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WEB CHAPTER W12

Joints and Connecting Elements

Wwi2.1 Ultimate Strength Method for Bolted Joints in Eccentric Shear [ Loading

CaseP P M, |

The Ultimate Strength Method utilizes the non-linear load-deformation relationship of a single

bolt in shear to predict the strength of an eccentrically loaded bolt group.

Bearing-Type Joints

Figure W12.1.1: Ultimate strength method for a bolted joint in eccentric

shear.

Let us consider a rigid bracket plate bolted to the flange of a heavy column as shown in Fig.
W12.1.1. The bolt group is composed of N bolts of the same size, with its center of gravity
located at G (5 bolts are shown in Fig. W12.1.1). When this bolt group is loaded in eccentric
shear by a load P in the plane of the joint, it will tend to cause a relative rotation and translation
of the connected elements. This translation and rotation of the rigid plate is equivalent to that of

pure rotation about a single point, /, called the instantaneous center of rotation, also located in
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the plane of the joint. The instantaneous center of rotation will be a point on the straight line
drawn through the center of gravity of the bolt group, perpendicular to the line of action of the
applied load and situated, with respect to centroid, on the opposite side of the applied load. Its
location is dependent upon the geometry of the bolt group, the eccentricity of the load, and the
load-deformation characteristics of the bolts in shear. Let e be the eccentricity of the load
(perpendicular distance from G to the line of action of P) and r, be the distance from the
instantaneous center of rotation, /, to the center of gravity of the bolt group, G. For convenience,
the origin of the right handed, orthogonal coordinate system is placed at the instantaneous center
I with the x- and y-axes parallel to the principal axes of the bolt group and z axis normal to the
plane of the bolt group. Let (x,, y,) be the coordinates of the center of gravity G. The
deformation A, and hence the force B;, on any bolt j, are assumed to be directed along a line

perpendicular to the radius vector connecting / to the bolt location ( x;, y;). The radius of rotation

for this bolt is given by:
2
rj = xj + yj2 (le.ll)

Let « and 6 be the inclinations of the radius vectors to the center of gravity G and the bolt j,

respectively, measured counterclockwise from the x-axis. Then from Fig. Wi2.1.1:

(W12.1.2)
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Note that & is also the inclination of the load with the vertical. As the connection plates are
assumed to be perfectly rigid, the rotation is due solely to shear deformations of the bolts. For
the bearing-type joint considered here, friction is neglected, so the deformation of each bolt is
proportional to its distance from the instantaneous center. Hence, the maximum bolt deformation
A® occurs at the bolt which is farthest from I. The deformation A, of the jth bolt located at a

distance #; is therefore given by:

A, = LA (W12.1.3)

The shear force B; on the jth bolt is related to its deformation A, according to its load-deformation
relationship. The force B, is assumed to act normal to the radius vector connecting / to the
center of the jth bolt and acts in the same sense as the torsional moment M,. The approach
presented below, developed by Crawford and Kulak [1971], uses the experimentally obtained
load-deformation response of a single bolt in direct shear (see Fig. W6.3.2 in Web Section W6.3)
to predict the ultimate strength of the bolt group in eccentric shear. As the load P is increased
from zero, all the bolts are loaded in the elastic domain, until the critical (i.e., outermost) bolt
begins to yield in shear. This does not signify failure of the joint, however, as the load P can be
increased further. The critical bolt now behaves inelasticaily (lower bolt stiffness) and any
additional increase in load is resisted by the less heavily loaded bolts closer to . The ultimate
strength of the bolt group is assumed to be reached when the deformation of the bolt farthest
from the center of rotation (i.e., the critical bolt) reaches the experimentally obtained ultimate

deformation A ,,. Thus:
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P= P, when A'= A_, and B = B, (W12.1.4)
where B is the shear force in the critical bolt, B,, is the ultimate shear strength of the bolt, A'is
the deformation of the critical bolt, and A___ is the ultimate deformation as obtained from
experiments on a single bolt in shear. From the known load-deformation relationship of a single

bolt in shear, given by Eq. W6.3.1, the shear force on bolt j can be expressed as:

B, = B~ "] (W12.1.5)
with
F. r.
A = LA = LA (W12.1.6)
r* r*

Here, i and A are regression coefficients and e is the base of the natural logarithms (= 2.718 )
Thus, the load applied to a particular bolt is dependent on its location with respect to the
instantaneous center of rotation, /. The experimental work relating to the development of Eq.
W12.1.5 used % in. dia. A325 bolts in double shear in a bearing-type connection, and obtained
values of = 10, A= 0.55 and A, = 0.34 in. at failure. These values are used in calculations

for all bolt types and sizes.

Let P, and P,, be the x and y components of the applied load P,, and B,, and B,, be the x and y

components of the shear force on the j th bolt, respectively. From Fig. W12.1.1:

= P sina; Puy P, cosa

Pux
, (W12.1.7)
Bjx = B sin Bj; Bjy

1l

Bj cos Bj
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In order that the connection remains in equilibrium under load, the following three equations of

statics must be satisfied:

N

(F) =0 - B, = P, (W12.1.8a)
Jj=1
N

Y(F),=0 -~ YB, = P, (W12.1.8b)
Jj=1
N

XMy =0 ~ YBr, = P,(r,+e) (W12.1.8¢)
j=1

The first (second) relation states that the sum of the horizontal (vertical) components of the bolt
forces equals the horizontal (vertical) component of the applied load. The third relation equates
the moment of the bolt forces, with respect to the instantaneous center of rotation, to the moment
produced by the applied load about the same point. From Eqs. W12.1.2, 7 and 8, it is seen that,
x,, y,, and P, are the three unknowns. As mentioned earlier, a location for instantaneous center
of rotation is assumed (i.e., values for x,, y,). Solution of Eqs. W12.1.84, b and ¢ will then resuit
in three values of P,. If these three values are not identical, a new location of the instantaneous
center of rotation must be chosen and the procedure repeated. When values for (x,, y,) are
identified such that the three equilibrium equations are satisfied simultaneously, the value of P
that satisfies this set is the ultimate load, P,, of that joint. This is the load for which the critical

bolt undergoes a deformation of 0.34 in.
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In the development of the relations (W12.1.8), it is assumned that constraints on the members or
the connection do not force rotation of the bracket about some point other than the theoretical
one. Most practical connections comply with these conditions. Also, the term instantaneous
center of rotation is used because, in general, the center of rotation is at a different location for
each value of the applied load. With large load eccentricities the distance r, becomes small,
while with relatively small eccentricities, r, is large. For pure (or direct} shear the center would

be at an infinite distance.

Figure W12.1.2: Symmetric bolt group under eccentric vertical load.

When the bolt group has an axis of symmetry and when the load is normal to that axis of
symmetry, the instantaneous center must li¢ on that axis. Thus, for the joint and loading shown
in Fig. W12.1.2, the instantaneous center lies on the x axis (v, = 0, and x, = r,). The first

condition (Eq. W12.1.84) is automatically satisfied from the symmetry of the bolt group.

Slip-Critical Joints

The nominal slip resistance B, of a single bolt in a slip-critical joint, given by Eq. W6.5.2, is the
product of the slip coefficient of the faying surface, u ; the number of faying surfaces, N,; and the
clamping force provided by the pretensien in the bolt, 7,. These quantities are independent of the
location of a given bolt within the joint. So, unlike the situation in a bearing-type connection, it
is reasonable to assume that, at the onset of slip of the joint, each fastener in a slip-critical joint is

subjected to the same load, B, acting normal to the radius of rotation [Kulak, 1975]. That is:
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B = B, (W12.1.9)

N

B, Esinﬁj] = P sino (W12.1.104)
j=1
N

B, | Xecos6 | = P cosa (W12.1.108)
j=1
N

By | Zr| = Pir,+ e,) (W12.1.10c)
j=1

where P, is the service load on the joint The solution to the problem is achieved when an

assumed value for (x,, y,) is found that results in the same value of P, by the three equations.

LRFDM Design Tables
From Eqs. W12.1.5 to 8, it follows that the ultimate load P, is proportional to the strength of the

bolt B,. Hence, the design strength of a bolt group in eccentric shear can be written in the form:

P, = CB, (W12.1.11)

where B, = design strength of a single bolt

C = non-dimensional coefficient
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The value of B, is determined from the limit states of bolt shear strength, bearing strength at bolt

holes, and slip resistance (if the joint is slip-critical).

Parametric studies were made based upon the solution of the instantaneous center problem for
several widely used fastener patterns and load eccentricity conditions. The parameters chosen
were: number of bolts in a vertical row, n; bolt spacing in a vertical row, s; number of vertical
rows; and gages of vertical rows. Each fastener combination was analyzed for loads inclined at
0°, 15°, 30°, 45°, 60° and 75° with the vertical axis and for different intercepts e, of the load line
on the x axis. The results are given as LRFDM Tables 7-17 to 7-24, Coefficients for
Eccentrically Loaded Bolt Groups. The coefficients tabulated were generated using values of y =
10.0, A= 0.55 and A, = 0.34 in., experimentally obtained for % in. dia. A325 bolts in double
shear. A convergence criterion of 1% was employed for the tabulated iterative solutions. It was
observed that the coefficients, C, did not vary greatly for various bolt characteristics such as bolt
material, bolt diameter and type of joint. So, it has become customary to tabulate one set of
coefficients and apply it to all cases of eccentrically loaded joints. Thus, the non-dimensional
coefficients C can safely be used with any bolt diameter. They are slightly conservative when
used with A490 bolts. Linear interpolation within a given table 1t?etwe:en adjacent values of e, 1s
permitted. Design strengths given by these tables lead to a factor of safety equivalent to that for
bolts in joints less than 50 in. long, subjected to shear produced by a concentric load on either
bearing-type or slip-critical joints. Straight line interpolation between C values for different load
inclinations @ may be highly unconservative. Therefore it is recommended to use for design, the

C values for the next lower angle. Although the procedure used to develop the tables is based on
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connections which were expected to slip under load (i.e., bearing type connections), both load
tests and analytical studies by Kulak [1975] indicated that the procedure may be conservatively

extended to slip-critical connections.

Multiplying the value of C for a given fastener pattern by the design strength of a single bolt, B,,
gives the design strength of the connection, P,. Or, if the factored load P, is given, dividing it by
B, gives the minimum coefficient C . A bolt group can then be selected for which the tabulated

coefficient C is of that magnitude or greater.

EXAMPLE WI12.1.1 Ultimate Strength of a Bolted Joint in Eccentric Shear
Determine the factored load P, that can be carried by the % in. thick A36 steel bracket plate
shown in Fig. WX12.1.1. The % in. dia. bolts are of A325-X type. Use the ultimate strength
method.

Figure WX12.1.1

Solution
Number of bolts, N = 5
For the first trial, let », =x, = 3 in. The corresponding values of the coordinates x;, y;,
and r, for the five bolts are given in the table below. The ultimate strength of the bolted
joint corresponds to the load for which the critical bolt (farthest bolt from the

instantaneous center) reaches the deformation A" = A, = 0.34in. The deformations A,
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of the four other bolts are obtained from Eq. W12.1.6. From LRFDM Table 7-10, the

design shear strength of a % in. dia. A325-X type bolt in single shear is obtained as 19.9

kips. The shear force in bolt j is given by Eq. W12.1.5 as

199[1 - 104"

Bj =
X Yi T A, B, B, r; B;
in. in. in. in. kips kips | in.-kips
1 3.0 6.0 6.71 0.340 19.5 8.73 131
2 3.0 3.0 4.24 0.215 18.6 13.2 78.8
3 3.0 0.0 3.00 0.152 17.4 17.4 52.1
4 3.0 -3.0 4.24 0.215 18.6 13.2 78.8
5 3.0 -6.0 6.71 0.340 19.5 8.73 131
Y| 63 472
From Eq. W12.1.80: P, = XB, = 613 kips
YB.r
From Eq. W12.1.8¢: P, = SREAE 472 = 31.5 kips
r+ e (3.00 + 12.0)

As the two values calculated for P, are not identical, further trials are necessary. For the

next trial, let r, = 1.0 1n.

% Y 7 A, B B, r B

in. in. in. in. kips kips | in.-kips
1 1.0 6.0 6.08 0.340 19.5 3.21 119
2 1.0 3.0 3.16 0.177 18.0 5.68 56.8
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.0 0.0 1.00 0.056 12.5 12.5 12.5
1.0 3.0 3.16 0.177 18.0 5.68 56.8
1.0 -6.0 6.08 0.340 19.5 3.21 119

Y| 303 364

) 364

P, = = + P = 303 kips
“3(1.00 + 12.0) uz P

A third trial with 7, = 0.9 in. gives Y.B, = 28.1 kips and } B, ,= 360 in.-kips, resulting

n;
) 360 .
P, = 281kips; P,= —— = 279kips
u2 P 3 129 p

As P, = P, (within 0.5%), P, is taken as 28.0 kips, which corresponds closely with the

value obtained from the LRFDM Tables (see Example 12.4.2).

Bolted Joints in Direct Tension [Loading Case P,]

W12.2.1 Behavior Including Prying Action

Figure W12.2.1: T-section hanger connection.
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Prying is a phenomenon whereby the deformation of a connection element under a tensile force
increases the tensile force in the bolt over and above that due to the direct tensile force alone.
Prying phenomenon occurs in bolted joints only and for tensile bolt forces only. An example of a
bolt group under direct (concentric) tension is the T-stub hanger connection shown in Fig.
W12.2.1a and b, with a single line of bolts parallel and on each side of the web. The applied
load is concentric, and assuming perfect symmetry, the bolts are equally loaded. LRFDS Section
J3.1 stipulates that A490 bolts in connections subjected to tension loads (such as hanger
connections) shall be tightened to a bolt tension not less than that given in LRFDS Table J3.1,

regardless of whether the connection is slip-critical or not.

Initially, any bolt pretension is balanced by contact (compressive) stresses on the upper face of
the T-stub flange. The precise distribution of these stresses is unknown but they will generally be
localized, and are assumed to be symmetrically distributed around the bolts. Application of the
external load elongates the bolts and starts to relieve the contact stresses as in the axially loaded,
single bolt model discussed in Section W6.6. The situation is different, however, in the case of
T-stub hangers in that the load, though central to the entire connection, is applied eccentrically

with respect to each bolt line. This eccentricity produces flexure in the T-stub flange.

If the flange of the T-stub is thick and relatively stiff, the flexural deformations of the flange will
be small compared to the axial deformation of the bolts, and the compressive contact stresses
will remain symmetrically distributed about the bolts. As the external load is increased, the

contact stresses will remain concentric with respect to the bolts, though they will gradually
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decrease to zero as the load approaches the sum of the pretension forces in the bolts. Failure of
such stiff hanger connections would be due to tensile failure of the bolts, occurring when the
external load reached the sum of the ultimate tensile strengths of the bolts. The idealized model
discussed in Section W6.6 represents reasonably well the behavior of T-hanger connections

having very stiff flanges.

However, if the flange is more flexible, loads applied to the hanger will cause significant bending
of the flange. As bending occurs, the contact stresses will lose their symmetry with respect to the
bolts, and these zones of contact stresses will begin to migrate out towards the flange tips. As the
external load is increased further, the T-stub will begin to separate (at bolt lines) from the support
beam due to flexural deformations, and eventually the contact stresses will be more or less
concentrated at the flange tips. This is shown schematically in Fig. W12.2.1¢c where 0, the
prying force, represents the summation of these stresses. Failure of flexible hanger connections
may occur in two ways. One failure mode could occur, as with the stiff flange case, due to
tensile failure of the bolts. However, since for equilibrium the total force in the bolts must equal
the applied load plus any prying forces, the useful capacity of the bolts is now decreased from
that of the stiff flange case by the amount of prying which occurs. In recognition of this, LRFDS
Section J3.6 requires that prying action be included in the computation of tensile loads applied to
bolts. The second failure mode possible with flexible-flange T-hanger connection is yielding of
the flange in bending. That is, failure is assumed to occur when a plastic hinge forms at the face

of the stem.
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Let us consider the hanger connection shown in Fig. W12.2.1a. Let b be the distance from the
bolt center line (gage line) to the face of the T-stem, @ the distance from the bolt center line to the
edge of the T-flange, d the diameter of the bolt, d, the diameter of the bolt hole, p the length of
the flange parallel to the stem and tributary to each bolt, and ¢ the flange thickness. For now, let

us assume that the flange of the support beam is perfectly rigid.

Let & represent the ratio of the net area through a longitudinal section of the flange at the bolt line

to the gross area through a longitudinal section at the face of the web. That is,

5 - w - (1» fﬁ] (W12.2.1)
p

Let T represent the externally applied load per bolt, and Q the prying force per bolt which 1s
assumed to act at the edge of the T-flange. Tests have shown this assumption to be reasonable as
long as the edge distance a is within certain limits. The tensile load in the bolt, including prying
action, is B. The flange of the T-section is assumed to act as an overhanging beam supported at
the two bolt lines, and loaded at mid-span by the web force 2T and at each end by the force O, as
shown in Fig. W12.2.1¢. The bending moment at the interface between the web and the flange
over a length p is denoted as M,. The moment at the bolt line over the same length is denoted as

M,. Normally the moment at the web face will be greater than the moment at bolt line. Let

M
hior S (W12.2.2a)
M,
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Let us represent the ratio between the moment per unit length at the bolt line to the moment per

unit length at the web face by @. That is

M,/(p - d,) M,/M

£ (W12.2.26)
M,p 5 5

Since from physical reasoning alone, we know that the ratio of the moment at the bolt line (M)
to the moment at the web face (M,) can never exceed the ratio of the net area at the bolt line to
the gross area at the web face, we can say that £< 0. This, in turn, permits us to state that

0z a< 10 (W12.2.2¢)
The condition &= 0 corresponds to the case of single curvature bending, i.e., no prying action,
while the condition &= 1 corresponds to double curvature bending and maximum prying action.

Considering the segment 2-3 in Fig. W12.2.1d, and summing moments at section 2 results in:

Oa - M, = 0 - M, = Qa (W12.2.3)

Next, considering the segment 1-2 in Fig. W12.2.1d, and again summing moments at section 2

results in:

M+ M,- Th = 0 (W12.2.4)

Also, equilibrium of vertical forces acting on segment 1-2 requires
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T+ Q- B=0 - T+ Q=B (W12.2.5)

Equations W12.2.3, 4, and 5 represent three equations of equilibrium. If the applied load T is
taken as a known quantity, M,, M,, O, and B arc unknowns. As we have only three equilibrium
equations and four unknowns, the problem is statically indeterminate and no elastic solution is
possible without recourse to compatibility and constitutive relationships. Alternatively limit
analysis can be used. Prying action is primarily a function of the flexural stiffnesses of the
connecting elements. For purposes of discussion, let us assume that the flexural stiffness of the
T-flange may be expressed as

cEl _  cEpt’ _ cEpt?

L 12g 12(2)(b + k)

where ¢ is some constant, and k,, is the distance from the center line of the T-stem to flange toe
of fillet. Thus, noting that the &, distance does not change, we see that the flexural stiffness of
the flange may be increased by increasing its thickness ¢ and/or decreasing b. Thus to maximize
stiffness, the dimension b should be chosen to be as small as the bolt entering and tightening

clearances will permit (see LRFDM Tables 7-3a and b).

Prying force O decreases with an increase of the flexural stiffness of the flange as well as with an
increase in the overhang, a. However, this beneficial effect due to an increase in a is limited,
because for relatively large values of a the contact zone is no longer concentrated at the flange

tips and the prying force cannot be treated as an end load. So, Struik and deBack [1969]
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recommended that end distance, o, be limited to 1.25b. Also, the maximum tributary length p

per pair of bolts should preferably not exceed the gage between the pair of bolts, g.

Figurew12.2.2: Influence of flange deformation on location of resultant bolt

force.

In deriving the above relations, the bolt force has been assumed as acting at the center line of the
bolt. However, as a result of flexural deformations of the flange, the bolt force B is acting
probably somewhere between the bolt axis and the edge of the bolt head, as suggested by Fig.
W12.2.2a. To approximate this effect and to bring the theoretical and experimental results closer
together, Struik and deBack [1969] proposed that the bolt force be assumed to act at distance &'
equal to (b - % d) from the web face (Fig. W12.2.25). The distance a’ is to be taken as equal
to (a + Y% d). Replacing b by b’ and a by a’, the Eqs. W12.2.3, W12.2.4, and W12.2.5 can be

rearranged using the Eqgs. W12.2.1 and W12.2.2 into the following three equations:

M, - T___(l ’i 5 (W12.2.6)
- , _&

B T{l — Ep} (W12.2.7)

g = T ¢ P (W12.2.8)
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These are the three basic equations for prying analysis. Here, T is the external factored tension
force applied to one bolt, Q is the prying force corresponding to one bolt, B is the total bolt force,

and M, is the bending moment at the face of tee web. In addition, we have (Fig. W12.2.2b):

I
o~
|

a < 1.25b; b' S p (W12.2.9)
If the bolt is sufficiently strong, a stage of loading will be reached at which the moment at the
web face will be M,, the plastic moment of the flange. On the other hand, it is possible that
tensile failure of the bolt occurs prior to this. Thus the two major limit states associated with
hanger connections are:

1. Formation of a plastic hinge at the section adjacent to the face of the stem.

2. Tension failure of the bolt.
These two failure modes are independent and should be considered separately. They may be

expressed as:

=
S
<

(W12.2.10a)

B < B, (W12.2.10b)

where ¢, is the resistance factor (= 0.9), B,, is the design tensile strength of the bolt, and M, is

the plastic moment of the flange plate for the tributary length of p. That is:

M = —pt’F (W12.2.11)
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The following two relations are obtained by combining Eqs. W12.2.6, W12.2.7, W12.2.8,

W12.2.10 and W12.2.11.

< —¢,pt*F, (W12.2.12)

T[1+ : p] < B, (W12.2.13)

Observe that any solution to these two inequalities is a valid solution to the prying action
problem. Let ¢ represent the flange thickness required such that no prying action occurs. For
this condition, all of the bolt capacity is available to be used in resisting the applied load. Using
Eq. W12.2.12 and setting £= 0 (since O and thus M, are zero) and 7= B= B, gives:

4B, b

it = (W12.2.14)
by P Fyy

Then, in terms of the non-dimensionalized quantities 7/ B,, and ¢ /t, the inequalities (W12.2.12)

and (W12.2.13) can be rewritten as:

2
Bl < (1+ E)(’—] - limit state of plate bending (W12.2.15)
dt ¢’
T 1+ & . ) . )
— < - bolt failure mode with prying action (W12.2.16)
B, 1+ E(1 + p)

Also
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— < 1 ~ bolt failure mode without prying action (W12.2.17)

Figure W12.2.3: Variation of bolt tension T with plate thickness ¢ for a

hanger connection.

For selected values of & and p, the family of curves labeled in Fig. W12.2.3 is obtained from the
relation (W12.2.15) with the inequality sign replaced by an equality sign. They show the
variation of bolt tension 7 as a function of hanger plate thickness ¢, for different values of the
(unknown) parameter, ¢ [Astaneh, 1985; Thornton; 1985]. Thus, curve OA describes the plate
failure mode for £= & curve OB that for a selected value of £equal to £, and curve OC that for
&= 0. Note that = & corresponds to the case where @ equals 1.0, i.e., to the case where, in
addition to the plastic hinge adjacent to the stem, a second plastic hinge with a moment equal to
OM, has also developed at the line of the bolt holes. Also, £= 0 corresponds to the case where
equals zero, i.e., to the case where there is no prying action. Points A, B, and C are obtained
from the relation (W12.2.16) with the inequality sign replaced by an equality sign, and
correspond to cases where £equals 6, £, and 0 respectively. The equation for the curve ABC

could be derived as follows:

« For a selected value of £ = £, relations (W12.2.15) and (W12.2.16) could be written as:

Tf’_ 1 toz 1+E0
7 - U&=
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« Solving

1
(1+p)

g, -

il

»  Substituting back in Eq. W12.2.13:

t 2
- |1 + 2 WwW12.2.18
B, (+p) "( ] } ( :

For £= £, the curve OBCD is a limit state function separating satisfactory and unsatisfactory
regions in 7-¢ space. Point B is the intersection of the two failure modes and corresponds to a
balanced design where theoretically the plate and the bolt have exactly the same strength. Curve
OB corresponds to plate failure. Curve BC represents bolt failure with prying action, and curve
CD represents bolt failure without prying action (i.e., = 0). It is evident from this figure that
there is no unique solution to the prying action problem. For example, if the applied tension is
given and a bolt is selected, /B, is known and any value of ¢ /t" to the right of curve OABC is a
valid solution. Similarly, if ¢ is given and a bolt selected, t /t' is known and any value of 7/B,,
from zero to curve OABCD is a valid solution. The most efficient solutions are those that lie on
curve OABCD. Points on this curve give the least required flange thickness for a given applied
tension T, or the largest allowable applied T for a given flange thickness. The procedures given

in Part 15 of the LRFDM achieve points which are on or close to curve OABC.

It should be noted that the relations presented in this section provide only approximations as to

what is really going on. The actual distribution of stress in a T-flange hanger connection is quite
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complex. For example, it was observed in tests that the maximum moment of resistance
developed at the plastic hinge immediately adjacent to the web was not limited to M, but was
actually greater due to work hardening, increasing as the value of b/t decreased [Bahia, Graham,

and Martin, 1981].

The moment diagram of Fig. W12.2.14 is obtained using elementary beam theory. This theory

assumes a span-to-depth ratio much greater than typical b/ ratios used in hanger connections,
and width-to-span ratios much less than typical p/b ratios. Because our simplified model fails to
meet these criteria, it likewise fails to account for all of the “restraining forces” at the bolt line.
Thus, hanger connections are actually capable of sustaining prying forces greater than our
discussion has implied. Another assumption used in our model is that the T-flange is bolted to a
“rigid” base. If, however, the base is the flange of a steel beam, and this beam flange is less stiff
than the flange of the T-section, the prying force should be evaluated using the dimensions and
material properties of the beam flange. The joint component which provides the least stiffness
results in the greatest prying force and governs the design of the bolts. In hanger connections
with four gage lines of bolts, the inner lines of bolts carry all the load initially. Even at ultimate

load the outer lines of bolts are not very effective.

W12.2.2 Analysis and Design of Hanger Connections
To arrive at a preliminary estimate of the flange thickness of a hanger connection (Fig. W12.2.1),

let us assume that the moment at the face of the tee stem and at the bolt centerline are equal (1.e.,
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M,=M,). Thatis = = £= 1.0. The limit state of plate bending represented by Eq.

W12.2.12, after replacing the inequality by equality and letting 5* = b, now reduces to:
no_ 1 ¢, pt*F
- 4 b p W

Or, rearranging:

TR P B °Fy (W12.2.19)
p b
where 2r, = factored tensile load on the tee hanger, kli
@, = resistance factor (=0.9)
t = thickness of tee-stub flange, in.
b = distance from the bolt line to the face of tee stem, in.
F, = yield strength of the flange material, ksi
T = applied tension per bolt, kips
P = length of flange, parallel to stem, tributary to each boli, in.

Equation W12.2.19 is the basis of LRFDM Table 15-1: Preliminary Hanger Connection
Selection Table. Here values of 2r,, are tabulated for two grades of steel (F, = 36 ksi and 50 ks1),
for values of b varying from 1 in. to 3% in., and for values of ¢ varying from 5/16 in. to 174 in.

Use of these tables will be explained later.



Analysis Procedure for Hanger Connections

The problem is to determine the capacity of a given hanger connection.
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Given: ta b Fy, By, dn
Determine: P,
1. An upper bound on the carrying capacity of the hanger connection, corresponding to the

limit state of bolt failure in tension, is
Py = nB,
2, Calculate parameters

Determine p. Check p < g

Ifa > 1.25b, seta = 1.256b.

Compute
a’=a+£; b’=b—é; p=£—; dh:d+i; d =
2 2 a’ 16
A 4B, b’
b, pF,
3. Design strength of the connection
2
Calculate, o = —1 || L| -1
6(1+ py|\ ¢
If < 0, set @= 0. Bolts control and 7, = B, - P, = nB,

If > 1.0, set @= 1. Plate thickness controlsand 7T, = B, (t/t*)2(1 + 0)

If 0 < @< 1.0, bolts and plate thickness both control and T, = B, {t/t)* (1 + )

Calculate P, = nT,
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If P, > P,the connection is adequate.

If P, < P,asection with thicker 7 and /or more (or stronger) bolts are required.
T /B,
(¢/1°)?

4. If the factored prying force Q, is required, calculate ¢ = %

Ifa< 0,set a= 0.

Q, = Bdtﬁccp(t/t*)2

Design Procedure for Hanger Connection
The problem is to determine the required flange thickness, ¢, of a hanger connection to transmit a

given factored load P,.

Given: P, F,
Find: The smallest value of # and a suitable tee shape.

1. Preliminary selection of WT
Determine the required number and size of high-strength boits. Use the design tensile
strength of the bolts such that the applied factored load tributary to each bolt
I,= — < B,
Estimate the value of b based on a given gage or the distance required for wrench
clearance for the selected bolt diameter. Select value of distance @ such that a < 1.255.

Determine p, the length of flange tributary to one bolt. p should be less than or equal to

the gage, g.

T
Next calculate the force per unit length of the tee flange, 2r,, = 2 { =
p

Enter the Preliminary Hanger Connection Selection Table (LRFDM Table 15-1) to obtain

a trial value for flange thickness, 7, , or equivalently calculate:
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trial ¢bp Fy
Choose a trial section with flange thickness, ¢ > ¢

2. Parameters

a = min[a; 1.25b]; a = a+‘—l; b' = b—‘—i; p = L
2 2 !
d 4B, b
d = d+ 1y 8=1 -2 t = a
16 p d)pry
3. Determine ¢
B
Calculate p = 1|2« 11
p| T,
IfB:> 1,seta= 1.0
Iff< lset &« = min|1.0; l—-—p’——l
5 (1 -P)
: ) 4T, b’
With @ determined, calculate leq =
b,pF, (1 + da)

Ift,, < 2, design is satisfactory.

If¢,., >l choose heavier section, use additional or stronger bolts, or change geometry
and repeat the design procedure.

Make sure that the thickness of the supporting beam flange is greater than the value of ¢

provided.

4. Prying force



Note
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Where the value of the prying force Q, is required (for fatigue design or other reasons), its

value may be calculated as follows:

If¢. > t.., the design point will not lie on curve OBC but will be to the right of it. Thus

act reg*»

the actual value of @ will be less than the value calculated above. This reduced value of

@, say «,,, can be calculated as

o = l _T_/_.Bd_l - 1]
act « 12
5 (tact /t )
If < 0,set &, , =0
Calculate, 0, = ba,, p(l‘act /t")2 B,

In applications where the prying force Q must be reduced to an insignificant amount {to

*

satisfy fatigue design requirements, for example), set &= 0 and provide, ¢ > 1

The maximum acceptable value of a for design is 1.0 as this is equivalent to double
curvature bending with plastic hinges forming at the bolt line and the face of tee stem. If
the value of @ exceeds 1.0, s set equal to 1.0 as this constitutes a limiting state. Such a
situation indicates that even when two plastic hinges have formed on each side of the
flange, the bolts are not loaded to their full tensile capacity. That is to say, the bolts are
over-designed. The required flange thickness is then determined on the basis of the
fastener load and not the tensile capacity of the bolt. The bolt tensile strength cannot be

developed because of limiting flange capacity.
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EXAMPLE W12.2.1 Analysis of a Bolted Joint in Direct Tension

A 8 in. long WT 9x30 is attached to the bottom flange of a W36x160 beam, with webs lying in
the same plane, by four ¥-in.-dia. A490 bolts. The bolts are located on a 4 in. beam gage. Both
shapes are of A572 Gr 50 steel. Determine the carrying capacity (factored tensile load) of the

hanger connection.

Figure WX12.2.1

Solution
1. Data

From Part 1 of the LRFDM, for

I
N

WT 9%30: b; = 7.56 in,; te = 0.695 in; t 0.415 in.

W

W36x160: by, = 12.0in; t, = 1.021n; t 0.650 in.

From LRFDM Table 7-14 the design tensile strength of a ¥-in.-dia. A490 bolt is
B, = 37.4kips
An upper bound on the carrying capacity of the hanger connection, corresponding to the
limit state of bolt failure in tension, is
P, = nB, = 4374 = 150kips
Gage, g = 41n.
2. Calculation of parameters
b= Y%(g-1)= %@0- 0415 = 1.79in.

> entering and tightening clearance, C, = 1% in. (LRFDM Table 7.3a) O.K.
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a= Yi(b- g = %(1.56- 40) = 1.78in,

a = min[a; 1.25b6] = min[1.78; 2.24] = 1.78 in.

1

d= 075in; d, = d~+ T = 0.813 in.

a' = a+ ‘Ei _ 178 + 0375 = 216 in.
b' = b - ‘—2’ - 179 - 0375 = 142 in.
p - %)9: 400 - g- 40  OK
d
5= 1- 2n- - 083 4797
s 4.00
4B, b
. AP ] 40374)(142) 09 in.
b, F, 0.9 (4.00)(50.0)

Thus, for plate thicknesses equal to or greater than 1.09 in. there will be no prying forces.
As the thickness of the T-flange, namely 0.695 in., is less than 1.09 in. prying forces will
develop.

Design strength of the connection

_
(1 + p)

2
1.09 -1 = LI11
0.695

Asa= 1.11 > 1.0, set &= 1.0. Plate thickness controls and

ol o] 1
t 0.797 (1 + 0.657 )

T,= B, lt=r")(1 + &) = 37.4(0.695 = 1.09)* {1 + 0.797) = 27.3 kips
The design strength of the hanger connection corresponding to the limit state of plate

yielding is,
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P, = nT,= 4(27.3) = 109 kips
d2 d

Prying force and bolt tension

T /B -
o LTMBa )1 ] (273 +374) g1l (908
8| (/e ) 0.797 | (0.695 +1.09 }*
The prying force is given by
Bk 0.695 |2
o, = 6ap(— B, = 0.797 (0.998)(0.657)(%;) (37.4) = 17.95 kips
t” .

Bolt tension at failure of plate is

B =T,+Q,= 273 +795 = 353 kips < B, = 374 kips

Thus, to summarize, the design strength of the WT 9x30 hanger connection with 7,= 0.695 in. is

109 kips with a bolt prying force of 8 kips. However, if the thickness of the WT flange is

increased to ¢ = 1.09 in., with all other parameters remaining the same, the design strength of the

connection rises to 150 kips (i.c., 37.4 x 4), since no prying forces will develop. (Ans.)

EXAMPLE W12.2.2 Design of a Bolted Joint in Direct Tension

Select a WT section hanger using 1-in.-dia. A325 bolts to support a service load of 110 kips

(40% dead load and 60% live load) suspended from the bottom flange of a W21x166 beam. The

web plane of the tee is perpendicular to the web plane of the beam. Bolts are to be located on 5%

in. gage. Assume Grade 50 steel.

Figure WX12.2.2
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Solution

1.

Preliminary selection of bolts and tee stub
Factored load on the connection,

P, = 12(040x110) + 1.6(0.60x 110) = 158 kips
From LRFDM Table 7-14,design tensile strength of 1-in.-dia. A325 bolt,

B, = 53.0 kips

P
Number of bolts required, n = —= = 158 2.99, wuse 4 bolts
B, 53.0
. . P, 158 .
Applied tension perbolt, T, = — = il 39.5 kips
n

From Table 1-1 of the LRFDM, for a W21x166

bf = 124in; 1, = 136 in.; f, = 0.750 in.

Use tee stub length, L = 10.0 < beam flange width, bf= 12.4 in. OK.

Tributary length, p = % _ 100

Hanger capacity required per inch length =

= 500 < gage,g = 5% in. O.K.

158 _ 158 ki

Assume ¢, of the WT as % in., then

b= tg-1,)- %(5.50 - 0500) = 2.50in. > C, = 11—76 in.

where C, is the entering and tightening clearance for 1-in.-dia. bolts (LRFDM Table
7.3a). OK.

From Preliminary Hanger Connection Selection Table (LRFDM Table 15-1) for

F, = 50 ksi, b = 2% in., and 1, = % in.. the listed capacity is 15.8 kli = 15.8 kli

required. According to LRFDS Table J3.4 minimum edge distance for 1-in.- dia. bolt at

rolled edge is 1% in. So, select a WT with
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> 15 09ain andb, > g+ 2|13 = 550 «2[1| = 800in
16 4 2

From LRFDM Table 1-8, it is seen that a WT12x51.5 satisfies these requirements.
bf= 9.00; = 0.980; ¢,= 0.550in.; g= 5%in.

Calculate the parameters of the connection

b= Y%(g- t)= %(550- 0.550) = 248in.

a= Y(b- g = %(9.00-550) = 1.75 in.

4 = min[a 1256] = min[1.75; 3.10] = 1.75in.
1

d= 100in; d,=d+ 1 = 1.06 in.
a = a+iiz 225 in.; b’ = b—£l= 1.98 in.
2 2
' d
o~ P 0880in; 8= 1-= 1- 100 s
a' p 5.00
4B, b
PR dt _ 4(53.0)(1.98) _ 137 in.
$,pF, 0.9 (5.00) (50.0)

Ast, = 0.980in. < ¢ = 1.37 in., prying occurs.

Determine 7,
B
p- L|Za gl L1330 50 o 0388
ol T, 0.880 | 39.5

1.0;

1 0.388
0.788 (1 - 0.388)
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= min[1.0; 0.8057F = 0.805

4T b
fey = u _ J 4(39:5)(1.98) - 0922 in.
Gop F,(1 + o) 0.9(5.00) (50.0) (1 + 0.788 x 0.805 )

t.o= 0980in. > (. = 0922in. 0O.K.

act req

4, Prying force

Calculate the actual value of & :

T/B

o = 1 o o 1 [095r530) ]l gsm
d (;m /t*)2 0.788 | (0.980 /1.37)?
‘ 2
Prying force, @, = (‘SOLMp[Lct B,
2

- 0788 (0.579)(0.880)(%) (53.0) = 10.9 kips

B, - T,+Q, - 395+109 = 504 < B, = 530 OK.

So, select a WT12x51.5x0" 10" of A992 steel and provide four 1-in.-dia. A325 bolts, with a pitch

of 5 in. and a gage of 5% in. (Ans.)

w123 Ultimate Strength Method for Welded Joints in Eccentric Shear
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[ Loading Case P, P, M, |

When a weld group connecting two plate elements is loaded in shear by an external load that lies
in the plane of the joint, but does not act through the center of gravity of the group, the load 1s
eccentric. This eccentricity produces both a rotation about the centroid of the weld group and a
translation of one connected element with respect to another. The combined effect of this
rotation and translation is equivalent to a rotation about a point in the plane of the faying surface,
known as the instantaneous center of rotation 7 (Fig. W12.3.1). The location of 7 depends on the
geometry of the weld group and the load-deformation response of the weld, as well as the

direction and point of application of the load.

Figure W12.3.1: Ultimate strength analysis of a welded joint in eccentric

shear.

In the ultimate strength method, the continuous weld is treated as an assembly of discrete
elements, generally of unit length. At failure, the applied load on the joint is resisted by forces in
each element. The force ¥, on weld element i acts perpendicular to the radius vector 7;, joining
the center of gravity of that element to the instantaneous center /. Unlike the load-deformation
relationship for bolts, strength and deformation values in welds are functions of 0., the angle the
resultant eclemental force W, makes with the longitudinal axis of the weld element. The ultimate
strength method considers the actual nonlinear load-deformation relationship of each weld

clement, as well as the variation in weld strength with respect to the direction of the applied force
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[Dawe, and Kulak, 1974]. Consequently, the ultimate strength method predicts more accurately

the carrying capacity of eccentrically loaded welded joints.

The design strength of a unit-length weld element, within a weld group that is loaded in-plane

and analyzed using the instantaneous center of rotation method may be written as (see Section

W6.10):
5 5 0.3
W,. = [0.75(0.6F. ), [1.0 + 0.50(sin® )% | |—| 1.9 - 0.9 W12.3.1
did |: ( EXX) eH ( :) ] Aim{ Atm]] ( )
with
A, = 0209w[8, + 2] (W12.3.2)
A, = 1087w[B + 6]°® < 017w (W12.3.3)
A A 4
(_f] = min|—Y, —¥, nf (W12.3.4)
¥ crit 7'1 i P
A
& = (_f (W12.3.5)
r crit
where w = leg size of the fillet weld, in.
3 = effective throat thickness, in.
Fexx = minimum specified strength of weld electrode, ksi
0. = angle of loading, i.e., angle measured (in degrees) from the weld element

longitudinal axis to the resultant force on element i
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. = deformation of weld element i, when fracture is imminent in the critical

element of the joint, in.

W.s = design shear strength of unit-length weld element i at a given deformation
s,

¥, = distance from instantaneous center  to weld element £, in.

A, = deformation at maximum strength, of weld element i, in.

A, = deformation at ultimate stress (fracture), of weld element i, in.

Brow = deformation of the critical weld element at imminent fracture, in.

Foir = distance from instantaneous center i to the critical weld element (i.e.,

element having minimum ratio A, /), in.

Just as in eccentrically loaded bolted connections, deformation of each weld element is assumed
to vary linearly with its distance from the instantaneous center /. The critical weld element, or
the element on which the ductility of the weld group is based, is the one that fractures first; it is
the first element for which its deformation &, reaches its A,. Thus, the critical segment is the one
for which the ratio of its A ,to its radial distance 7 is the smallest. It is usually (but not always)
the element farthest from the instantaneous center. The deformation of other weld elements is

assumed to vary linearly with distance from /.

Let N be the number of unit-length elements into which the weld configuration is subdivided.
Also, let », be the distance from the center of rotation to the center of gravity. The three in-plane

static equilibrium equations for the welded joint are (Fig. W12.3.3):
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N

Z(F), = 0 - P = E(W), (W12.3.6a)
i=1
N

B(F),= 0 ~ P, = XZ(W,), (W12.3.6b)
i1

N
(M), = 0 - P (r,+e) = EW,r (W12.3.6¢)

where (W), represents the horizontal component of the force on weld element i. These three
relations give three values of P, for an assumed value of 7, . If they are equal, the assumed
location of the center of rotation and the calculated value for load P, are correct. Otherwise,

assume a new location for 7 and repeat the entire process.
If the eccentric load P, is vertical and if the weld is symmetrical about a horizontal axis through
its center of gravity, the instantaneous center will fall somewhere on the horizontal axis (y, = 0,

and x, = r,). The first condition (Eq. W12.3.6q) is automatically satisfied from the symmetry of

the bolt group.

Wwi12.4 Bracket Plates

Figure W12.4.1: Bracket plates.
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Triangular bracket plates are found in structures as support brackets to transfer load from an
offset beam to a column (Fig. W12.4.1a), as gussets in heavy column bases (Fig. W12.4.15), and
as stiffeners. They have rigid built-in edges on the shorter sides, while the longer (diagonal) side
is free. They act as short cantilever beams to transfer load from one edge (loaded edge) to the
other edge (supported edge). The function of the top plate is to distribute the applied load to the
loaded edge of the bracket plate and to support (stabilize) the bracket plate. The bracket plate is
fillet welded to the top plate and either fillet welded or groove welded along the supported edge
to the supporting column. For heavy loads, plate or angle stiffeners may be required along the

diagonal edge.

A bracket plate of thickness ¢, loaded on the top edge (of width b) by a load P and supported on
the side edge (of depth a) is shown in Fig. W12.4.1a. The sloped edge is free. The load P acts at
a distance e, from the column flange face. In design, the dimensions b and a are usually
determined to satisfy the requirements of the load seat and of the connection to the column. Thus
the problem is to determine the thickness of the bracket plate. Two cases, based on the value of e,

relative to b, are considered below.

Figure W12.4.2: Simplified design models for bracket plates.

Wi2.4.1 Eccentricity e, < 0.6b
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The problem of slender triangular bracket plates was first studied analytically by Salmon [1962].
The theoretical solution was based on elastic buckling, and was obtained using energy methods.

For design purposes, the buckling load was given in the familiar elastic plate buckling format:

k,n*Et’
v T TS (W12.4.1a)
12(1 - p*)b
where b = width of bracket plate, in.
a = depth of bracket plate, 1n.
t = thickness of bracket plate, in.
J7, = Poisson's ratio
k, = elastic plate buckling coefficient
2
= 32 - 3.0(é) + 1.1(2) (W12.4.15)
a a

In practice most bracket plates are non-slender. Experimental work on 15 non-slender bracket
plate specimens, by Salmon, Buettner, and O'Sheridan [1964], showed that the maximum stress
occurs at the free edge and that there was considerable post-buckling strength between the first
signs of elastic buckling and failure. The ultimate load may be expected to be at least 1.6 times
the buckling load. The design strength of a bracket plate when the free edge reaches yield stress

is given by:

P,= ¢P, = O85F k bt (W12.4.2)
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where F), is the yield stress of bracket plate material (ksi) and £, is an empirical coefficient

obtained from tests [Salmon, et al., 1964] and 1s given by:

o

The width/thickness ratio, b/, of the plate must be restricted to ensure that plate buckling does

Q|9
o | o

3
k= 139 - 2.20(3) . 1.27( ) (W12.4.3)
a

not occur before plate yielding along the diagonal free edge. Based on theoretical and

experimental results Salmon et al. [1964], and LRFDM suggest:

- < for 05 ¢ — < 10 (W12.4.4a)
t
JF, 4
< 9&(2) for 10 < 2 < 20 (W12.4.4b)
JE A g ¢

The above results are based on theoretical and experimental research and their application should
be limited to cases where:
e The aspect ratio b/z lies between 0.5 and 2.0.
» The load P is distributed, though not necessarily uniformly, and has its resultant at
approximately 0.6 from the support (i.e., e, = 0.6b).
« Lateral movement of the outstanding portion of the bracket plate is prevented.

» The top plate is attached to the support.

Wi12.4.2 Eccentricity e, > 0.6
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If the resultant load P acts farther than 0.6 from the supported edge (i.e., e, > 0.6b) the approach
described in the previous section may become unsafe. In such cases, the following approximate

procedures suggested in Jensen [1936], and Tall [1983] can be used.

Elastic Limit State

The bracket is assumed to act as an eccentrically loaded column and the elementary bending
formula is applicable. Lete = e,- “%b. Section BB’ passing through the corner B and
perpendicular to the free edge CA is assumed to be subjected to the load P’ (= P=sin @), with
an eccentricity e’ (= esin 8). Assuming elastic behavior, the maximum stress at the extreme

fiber B’ of the eccentrically compressed rectangular section BB’ can be calculated as:

P
btsin?0

fmax -

1+ 2¢ } (W12.4.5)

The clastic limit state of the plate is attained when the maximum stress equals the yield stress of

the bracket plate material; or in LRFD format:

P < P

_ )
y del = (bebtsm 0

-1
1+ E‘il (W12.4.6)

Here, P, is the factored load on the bracket, @is the resistance factor taken as 0.9, and P, is the
design strength of the bracket corresponding to the limit state of yielding. The possibility of

buckling can be checked, conservatively, by assuming that the load P’ acts concentrically on the
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strip highlighted in Fig.W12.4.2a. This strip forms a column of length AC and has a rectangular

cross sectional area of % (tsin 0).

Plastic Limit State

Brackets with thick plates (low slendemness) can be loaded to undergo considerable yielding. The
maximum load that may be applied on the bracket can be calculated by assuming that the section
BB’ passing through the corner B and perpendicular to the free edge AC attains the bi-
rectangular stress distribution shown in Fig. W12.4.2b. The maximum value of P (= 7))
consistent with this stress distribution can be calculated by equating the resuliant of these stresses
to the component P, /sin @ parallel to the free edge and taking moments, on portion BB’ C, about
point B [Tall, 1983]. Thus, we obtain, after simplification:

2
P,, = F,bt(sin’0)|- = (—) +1} (W12.4.7)

n,pl

The design strength, based on plastification of section BB’ and using a resistance factor of 0.9, is

therefore given by:
2
P,y = 0.90 Fybt(sinze)[— % . (35) . 1] (W12.4.8)

To develop this full plastic strength of the bracket plate, the plate width/thickness ratio should be

restricted to about half that given in Eq. W12.4.4 for achieving first yield on the free edge, i.e.
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{ Et) < % ( %) (W12.4.9)
pl el

The thickness of the top plate has no effect on the ultimate failure load; it does however effect
the way in which the load is distributed to the bracket plate. The top plate is usually made % in.
or % in. thick. The area of the top plate must be adequate to carry the horizontal component (P,

cot 8). Thus
GF A > P cotb (W12.4.10)
y“p u

where ¢ is the resistance factor (= 0.90) and 4, is the area of the top plate. The top plate-to-
bracket plate weld and the top plate-to-column weld should also be able to develop the horizontal
component, P, cot &. The seat may also be made from a split beam, thus eliminating separate top

and bracket plates and the weld connecting them.

Martin[1979], and Martin and Robinson [1980] developed an analytical model to evaluate the
inelastic buckling strength of bracket plates, where the bracket plate is assumed to act as a series
of fixed-ended struts parallel to the free edge. The axial stress in each elemental strut depends on

its slenderness ratio and yield stress. They provided a table that gives the required thickness of a

s
bracket plate as a function of the dimensionless parameters ( a ) and g 2 ; )) The results were
Eb

controlled by comparing with 50 experiments on non-slender bracket plates.
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A Point of load application
G Centroid of bolt group

I Instantaneous center of rotation

P Applied load

e Eccentricity of load

Figure W12.1.1 : Ultimate strength method for a
bolted joint in eccentric shear.



Figure W12.1.2 : Symmetric bolt group under
eccentric vertical load.
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Figure W12.2.1: T-section hanger connection.
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Figure W12.2.2: Influence of flange deformation on
location of resultant bolt force.
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A Point of load application
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G Centroid of weld group
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i e Eccentricity of load

Figure W12.3.1 : Ultimate strength analysis of a
welded joint in eccentric shear.
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Figure W12.4.1: Bracket plates.
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Figure W12.4.2: Simplified design models for bracket
plates.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

