e 12(12) L,

7809 {102 (10.2)2
+ 1 + | —=

Ly

ForL, = L, M, equals M, . We therefore have:
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= 29.1 - L = 356 ft

3

L L L

r r r

780.9 | 10.2 (10.2}2
L + 1 + | ——

As mentioned earlier, since the buckling strength of T-beams is sensitive to the moment
diagram, C, has been conservatively taken as 1.0 in LRFDS Eq. F1-15. Also, we note
that LRFDS Secton F1.2¢ limits the design bending strength of T-sections — in which the
stem is in tension — to @, (1.5 M).

M; = min[M°; @, (1.5 M)]

Since L, <L,<L,,

(cbepx B d)bAer)
(L, - L,)

My = oM, - Ly - L,)

(50.8 - 262) (104 -
(35.6 - 5.25)

= 508 -

525) = 46.9 ft-kips

M, = min[46.9; 0.90(1.5)(29.1)] = 39.3 ft-kips
If g, is the factored uniformly distributed load on the beam, we have
g, L* g,(20.0)

LL- M, - ST = 93 - g, - OT86KE

As the live load to dead load ratio is 2.0, we can write
1.2D+16L = 12D +1.6(12D) = g, = 0.786

-~ D = 0179kIf and L = 0358klf (Ans.)

Stem in compression (Fig. WX10.3.3¢)

When the stem of the T-section is in compression, such as could occur under suction
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loads due to wind, LRFD Formula F1-15 used in Case I above is still valid. However, the
parameter B must be assigned a negative value. Also, the values of M, and M, have to be
checked; remember that we have assumed no residual stress to exist at the tip of the stem.
Thus we have:

M, = min[S F;

¥ x tlange

S sem (F, -0)] = min [23.9(36); 9.71(36)]

= min[842.4; 349.6] = 349.6in-kips = 29.1 ft-kips
Similarly, we find that M, = 29.1 ft-kips. Thus we see that our assumption of zero
residual stress at the tip of the stem results in no change to the values for M, or M,. Thus,

we have:

2
a, = 18090 102y F10215 594 fokips
L, L, L,

L = 13.1ft

(475 262) (04

M} = 475 -
(13.1 - 5.25)

5.25) = 34.6 ft-kips
M, = min[M,; ¢,(1.0) M,]
We note that in the above expression for M, that LRFDS Section F1-2¢ limits the design

strength of T-sections — in which the stem is in compression — to ¢,(1.0) M,.

M, = min[34.6; 0.9(1.0)(29.1)] = min[34.6; 26.2] = 26.2 ft-kips
If g, is the factored uniformly distributed load on the beam, we have
L? 20.0)?
W oM, - .00 s L 4 - 0524 kif
8 8 “

As the live load to dead load ratio is 2.0, we can write

12D+16L = 12D+1.6(2D) = ¢q, = 0.524
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- D = 0.119klf, and L = 0.238klIf (Ans.)
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Table W10.1.1 Effective length factors (K, and K;) for Lateral-Torsional
Buckling TO COME SHORTLY.



Table W10.1.2 Values of Cp and C;in Eq. W10.1.18 TO COME SHORTLY.



l Rotation in the Y-Z plane
Y permitted at both ends

l Rotation in the X-Z plane and warping
X prevented at both ends
(u=u'=0; $=¢=0)

Figure W10.1.1: Laterally and torsionally fixed I-beam
under uniform moment.
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Figure W10.1.2: Idealized end restraint conditions for

lateral buckling of beams.
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Figure W10.1.3: Lateral buckling of a simple beam with
lateral support at mid-span.
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Figure W10.1.4: Lateral buckling of a simple beam under
central concentrated load.
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Figure W10.1.5: Lateral buckling of 2a beam under non-
uniform moment.
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Figure W10.1.6: Laterally and vertically continuous beams.
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Figure W10.1.7: Effect of position of load on lateral buckling.
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Figure W10.1.8: Examples of top and bottom flange
loading of beams.
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Figure W10.2.1: Lateral buckling of a cantilever beam.



Figure W10.2.2 Effective lengths KL, for cantilever beams TO COME
SHORTLY.
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