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Chapter 12: Gas Mixtures
 
The discussions in this chapter are restricted to nonreactive ideal-gas
mixtures.  Those interested in real-gas mixtures are encouraged to study
carefully the material presented in Chapter 12.

Many thermodynamic applications involve mixtures of ideal gases.  That is,
each of the gases in the mixture individually behaves as an ideal gas.  In this
section, we assume that the gases in the mixture do not react with one
another to any significant degree.  

We restrict ourselves to a study of only ideal-gas mixtures.  An ideal gas is
one in which the equation of state is given by 

PV mRT or PV NR Tu= =

Air is an example of an ideal gas mixture and has the following approximate
composition.

Component %  by  Volume 
N2 78.10 
O2 20.95  
Argon 0.92 
CO2  + trace  elements 0.03 

Consider a container having a volume V that is filled with a mixture of k
different gases at a pressure P and a temperature T.

 Definitions

A mixture of two or more gases of fixed chemical composition is called a
nonreacting gas mixture. Consider k gases in a rigid container as shown
here.  The properties of the mixture may be based on the mass of each
component, called gravimetric analysis, or on the moles of each component,
called molar analysis.
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The total mass of the mixture mm and the total moles of mixture Nm  are
defined as
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The composition of a gas mixture is described by specifying either the mass
fraction mfi or the mole fraction yi of each component i.
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The mass and mole number for a given component are related through the
molar mass (or molecular weight).
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To find the average molar mass for the mixture Mm , note
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Solving for the average or apparent molar mass Mm 

k gases
T = Tm      V = Vm
P = Pm       m = mm
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The apparent (or average) gas constant of a mixture is expressed as

R R
M

kJ kg Km
u

m

= ⋅         ( / )

Can you show that Rm is given as
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To change from a mole fraction analysis to a mass fraction analysis, we can
show that
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To change from a mass fraction analysis to a mole fraction analysis, we can
show that
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Volume fraction  (Amagat model)

Divide the container into k subcontainers, such that each subcontainer has
only one of the gases in the mixture at the original mixture temperature and
pressure.

Amagat's law of additive volumes states that th
equal to the sum of the volumes each gas woul
the mixture temperature and pressure. 

Amagat's law: V V T Pm i m m
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The volume fraction of the vfi of any componen
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For an ideal gas mixture

V N R T
P

and Vi
i u m

m
m= =

Taking the ratio of these two equations gives

Gas 1
T = Tm
P = Pm
V = V1

Gas 2
T = Tm
P = Pm
V = V2

Gas k
T = Tm
….
e volume of a gas mixture is
d occupy if it existed alone at

t is

)

N R T
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P = Pm
V = Vk
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The volume fraction and the mole fraction of a component in an ideal gas
mixture are the same.

Partial pressure  (Dalton model)

The partial pressure of component i is defined as the product of the mole
fraction and the mixture pressure according to Dalton’s law.  For the
component i

P y Pi i m=

Dalton’s law: P P T Vm i m m
i
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Now, consider placing each of the k gases in a separate container having the
volume of the mixture at the temperature of the mixture.  The pressure that
results is called the component pressure, Pi' .
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Note that the ratio of Pi' to Pm is

k gases
T = Tm      V = Vm
P = Pi'  m = mi
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For ideal-gas mixtures, the partial pressure and the component pressure are
the same and are equal to the product of the mole fraction and the mixture
pressure. 

Other properties of ideal-gas mixtures

The extensive properties of a gas mixture, in general, can be determined by
summing the contributions of each component of the mixture. The evalu-
ation of intensive properties of a gas mixture, however, involves averaging
in terms of mass or mole fractions: 
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These relations are applicable to both ideal- and real-gas mixtures. The prop-
erties or property changes of individual components can be determined by
using ideal-gas or real-gas relations developed in earlier chapters.

Ratio of specific heats k is given as

k
C
C

C
Cm

p m

v m

p m

v m

= =,

,

,

,

The entropy of a mixture of ideal gases is equal to the sum of the entropies
of the component gases as they exist in the mixture.  We employ the Gibbs-
Dalton law that says each gas behaves as if it alone occupies the volume of
the system at the mixture temperature.  That is, the pressure of each
component is the partial pressure. 

For constant specific heats, the entropy change of any component is
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The entropy change of the mixture per mass of mixture is
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The entropy change of the mixture per mole of mixture is
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In these last two equations, recall that 
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 Example 12-1  

An ideal-gas mixture has the following volumetric analysis

Component  % by Volume 
N2 60 
CO2 40 

(a) Find the analysis on a mass basis.
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For ideal-gas mixtures, the percent by volume is the volume fraction. Recall

y vfi i=

Comp.   yi  Mi  yiMi  mfi = yiMi /Mm  
 kg/kmol kg/kmol  kgi/kgm

N2 0.60 28 16.8 0.488 
CO2 0.40 44 17.6 0.512 

 Mm = ΣyiMi = 34.4  

(b) What is the mass of 1 m3 of this gas when P = 1.5 MPa and T  = 30oC?
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(c) Find the specific heats at 300 K. 

Using Table A-2, Cp N2 = 1.039 kJ/kg⋅K and Cp CO2 = 0.846 kJ/kg⋅K 
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(d) This gas is heated in a steady-flow process such that the temperature is
increased by 120oC.  Find the required heat transfer.  The conservation of
mass and energy for steady-flow are 
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The heat transfer per unit mass flow is

Qin

           1
Mixture

2
Heat exchanger
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(e) This mixture undergoes an isentropic process from 0.1 MPa, 30oC,
to 0.2 MPa.  Find T2.

The ratio of specific heats for the mixture is
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Assuming constant properties for the isentropic process
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(f) Find ∆Sm per kg of mixture when the mixture is compressed isothermally
from 0.1 MPa to 0.2 MPa.
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But,, the compression process is isothermal, T2 = T1.  The partial pressures
are given by

P y Pi i m=
The entropy change becomes
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But, here the components are already mixed before the compression process.
So,

y yi i, ,2 1=
Then,
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Why is ∆sm negative for this problem?  Find the entropy change using the
average specific heats of the mixture.  Is your result the same as that above?
Should it be?

(g) Both the N2 and CO2 are supplied in separate lines at 0.2 MPa and 300 K
to a mixing chamber and are mixed adiabatically.  The resulting mixture has
the composition as given in part (a).  Determine the entropy change due to
the mixing process per unit mass of mixture.
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Take the time to apply the steady-flow conservation of energy and mass to
show that the temperature of the mixture at state 3 is 300 K. 
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But the mixing process is isothermal, T3 = T2 = T1.  The partial pressures are
given by

P y Pi i m=
The entropy change becomes

Qin = 0

3 
Mixture

P = 0.2Mpa
T = 300K

N2          1
P = 0.2Mpa
T = 300K

Constant pressure
mixing chamber

CO2        2
P = 0.2Mpa
T = 300K
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Then,
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  If the process is adiabatic, why did the entropy increase?
  
  
  
Extra Assignment
    
Nitrogen and carbon dioxide are to be mixed and allowed to flow through a
convergent nozzle.  The exit velocity to the nozzle is to be the speed of
sound for the mixture and have a value of 500 m/s when the nozzle exit
temperature of the mixture is 500oC.  Determine the required mole fractions
of the nitrogen and carbon dioxide to produce this mixture.  From Chapter
16, the speed of sound is given by

C kRT=

Answer: yN2 = 0.589, yCO2 = 0.411

Mixture
N2 and CO2

C = 500 m/s
T = 500oC

NOZZLE


