Appendix A

Common Abbreviations, Arrows, and Symbols

Abbreviations

Ac	acetyl, CH ₃ CO-
BBN	9-borabicyclo[3.3.1]nonane
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
BOC	<i>tert</i> -butoxycarbonyl, (CH ₃) ₃ COCO-
bp	boiling point
Bu	butyl, CH ₃ CH ₂ CH ₂ CH ₂ -
CBS reagent	Corey-Bakshi-Shibata reagent
DBN	1,5-diazabicyclo[4.3.0]non-5-ene
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	dicyclohexylcarbodiimide
DET	diethyl tartrate
DIBAL-H	diisobutylaluminum hydride, [(CH ₃) ₂ CHCH ₂] ₂ AlH
DMF	dimethylformamide, HCON(CH ₃) ₂
DMSO	dimethyl sulfoxide, $(CH_3)_2 S = O$
ee	enantiomeric excess
Et	ethyl, CH ₃ CH ₂ -
FGI	functional group interconversion
HMPA	hexamethylphosphoramide, $[(CH_3)_2N]_3P=O$
НОМО	highest occupied molecular orbital
IR	infrared
LAH	lithium aluminum hydride, LiAlH ₄
LDA	lithium diisopropylamide, LiN[CH(CH ₃) ₂] ₂
LUMO	lowest unoccupied molecular orbital
<i>m</i> -	meta
mCPBA	<i>m</i> -chloroperoxybenzoic acid
Me	methyl, CH ₃ -
MO	molecular orbital
mp	melting point
MS	mass spectrometry
MW	molecular weight
NBS	<i>N</i> -bromosuccinimide
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMR	nuclear magnetic resonance
0-	ortho
<i>p</i> -	para
PCC	pyridinium chlorochromate
Ph	phenyl, C ₆ H ₅ -
ppm	parts per million
Pr	propyl, CH ₃ CH ₂ CH ₂ -
TBDMS	tert-butyldimethylsilyl
THF	tetrahydrofuran
TMS	tetramethylsilane, (CH ₃) ₄ Si
UV	ultraviolet

A-2 APPENDIX A Common Abbreviations, Arrows, and Symbols

Arrows

\longrightarrow	reaction arrow
$ \longrightarrow$	equilibrium arrows
\longleftrightarrow	double-headed arrow, used between resonance structures
\frown	full-headed curved arrow, showing the movement of an electron pair
\frown	half-headed curved arrow (fishhook), showing the movement of an electron
\implies	retrosynthetic arrow
→X →	no reaction
* *	

Æ

Symbols

\mapsto	dipole
hv	light
Δ	heat
δ^+	partial positive charge
δ-	partial negative charge
λ	wavelength
ν	frequency
\widetilde{V}	wavenumber
HA	Brønsted-Lowry acid
B:	Brønsted-Lowry base
:Nu ⁻	nucleophile
E^+	electrophile
Х	halogen
-	bond oriented forward
	bond oriented behind
	partial bond
[] [‡]	transition state
[0]	oxidation
[H]	reduction

Appendix B ______ pK_a Values for Selected Compounds

Compound	р К а	Compound	p K a
HI	-10		
HBr	-9	Соон	4.2
H_2SO_4	-9		
+ÖH		сн ₃ — Соон	4.3
	-7.3		
			15
CH ₃ —SO ₃ H	-7		4.0
HCI	-7	~	4.6
$[(CH_3)_2OH]^+$	-3.8		
$[CH_3OH_2]^+$	-2.5	CH₃COOH	4.8
H_3O^+	-1.7	(CH ₃) ₃ CCOOH	5.0
CH ₃ SO ₃ H	-1.2		E 1
+OH			5.1
	0.0		
	0.2		5.2
CCl ₃ COOH	0.64	N H	
O_2N \rightarrow NH_3	1.0	CH ₃ O	5.3
Cl ₂ CHCOOH	1.3	H ₂ CO ₃	6.4
H ₃ PO ₄	2.1	H_2S	7.0
FCH ₂ COOH	2.7		
CICH ₂ COOH	2.8	O ₂ N-OH	7.1
BrCH ₂ COOH	2.9		
ICH ₂ COOH	3.2	✓—SH	7.8
HF	3.2		
O ₂ N-COOH	3.4		8.9
HCOOH	3.8	H HC≡N	9.1
Br	3.9	CI	9.4
Br	4.0	NH_4^+	9.4

A-4 APPENDIX B pK_a Values for Selected Compounds

Compound	p K a	Compound	pK _a
H ₃ [†] CH₂COO [−]	9.8	CH ₃ OH	15.5
		H ₂ O	15.7
⟨	10.0	CH ₃ CH ₂ OH	16.0
		CH ₃ CONH ₂	16
СН	10.2	CH ₃ CHO	17
	10.2	(CH ₃) ₃ COH	18
HCO ₃ ⁻	10.2	$(CH_{3})_{2}C = O$	19.2
CH ₃ NO ₂	10.2	CH ₃ CO ₂ CH ₂ CH ₃	24.5
		$HC \equiv CH$	25
NH ₂ —OH	10.3	$CH_3C \equiv N$	25
	10 5	CHCl ₃	25
	10.5	CH ₃ CON(CH ₃) ₂	30
[(CH ₃) ₃ NH] ⁺	10.6	H ₂	35
O O 		NH ₃	38
OEt	10.7	CH ₃ NH ₂	40
$[CH_3NH_3]^+$	10.7	CH3	41
ŇH ₃	10.7	М н	43
$[(CH_3)_2NH_2]^+$	10.7		40
CF_3CH_2OH	12.4		43
o o		$GH_2 = GH_2$	44
EtOOEt	13.3	Н	46
Ĥ		CH_4	50
Н	15	CH_3CH_3	50

Æ

Appendix C

Bond Dissociation Energies for Some Common Bonds $[A-B \rightarrow A^{\bullet} + {}^{\bullet}B]$

Bond	∆ H° kcal/mol	(kJ/mol)
H-Z bonds		
H - F	136	(569)
H-CI	103	(431)
H - Br	88	(368)
H - I	71	(297)
H - OH	119	(498)
Z-Z bonds		
H - H	104	(435)
F - F	38	(159)
CI-CI	58	(242)
Br - Br	46	(192)
I–I	36	(151)
HO-OH	51	(213)
R-H bonds		
CH ₃ -H	104	(435)
$CH_3CH_2 - H$	98	(410)
$CH_3CH_2CH_2-H$	98	(410)
$(CH_3)_2CH-H$	95	(397)
$(CH_3)_3C-H$	91	(381)
$CH_2 = CH - H$	104	(435)
HC≡C - H	125	(523)
$CH_2 = CHCH_2 - H$	87	(364)
C_6H_5-H	110	(460)
$C_6H_5CH_2-H$	85	(356)
R-R bonds		
$CH_3 - CH_3$	88	(368)
$CH_3 - CH_2CH_3$	85	(356)
$CH_3 - CH = CH_2$	92	(385)
CH ₃ −C≡CH	117	(489)

A-6 APPENDIX C Bond Dissociation Energies for Some Common Bonds $[A-B \rightarrow A \cdot + \cdot B]$

Bond	∆ H° kcal/mol	(kJ/mol)
R-X bonds		
CH ₃ -F	109	(456)
CH ₃ -Cl	84	(351)
CH ₃ -Br	70	(293)
CH ₃ -I	56	(234)
$CH_3CH_2 - F$	107	(448)
CH_3CH_2 -Cl	81	(339)
CH_3CH_2 – Br	68	(285)
CH_3CH_2 -I	53	(222)
$(CH_3)_2CH-F$	106	(444)
$(CH_3)_2CH-CI$	80	(335)
$(CH_3)_2CH$ – Br	68	(285)
$(CH_3)_2CH-I$	53	(222)
$(CH_3)_3C - F$	106	(444)
$(CH_3)_3C-CI$	79	(331)
$(CH_3)_3C$ – Br	65	(272)
$(CH_3)_3C-I$	50	(209)
R-OH bonds		
CH ₃ -OH	91	(381)
$CH_3CH_2 - OH$	91	(381)
$CH_3CH_2CH_2-OH$	91	(381)
$(CH_3)_2CH-OH$	91	(381)
(CH ₃) ₃ C - OH	91	(381)

Appendix D Characteristic IR Absorption Frequencies

Bond	Functional group	Wavenumber (cm ⁻¹)	Comment
0-Н			
	• ROH	3600-3200	broad, strong
	• RCOOH	3500–2500	very broad, strong
N-H			
	• RNH ₂	3500-3300	two peaks
	• R ₂ NH	3500–3300	one peak
	• RCONH ₂ , RCONHR	3400–3200	one or two peaks; N-H bending also observed at 1640 cm ⁻¹
C-H			
	• C _{sp} -H	3300	sharp, often strong
	• C _{sp²} -H	3150-3000	medium
	• C _{sp³} -H	3000–2850	strong
	• C _{sp²} -H of RCHO	2830–2700	one or two peaks
C≡C		2250	medium
C≡N		2250	medium
C=O			strong
	RCOCI	1800	
	• (RCO) ₂ O	1800, 1760	two peaks
	RCOOR	1745–1735	increasing $\tilde{\nu}$ with decreasing ring size
	• RCHO	1730	
	• R ₂ CO	1715	increasing $\tilde{\nu}$ with decreasing ring size
	 R₂CO, conjugated 	1680	
	• RCOOH	1710	
	 RCONH₂, RCONHR, RCONR₂ 	1680–1630	increasing $\tilde{\mathbf{p}}$ with decreasing ring size
C=C			
	Alkene	1650	medium
	Arene	1600, 1500	medium
C=N		1650	medium

Œ

 \oplus

 φ

Appendix E Characteristic ¹H NMR Absorptions

Compound type	Chemical shift (ppm)	
Alcohol		
R—O—H	1–5	
ų		
R−Ċ−O─	3.4–4.0	
I		
Aldehyde		
O		
R ^{∕^Ċ∕H}	9–10	
Alkane	0.9–2.0	
RCH ₃	~0.9	
R_2CH_2	~1.3	
R ₃ CH	~1.7	
Alkene		
, Н		

 $C = C \qquad sp^2 C - H$ $C = C \qquad allylic sp^3 C - H$ 1.5-2.5

Alkyl halide

Н	
R-C-F	4.0-4.5
H R-C-CI	3.0-4.0
H R-C-Br	2.7-4.0
H R-C-I	2.2-4.0

4.5-6.0

A-10 APPENDIX E Characteristic ¹H NMR Absorptions

Compound type	Chemical shift (ppm)
Alkyne	
—C≡C−H	~2.5
Amide	
R ^C N-H	7.5–8.5

Amine

R—N—H 	0.5–5.0
H R—C—N— 	2.3–3.0

Aromatic compound

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Carbonyl compound

Carboxylic acid

Ether

$$\mathbf{R} - \mathbf{C} - \mathbf{O} - \mathbf{R}$$
 3.4-4.0

Appendix F General Types of Organic Reactions

Substitution Reactions

A-12 APPENDIX F General Types of Organic Reactions

Elimination Reactions

β Elimination at an \textit{sp}^3 hybridized carbon atom

Addition Reactions

[1] Electrophilic addition to carbon-carbon multiple bonds

[2] Nucleophilic addition to carbon-oxygen multiple bonds

Appendix G-

How to Synthesize Particular Functional Groups

Acetals

• Reaction of an aldehyde or ketone with two equivalents of an alcohol (21.14)

Acid chlorides

Reaction of a carboxylic acid with thionyl chloride (22.10)

Alcohols

- Nucleophilic substitution of an alkyl halide with \overline{OH} or H₂O (9.6)
- Hydration of an alkene (10.12)
- Hydroboration–oxidation of an alkene (10.16)
- Reduction of an epoxide with $LiAlH_4$ (12.6)
- Reduction of an aldehyde or ketone (20.4)
- Hydrogenation of an α , β -unsaturated carbonyl compound with H₂ + Pd-C (20.4C)
- Enantioselective reduction of an aldehyde or ketone with the chiral CBS reagent (20.6)
- Reduction of an acid chloride with $LiAlH_4$ (20.7)
- Reduction of an ester with $LiAlH_4$ (20.7)
- Reduction of a carboxylic acid with $LiAlH_4$ (20.7)
- Reaction of an aldehyde or ketone with a Grignard or organolithium reagent (20.10)
- Reaction of an acid chloride with a Grignard or organolithium reagent (20.13)
- Reaction of an ester with a Grignard or organolithium reagent (20.13)
- Reaction of an organometallic reagent with an epoxide (20.14B)

Aldehydes

- Hydroboration–oxidation of a terminal alkyne (11.10)
- Oxidation of a 1° alcohol with PCC (12.12)
- Oxidative cleavage of an alkene with O_3 followed by Zn or $(CH_3)_2S$ (12.10)
- Reduction of an acid chloride with LiAlH[OC(CH₃)₃]₃ (20.7)
- Reduction of an ester with DIBAL-H (20.7)
- Hydrolysis of an acetal (21.14B)
- Hydrolysis of an imine or enamine (21.12)
- Reduction of a nitrile (22.18B)

Alkanes

- Catalytic hydrogenation of an alkene with H_2 + Pd-C (12.3)
- Catalytic hydrogenation of an alkyne with two equivalents of H_2 + Pd-C (12.5A)
- Reduction of an alkyl halide with LiAlH_4 (12.6)
- Reduction of a ketone to a methylene group (CH₂)—the Wolff–Kishner or Clemmensen reaction (18.14B)
- Protonation of an organometallic reagent with H_2O , ROH, or acid (20.9)

A-14 APPENDIX G How to Synthesize Particular Functional Groups

Alkenes

- Dehydrohalogenation of an alkyl halide with base (8.3)
- Dehydration of an alcohol with acid (9.8)
- Dehydration of an alcohol using POCl₃ and pyridine (9.10)
- β Elimination of an alkyl tosylate with base (9.13)
- Catalytic hydrogenation of an alkyne with H_2 + Lindlar catalyst to form a cis alkene (12.5B)
- Dissolving metal reduction of an alkyne with Na, NH₃ to form a trans alkene (12.5C)
- Wittig reaction (21.10)
- Hofmann elimination of an amine (25.12)

Alkyl halides

- Reaction of an alcohol with HX (9.11)
- Reaction of an alcohol with SOCl₂ or PBr₃ (9.12)
- Cleavage of an ether with HBr or HI (9.14)
- Hydrohalogenation of an alkene with HX (10.9)
- Halogenation of an alkene with X_2 (10.13)
- Hydrohalogenation of an alkyne with two equivalents of HX (11.7)
- Halogenation of an alkyne with two equivalents of X_2 (11.8)
- Radical halogenation of an alkane (13.3)
- Radical halogenation at an allylic carbon (13.10)
- Radical addition of HBr to an alkene (13.13)
- Electrophilic addition of HX to a 1,3-diene (16.10)
- Radical halogenation of an alkyl benzene (18.13)
- Halogenation α to a carbonyl group (23.7)

Alkynes

- Dehydrohalogenation of an alkyl dihalide with base (11.5)
- $S_N 2$ reaction of an alkyl halide with an acetylide anion, $\neg C \equiv CR$ (11.11)

Amides

- Reaction of an acid chloride with NH_3 or an amine (22.8)
- Reaction of an anhydride with NH_3 or an amine (22.9)
- Reaction of a carboxylic acid with NH_3 or an amine and DCC (22.10)
- Reaction of an ester with NH_3 or an amine (22.11)

Amines

- Reduction of a nitro group (18.14C)
- Reduction of an amide with $LiAlH_4$ (20.7B)
- Reduction of a nitrile (22.18B)
- $S_N 2$ reaction using NH₃ or an amine (25.7A)
- Gabriel synthesis (25.7A)
- Reductive amination of an aldehyde or ketone (25.7C)

Amino acids

- $S_N 2$ reaction of an α -halo carboxylic acid with excess NH₃ (28.2A)
- Alkylation of diethyl acetamidomalonate (28.2B)
- Strecker synthesis (28.2C)
- Enantioselective hydrogenation using a chiral catalyst (28.4)

APPENDIX G How to Synthesize Particular Functional Groups A-15

Anhydrides

- Reaction of an acid chloride with a carboxylate anion (22.8)
- Dehydration of a dicarboxylic acid (22.10)

Aryl halides

- Halogenation of benzene with X_2 + FeX₃ (18.3)
- Reaction of a diazonium salt with CuCl, CuBr, HBF₄, NaI, or KI (25.14A)

Carboxylic acids

- Oxidative cleavage of an alkyne with ozone (12.11)
- Oxidation of a 1° alcohol with CrO₃ (or a similar Cr⁶⁺ reagent), H₂O, H₂SO₄ (12.12B)
- Oxidation of an alkyl benzene with KMnO₄ (18.14A)
- Oxidation of an aldehyde (20.8)
- Reaction of a Grignard reagent with CO₂ (20.14A)
- Hydrolysis of a cyanohydrin (21.9)
- Hydrolysis of an acid chloride (22.8)
- Hydrolysis of an anhydride (22.9)
- Hydrolysis of an ester (22.11)
- Hydrolysis of an amide (22.13)
- Hydrolysis of a nitrile (22.18A)
- Malonic ester synthesis (23.9)

Cyanohydrins

Addition of HCN to an aldehyde or ketone (21.9)

1,2-Diols

- Anti dihydroxylation of an alkene with a peroxyacid, followed by ring opening with \overline{OH} or H₂O (12.9A)
- Syn dihydroxylation of an alkene with $KMnO_4$ or OsO_4 (12.9B)

Enamines

• Reaction of an aldehyde or ketone with a 2° amine (21.12)

Epoxides

- Intramolecular $S_N 2$ reaction of a halohydrin using base (9.6)
- Epoxidation of an alkene with mCPBA (12.8)
- Enantioselective epoxidation of an allylic alcohol with the Sharpless reagent (12.14)

Esters

- S_N^2 reaction of an alkyl halide with a carboxylate anion, RCOO⁻ (7.19)
- Reaction of an acid chloride with an alcohol (22.8)
- Reaction of an anhydride with an alcohol (22.9)
- Fischer esterification of a carboxylic acid with an alcohol (22.10)

Ethers

- Williamson ether synthesis— $S_N 2$ reaction of an alkyl halide with an alkoxide, \overline{OR} (9.6)
- Reaction of an alkyl tosylate with an alkoxide, $\neg OR$ (9.13)
- Addition of an alcohol to an alkene in the presence of acid (10.12)

Halohydrins

- Reaction of an epoxide with HX (9.15)
- Addition of X and OH to an alkene (10.15)

Imine

• Reaction of an aldehyde or ketone with a 1° amine (21.11)

A-16 APPENDIX G How to Synthesize Particular Functional Groups

Ketones

- Hydration of an alkyne with H_2O , H_2SO_4 , and $HgSO_4$ (11.9)
- Oxidative cleavage of an alkene with O_3 followed by Zn or $(CH_3)_2S$ (12.10)
- Oxidation of a 2° alcohol with any Cr^{6+} reagent (12.12)
- Friedel–Crafts acylation (18.5)
- Reaction of an acid chloride with an organocuprate reagent (20.13)
- Hydrolysis of an imine or enamine (21.12)
- Hydrolysis of an acetal (21.14B)
- Reaction of a nitrile with a Grignard or organolithium reagent (22.18C)

 \oplus

• Acetoacetic ester synthesis (23.10)

Nitriles

- S_N^2 reaction of an alkyl halide with NaCN (7.19, 22.18)
- Reaction of an aryl diazonium salt with CuCN (25.14A)

Phenols

• Reaction of an aryl diazonium salt with $H_2O(25.14A)$

Appendix H-

Reactions that Form Carbon–Carbon Bonds

Section	Reaction
11.11A	$S_N 2$ reaction of an alkyl halide with an acetylide anion, $^-C \equiv CR$
11.11B	Opening of an epoxide ring with an acetylide anion, $^-C \equiv CR$
13.14	Radical polymerization of an alkene
16.12	Diels–Alder reaction
18.5	Friedel–Crafts alkylation
18.5	Friedel–Crafts acylation
20.10	Reaction of an aldehyde or ketone with a Grignard or organolithium reagent
20.13A	Reaction of an acid chloride with a Grignard or organolithium reagent
20.13A	Reaction of an ester with a Grignard or organolithium reagent
20.13B	Reaction of an acid chloride with an organocuprate reagent
20.14A	Reaction of a Grignard reagent with CO ₂
20.14B	Reaction of an epoxide with an organometallic reagent
20.15	Reaction of an α,β -unsaturated carbonyl compound with an organocuprate reagent
21.9	Cyanohydrin formation
21.10	Wittig reaction to form an alkene
22.18	$S_N 2$ reaction of an alkyl halide with NaCN
22.18C	Reaction of a nitrile with a Grignard or organolithium reagent
23.8	Direct enolate alkylation using LDA and an alkyl halide
23.9	Malonic ester synthesis to form an α -substituted carboxylic acid
23.10	Acetoacetic ester synthesis to form an α -substituted ketone
24.1	Aldol reaction to form a β -hydroxy carbonyl compound or an α,β -unsaturated carbonyl compound
24.2	Crossed aldol reaction
24.3	Directed aldol reaction
24.5	Claisen reaction to form a β -keto ester
24.6	Crossed Claisen reaction to form a β -dicarbonyl compound
24.7	Dieckmann reaction to form a five- or six-membered ring
24.8	Michael reaction to form a 1,5-dicarbonyl compound
24.9	Robinson annulation to form a 2-cyclohexenone
27.10B	Kiliani–Fischer synthesis of an aldose
28.2B	Alkylation of diethyl acetamidomalonate to form an amino acid
28.2C	Strecker synthesis of an amino acid

Æ

 \oplus

 \oplus