List of How To's xvii List of Mechanisms xviii List of Selected Applications xxi Preface xxiii Acknowledgments xxv Guided Tour xxx

Prologue 1

What Is Organic Chemistry?	
Some Representative Organic Molecules	
Palytoxin—An Example of a Very Complex Organic Compound	

1 Structure and Bonding 6

1.1	The Periodic Table	7
1.2	Bonding	10
1.3	Lewis Structures	12
1.4	Lewis Structures Continued	17
1.5	Resonance	19
1.6	Determining Molecular Shape	23
1.7	Drawing Organic Structures	28
1.8	Hybridization	32
1.9	Ethane, Ethylene, and Acetylene	37
1.10	Bond Length and Bond Strength	42
1.11	Electronegativity and Bond Polarity	43
1.12	Polarity of Molecules	45
1.13	Capsaicin—A Representative Organic Molecule	47
1.14	Key Concepts—Structure and Bonding	47
	Problems	49
Aci	de and Passa 54	

2 Acids and Bases 54

2.1	Brønsted-Lowry Acids and Bases	55
2.2	Reactions of Brønsted-Lowry Acids and Bases	56
2.3	Acid Strength and pK_a	58
2.4	Predicting the Outcome of Acid–Base Reactions	61
2.5	Factors that Determine Acid Strength	62
2.6	Common Acids and Bases	70
2.7	Aspirin	71
2.8	Lewis Acids and Bases	72
2.9	Key Concepts—Acids and Bases	75
	Problems	76

3 Introduction to Organic Molecules and Functional Groups 80

3.1 Functional Groups	
-----------------------	--

	1	
3.2	An Overview of Functional Groups	

2 2 4

81 82 CONTENTS

viii

4

3.3	Biomolecules	86
3.4	Intermolecular Forces	86
3.5	Physical Properties	90
3.6	Application: Vitamins	97
3.7	Application of Solubility: Soap	98
3.8	Application: The Cell Membrane	100
3.9	Functional Groups and Reactivity	102
3.10	Key Concepts—Introduction to Organic Molecules	
	and Functional Groups	104
	Problems	106
Alk	anes 112	
4.1	Alkanes—An Introduction	113
4.2	Cycloalkanes	117
43	An Introduction to Nomenclature	117
ч.Ј	All infoduction to Nomenciature	11/

4.4	Naming Alkanes	118
4.5	Naming Cycloalkanes	124
4.6	Common Names	126
4.7	Fossil Fuels	127
4.8	Physical Properties of Alkanes	128
4.9	Conformations of Acyclic Alkanes—Ethane	129
4.10	Conformations of Butane	133
4.11	An Introduction to Cycloalkanes	136
4.12	Cyclohexane	137
4.13	Substituted Cycloalkanes	140
4.14	Oxidation of Alkanes	145
4.15	Lipids—Part 1	148
4.16	Key Concepts—Alkanes	149
	Problems	151

5 Stereochemistry 156

5.1	Starch and Cellulose	157
5.2	The Two Major Classes of Isomers	159
5.3	Looking Glass Chemistry—Chiral and Achiral Molecules	160
5.4	Stereogenic Centers	163
5.5	Stereogenic Centers in Cyclic Compounds	165
5.6	Labeling Stereogenic Centers with R or S	167
5.7	Diastereomers	171
5.8	Meso Compounds	173
5.9	R and S Assignments in Compounds with Two	
	or More Stereogenic Centers	175
5.10	Disubstituted Cycloalkanes	176
5.11	Isomers—A Summary	177
5.12	Physical Properties of Stereoisomers	178
5.13	Chemical Properties of Enantiomers	182
5.14	Key Concepts—Stereochemistry	184
	Problems	185
TT	Janatan dina Organia Reactiona, 100	

6 Understanding Organic Reactions 190

6.1	Writing Equations for Organic Reactions	191
6.2	Kinds of Organic Reactions	192
6.3	Bond Breaking and Bond Making	194
6.4	Bond Dissociation Energy	198
6.5	Thermodynamics	201
6.6	Enthalpy and Entropy	203
6.7	Energy Diagrams	205

6.8	Energy Diagram for a Two-Step Reaction Mechanism	207
6.9	Kinetics	210
6.10	Catalysts	212
6.11	Enzymes	213
6.12	Key Concepts—Understanding Organic Reactions	214
	Problems	216

7 Alkyl Halides and Nucleophilic Substitution 220

7.1	Introduction to Alkyl Halides	221
7.2	Nomenclature	222
7.3	Physical Properties	223
7.4	Interesting Alkyl Halides	224
7.5	The Polar Carbon–Halogen Bond	226
7.6	General Features of Nucleophilic Substitution	226
7.7	The Leaving Group	228
7.8	The Nucleophile	230
7.9	Possible Mechanisms for Nucleophilic Substitution	234
7.10	Two Mechanisms for Nucleophilic Substitution	235
7.11	The $S_N 2$ Mechanism	236
7.12	Application: Useful S _N 2 Reactions	241
7.13	The $S_N 1$ Mechanism	244
7.14	Carbocation Stability	248
7.15	The Hammond Postulate	250
7.16	Application: S _N 1 Reactions, Nitrosamines, and Cancer	253
7.17	When Is the Mechanism $S_N 1$ or $S_N 2$?	254
7.18	Vinyl Halides and Aryl Halides	259
7.19	Organic Synthesis	260
7.20	Key Concepts—Alkyl Halides and Nucleophilic Substitution	262
	Problems	263

8 Alkyl Halides and Elimination Reactions 270

8.1	General Features of Elimination	271
8.2	Alkenes—The Products of Elimination Reactions	273
8.3	The Mechanisms of Elimination	277
8.4	The E2 Mechanism	277
8.5	The Zaitsev Rule	281
8.6	The E1 Mechanism	283
8.7	S _N 1 and E1 Reactions	285
8.8	Stereochemistry of the E2 Reaction	287
8.9	When Is the Mechanism E1 or E2?	289
8.10	E2 Reactions and Alkyne Synthesis	290
8.11	When Is the Reaction $S_N 1$, $S_N 2$, E1, or E2?	292
8.12	Key Concepts—Alkyl Halides and Elimination Reactions	296
	Problems	297

9 Alcohols, Ethers, and Epoxides 302

9.1	Introduction	303
9.2	Structure and Bonding	304
9.3	Nomenclature	304
9.4	Physical Properties	307
9.5	Interesting Alcohols, Ethers, and Epoxides	308
9.6	Preparation of Alcohols, Ethers, and Epoxides	311
9.7	General Features-Reactions of Alcohols, Ethers, and Epoxides	313
9.8	Dehydration of Alcohols to Alkenes	314
9.9	Carbocation Rearrangements	318

ix

X CONTENTS

8			
1000	1		
	1		
	provel		
	0		
	N	P	

9.10	Dehydration Using POCI ₃ and Pyridine	320
9.11	Conversion of Alcohols to Alkyl Halides with HX	322
9.12	Conversion of Alcohols to Alkyl Halides with SOCl ₂ and PBr ₃	325
9.13	Tosylate—Another Good Leaving Group	327
9.14	Reaction of Ethers with Strong Acid	330
9.15	Reaction of Epoxides	332
9.16	Application: Epoxides, Leukotrienes, and Asthma	336
9.17	Application: Benzo[a]pyrene, Epoxides, and Cancer	337
9.18	Key Concepts—Alcohols, Ethers, and Epoxides	338
	Problems	340

10 Alkenes 346

10.1	Introduction	347
10.2	Calculating Degrees of Unsaturation	348
10.3	Nomenclature	349
10.4	Physical Properties	353
10.5	Interesting Alkenes	353
10.6	Lipids—Part 2	354
10.7	Preparation of Alkenes	356
10.8	Introduction to Addition Reactions	357
10.9	Hydrohalogenation—Electrophilic Addition of HX	358
10.10	Markovnikov's Rule	361
10.11	Stereochemistry of Electrophilic Addition of HX	363
10.12	Hydration—Electrophilic Addition of Water	365
10.13	Halogenation—Addition of Halogen	366
10.14	Stereochemistry of Halogenation	368
10.15	Halohydrin Formation	370
10.16	Hydroboration–Oxidation	373
10.17	Keeping Track of Reactions	377
10.18	Alkenes in Organic Synthesis	378
10.19	Key Concepts—Alkenes	380
	Problems	381

11 Alkynes 386

11.1	Introduction	387
11.2	Nomenclature	388
11.3	Physical Properties	389
11.4	Interesting Alkynes	389
11.5	Preparation of Alkynes	391
11.6	Introduction to Alkyne Reactions	392
11.7	Addition of Hydrogen Halides	393
11.8	Addition of Halogen	395
11.9	Addition of Water	396
11.10	Hydroboration-Oxidation	399
11.11	Reaction of Acetylide Anions	401
11.12	Synthesis	404
11.13	Key Concepts—Alkynes	407
	Problems	408

12 Oxidation and Reduction 412

12.1	Introduction	413
12.2	Reducing Agents	414
12.3	Reduction of Alkenes	415
12.4	Application: Hydrogenation of Oils	418
12.5	Reduction of Alkynes	419
12.6	The Reduction of Polar C-X σ Bonds	422

12.7	Oxidizing Agents	423
12.8	Epoxidation	425
12.9	Dihydroxylation	428
12.10	Oxidative Cleavage of Alkenes	430
12.11	Oxidative Cleavage of Alkynes	432
12.12	Oxidation of Alcohols	433
12.13	Application: The Oxidation of Ethanol	436
12.14	Sharpless Epoxidation	436
12.15	Key Concepts—Oxidation and Reduction	439
	Problems	441

13 Radical Reactions 446

13.1	Introduction	447
13.2	General Features of Radical Reactions	448
13.3	Halogenation of Alkanes	450
13.4	The Mechanism of Halogenation	451
13.5	Chlorination of Other Alkanes	453
13.6	Chlorination versus Bromination	454
13.7	Halogenation as a Tool in Organic Synthesis	457
13.8	The Stereochemistry of Halogenation Reactions	457
13.9	Application: The Ozone Layer and CFCs	459
13.10	Radical Halogenation at an Allylic Carbon	461
13.11	Application: Oxidation of Unsaturated Lipids	465
13.12	Application: Antioxidants	466
13.13	Radical Addition Reactions to Double Bonds	467
13.14	Polymers and Polymerization	470
13.15	Key Concepts—Radical Reactions	472
	Problems	473

14 Mass Spectrometry and Infrared Spectroscopy 478

14.1	Mass Spectrometry	479
14.2	Alkyl Halides and the M + 2 Peak	483
14.3	Other Types of Mass Spectrometry	484
14.4	Electromagnetic Radiation	487
14.5	Infrared Spectroscopy	488
14.6	IR Absorptions	490
14.7	IR and Structure Determination	497
14.8	Key Concepts—Mass Spectrometry and Infrared Spectroscopy	499
	Problems	500

15 Nuclear Magnetic Resonance Spectroscopy 504

15.1	An Introduction to NMR Spectroscopy	505
15.2	¹ H NMR: Number of Signals	508
15.3	¹ H NMR: Position of Signals	511
15.4	The Chemical Shift of Protons on sp^2 and sp Hybridized Carbons	514
15.5	¹ H NMR: Intensity of Signals	516
15.6	¹ H NMR: Spin–Spin Splitting	518
15.7	More Complex Examples of Splitting	522
15.8	Spin–Spin Splitting in Alkenes	525
15.9	Other Facts About ¹ H NMR Spectroscopy	527
15.10	Using ¹ H NMR to Identify an Unknown	529
15.11	¹³ C NMR Spectroscopy	531
15.12	Magnetic Resonance Imaging (MRI)	535
15.13	Key Concepts—Nuclear Magnetic Resonance Spectroscopy	536
	Problems	537

xi

CONTENTS

xii

16 Conjugation, Resonance, and Dienes 544

	Problems	572
16.16	Key Concepts—Conjugation, Resonance, and Dienes	571
16.15	Conjugated Dienes and Ultraviolet Light	569
16.14	Other Facts About the Diels-Alder Reaction	567
16.13	Specific Rules Governing the Diels-Alder Reaction	563
16.12	The Diels–Alder Reaction	561
16.11	Kinetic Versus Thermodynamic Products	558
16.10	Electrophilic Addition: 1,2- Versus 1,4-Addition	556
16.9	Stability of Conjugated Dienes	555
16.8	The Carbon–Carbon σ Bond Length in 1,3-Butadiene	553
16.7	Interesting Dienes and Polyenes	553
16.6	Conjugated Dienes	552
16.5	Electron Delocalization, Hybridization, and Geometry	551
16.4	The Resonance Hybrid	550
16.3	Common Examples of Resonance	548
16.2	Resonance and Allylic Carbocations	547
16.1	Conjugation	545

17 Benzene and Aromatic Compounds 578

	Problems	602
17.12	Key Concepts—Benzene and Aromatic Compounds	602
17.11	Buckminsterfullerene—Is It Aromatic?	601
17.10	The Inscribed Polygon Method for Predicting Aromaticity	598
17.9	What Is the Basis of Hückel's Rule?	596
17.8	Examples of Aromatic Compounds	590
17.7	The Criteria for Aromaticity—Hückel's Rule	587
17.6	Benzene's Unusual Stability	585
17.5	Interesting Aromatic Compounds	584
17.4	Spectroscopic Properties	583
17.3	Nomenclature of Benzene Derivatives	581
17.2	The Structure of Benzene	580
17.1	Background	579

18 Electrophilic Aromatic Substitution 608

18.1	Electrophilic Aromatic Substitution	609
18.2	The General Mechanism	609
18.3	Halogenation	612
18.4	Nitration and Sulfonation	613
18.5	Friedel–Crafts Alkylation and Friedel–Crafts Acylation	614
18.6	Substituted Benzenes	620
18.7	Electrophilic Aromatic Substitution of Substituted Benzenes	624
18.8	Why Substituents Activate or Deactivate a Benzene Ring	626
18.9	Orientation Effects in Substituted Benzenes	628
18.10	Limitations on Electrophilic Substitution Reactions	
	with Substituted Benzenes	631
18.11	Disubstituted Benzenes	633
18.12	Synthesis of Benzene Derivatives	635
18.13	Halogenation of Alkyl Benzenes	636
18.14	Oxidation and Reduction of Substituted Benzenes	638
18.15	Multistep Synthesis	641
18.16	Key Concepts—Electrophilic Aromatic Substitution	644
	Problems	646

19 Carboxylic Acids and the Acidity of the O–H Bond 652

19.1	Structure and Bonding	653
19.2	Nomenclature	654
19.3	Physical Properties	657
19.4	Spectroscopic Properties	658
19.5	Interesting Carboxylic Acids	659
19.6	Aspirin, Arachidonic Acid, and Prostaglandins	660
19.7	Preparation of Carboxylic Acids	661
19.8	Reactions of Carboxylic Acids—General Features	663
19.9	Carboxylic Acids—Strong Organic Brønsted–Lowry Acids	664
19.10	Inductive Effects in Aliphatic Carboxylic Acids	667
19.11	Substituted Benzoic Acids	668
19.12	Extraction	670
19.13	Sulfonic Acids	673
19.14	Amino Acids	673
19.15	Key Concepts—Carboxylic Acids and the Acidity	
	of the O-H Bond	676
	Problems	678

20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation and Reduction 684

	(0 <i>F</i>
Introduction	685
General Reactions of Carbonyl Compounds	686
A Preview of Oxidation and Reduction	689
Reduction of Aldehydes and Ketones	690
The Stereochemistry of Carbonyl Reduction	693
Enantioselective Carbonyl Reductions	693
Reduction of Carboxylic Acids and Their Derivatives	696
Oxidation of Aldehydes	700
Organometallic Reagents	701
Reaction of Organometallic Reagents with Aldehydes and Ketones	704
Retrosynthetic Analysis of Grignard Products	707
Protecting Groups	709
Reaction of Organometallic Reagents	
with Carboxylic Acid Derivatives	711
Reaction of Organometallic Reagents with Other Compounds	714
α,β-Unsaturated Carbonyl Compounds	716
Summary—The Reactions of Organometallic Reagents	719
Synthesis	719
Key Concepts—Introduction to Carbonyl Chemistry;	
Organometallic Reagents; Oxidation and Reduction	722
Problems	725
	IntroductionGeneral Reactions of Carbonyl CompoundsA Preview of Oxidation and ReductionReduction of Aldehydes and KetonesThe Stereochemistry of Carbonyl ReductionEnantioselective Carbonyl ReductionsReduction of Carboxylic Acids and Their DerivativesOxidation of AldehydesOrganometallic ReagentsReaction of Organometallic Reagents with Aldehydes and KetonesRetrosynthetic Analysis of Grignard ProductsProtecting GroupsReaction of Organometallic Reagentswith Carboxylic Acid DerivativesReaction of Organometallic Reagents with Other Compoundsα,β-Unsaturated Carbonyl CompoundsSynthesisKey Concepts—Introduction to Carbonyl Chemistry;Organometallic Reagents; Oxidation and ReductionProblems

21 Aldehydes and Ketones—Nucleophilic Addition 732

21.1	Introduction	733
21.2	Nomenclature	734
21.3	Physical Properties	737
21.4	Spectroscopic Properties	738
21.5	Interesting Aldehydes and Ketones	740
21.6	Preparation of Aldehydes and Ketones	741
21.7	Reactions of Aldehydes and Ketones—General Considerations	743
21.8	Nucleophilic Addition of H ⁻ and R ⁻ —A Review	745
21.9	Nucleophilic Addition of ⁻ CN	748
21.10	The Wittig Reaction	749

xiii

xiv CONTENTS

Sectored Sectored	
and the second se	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100 100	2 3 3 3 3 3 3 5 5 5 6
C. C	
A	
-A-1279 184	
ARE CONTRACTOR	
ALC: NOT	100 March 16 (6)
STREET, STREET,	STATES AND
CONTRACTOR STREET	COLUMN STATES
Ro which and	Sec. 10.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 8102 - 64
B. (1998) (1997)	Mar Stevensor
MAN TRADE AND	1.4.2.3.1.1
12720112065	10-10 M
1000 100	8 25-63
and the second second	5.2 6.5
1 2 2 2 1	est to an
Sec. 1.	TH
10 Mar 17 - 1	77C - 121
MARL TRUE	
BC73 3	
22010	1211 20
100 TO 100 TO 100 TO 100	Contract Sec
Contraction of the local distance of the loc	2010
	and the second second
A2 - 85	
and the second	A 1962 St. 31
S 100	TO THE REAL PROPERTY OF
1.	A
A - 718 - 52 -	CALL STREET
	and the second second
6.9	1.0.1
	1.1.1.1.1.1.1
Although the second second	No. State of the
	A DECK DECK DECK DECK DECK DECK DECK DECK

ncepts—Aldehydes and Ketones—Nucleophilic Addition	771
oduction to Carbohydrates	/69
Iemiacetals	766
as Protecting Groups	765
n of Alcohols—Acetal Formation	762
n of H_2O —Hydration	759
n of 2° Amines	756
n of 1° Amines	754
	n of 1° Amines

22.1	Introduction	781
22.2	Structure and Bonding	783
22.3	Nomenclature	785
22.4	Physical Properties	788
22.5	Spectroscopic Properties	789
22.6	Interesting Esters and Amides	790
22.7	Introduction to Nucleophilic Acyl Substitution	792
22.8	Reactions of Acid Chlorides	796
22.9	Reactions of Anhydrides	797
22.10	Reactions of Carboxylic Acids	799
22.11	Reactions of Esters	804
22.12	Application: Lipid Hydrolysis	806
22.13	Reactions of Amides	808
22.14	Application: The Mechanism of Action of β-Lactam Antibiotics	809
22.15	Summary of Nucleophilic Acyl Substitution Reactions	810
22.16	Natural and Synthetic Fibers	811
22.17	Biological Acylation Reactions	813
22.18	Nitriles	815
22.19	Key Concepts—Carboxylic Acids and Their Derivatives—	
	Nucleophilic Acyl Substitution	820
	Problems	823

23 Substitution Reactions of Carbonyl Compounds at the α Carbon 832

24 Carbonyl Condensation Reactions 864

24.1	1 The Aldol Reaction	865
24.2	2 Crossed Aldol Reactions	869
24.3	3 Directed Aldol Reactions	872
24.4	4 Intramolecular Aldol Reactions	873
24.5	5 The Claisen Reaction	875

25 Amines 892

smi97462_fm.qxd 12/17/04 9:33 AM Page xv

25.1	Introduction	893
25.2	Structure and Bonding	894
25.3	Nomenclature	895
25.4	Physical Properties	897
25.5	Spectroscopic Properties	898
25.6	Interesting and Useful Amines	899
25.7	Preparation of Amines	903
25.8	Reactions of Amines—General Features	909
25.9	Amines as Bases	909
25.10	Relative Basicity of Amines and Other Compounds	911
25.11	Amines as Nucleophiles	917
25.12	Hofmann Elimination	919
25.13	Reaction of Amines with Nitrous Acid	922
25.14	Substitution Reactions of Aryl Diazonium Salts	924
25.15	Coupling Reactions of Aryl Diazonium Salts	928
25.16	Application: Perkin's Mauveine and Synthetic Dyes	930
25.17	Application: Sulfa Drugs	932
25.18	Key Concepts—Amines	933
	Problems	935

26 Lipids 942

26.1	Introduction	943
26.2	Waxes	944
26.3	Triacylglycerols	944
26.4	Phospholipids	948
26.5	Fat-soluble Vitamins	950
26.6	Eicosanoids	952
26.7	Terpenes	955
26.8	Steroids	960
26.9	Key Concepts—Lipids	964
	Problems	965

27 Carbohydrates 970

27.1	Introduction	971
27.2	Monosaccharides	972
27.3	The Family of D-Aldoses	976
27.4	The Family of D-Ketoses	978
27.5	Physical Properties of Monosaccharides	978
27.6	The Cyclic Forms of Monosaccharides	979
27.7	Glycosides	984
27.8	Reactions of Monosaccharides at the OH Groups	987
27.9	Reactions at the Carbonyl Group—Oxidation and Reduction	988
27.10	Reactions at the Carbonyl Group—Adding or Removing	
	One Carbon Atom	991
27.11	The Fischer Proof of the Structure of Glucose	994
27.12	Disaccharides	997
27.13	Polysaccharides	999

xvi CONTENTS

27.15	Key Concepts—Carbohydrates Problems	1005 1007
28 Ami	no Acids and Proteins 1012	
28.1	Amino Acids	1013
28.2	Synthesis of Amino Acids	1016
28.3	Separation of Amino Acids	1019
28.4	Enantioselective Synthesis of Amino Acids	1023
28.5	Peptides	1024
28.6	Peptide Synthesis	1028
28.7	Automated Peptide Synthesis	1032
28.8	Protein Structure	1035
28.9	Important Proteins	1040
28.10	Key Concepts—Amino Acids and Proteins	1043
	Problems	1044
Appendix A	Common Abbreviations, Arrows, and Symbols A-1	
Appendix B	pK_a Values for Selected Compounds A-3	
Appendix C	Bond Dissociation Energies for Some Common Bonds A-5	
Appendix D	Characteristic IR Absorption Frequencies A-7	
Appendix E	Characteristic ¹ H NMR Absorptions A-9	
Appendix F	General Types of Organic Reactions A-11	
Appendix G	How to Synthesize Particular Functional Groups A-13	
Appendix H	Reactions that Form Carbon–Carbon Bonds A-17	
Glossary G-1 Credits C-1		

27.14 Other Important Sugars and Their Derivatives

Index I-1