
Flow Past a Vortex

Consider a uniform stream, U∞  flowing in the x direction past a vortex of strength K with the center at the origin.  By superposition the combined stream function is
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The velocity components of this flow are given by
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Setting  
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  and  
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  = 0, we find the stagnation point at 
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  =  90˚, r = a  = K/ U∞  or  (x,y) = (0,a). 

At this point the counterclockwise vortex velocity, K/r, exactly cancels the free steam velocity, U.  Figure 8.6 in the text shows a plot of the streamlines for this flow.

An Infinite Row of Vortices

Consider an infinite row of vortices of equal strength K and equal spacing   a  as shown in Fig. 8.7a.  A single vortex, i , has a stream function given  by 
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  and the total infinite row has a combined stream function of
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This infinite sum can also be expressed as
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	Fig. 8.7  Superposition of vortices

(a) an infinite row of equal strength vortices;

(b) the streamline pattern for part a;

(c)  vortex sheet, part a viewed from afar.
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The resulting left and right flow above and below the row of vortices is given by
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The Vortex Sheet

The flow pattern of Fig. 8.7b when viewed from a long distance will appear as the uniform left and right flows shown in Fig. 8.7c.  The vortices are so closely packed together that they appear to be a continuous sheet.  The strength of the vortex sheet is given by
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Since, in general, the circulation is related to the strength, , by d  =  dx,  the strength,  , of a vortex sheet is equal to the circulation per unit length, d /dx. 

Plane Flow Past Closed-Body Shapes

Various types of external flows over a closed-body can be constructed by superimposing a uniform stream with sources, sinks, and vortices.  

Key Point:  The body shape will be closed only if the net source of the outflow equals the net sink inflow. Two examples of this are presented below.

The Rankine Oval

	A Rankine Oval is a cylindrical shape which is long compared to its height.  It is formed by a source-sink pair aligned parallel to a uniform stream.  

The individual flows used to produce the final result and the combined flow field are shown in Fig. 8.9.  The combined stream function is given by
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Fig. 8.9  The Rankine Oval


The oval shaped closed body is the streamline, 
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.  Stagnation points occur at the front and rear of the oval, 
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.  Key geometric and flow parameters of the Rankine Oval can be expressed as follows:
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As the value of the parameter  
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  is increased from zero, the oval shape increases in size and transforms from a flat plate to a circular cylinder at the limiting case of  
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Specific values of these parameters are presented in Table 8.1 for four different values of the dimensionless vortex strength, 
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Table 8.1  Rankine-Oval Parameters
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0.0
	0.0
	1.0
	
	
1.0

	
0.01
	0.31
	1.10
	
32.79
	
1.020

	
0.1
	0.263
	1.095
	
4.169
	
1.187

	
1.0
	1.307
	1.732
	
1.326
	
1.739

	
10.0
	4.435
	4.458
	
1.033
	
1.968

	
10.0
	14.130
	14.177
	
1.003
	
1.997

	
	
	
	
1.000
	
2.000


Flow Past a Circular Cylinder with Circulation

It is seen from Table 8.1 that as source strength m becomes large, the Rankine Oval becomes a large circle, much greater in diameter than the source-sink spacing 2a.  Viewed, from the scale of the cylinder, this is equivalent to a uniform stream plus a doublet.  To add circulation without changing the shape of the cylinder we place a vortex at the doublet center. For these conditions the stream function is given by
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Typical resulting flows are shown in Fig. 8.10 for increasing values of non-dimensional vortex strength  
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Fig. 8.10  Flow past a cylinder with circulation for values of 
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  of (a) 0, (b) 1.0, (c) 2.0, and (d) 3.0

Again, the streamline  
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  is corresponds to the circle  r = a.  As the counter-clockwise circulation  
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 increases, velocities below the cylinder increase and velocities above the cylinder decrease (could this be related to the path of a curve ball?).  In polar coordinates, the velocity components are given by
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For small K, two stagnation points appear on the surface at angles  
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  or for which
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Thus for  K = 0, 
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 = 0 and 180o.   For 
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  =  30 and 150o .  Figure 8.10c is the limiting case for which with  
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 = 2,  
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 = 90o  and the two stagnation points meet at the top of the cylinder.   

The Kutta-Joukowski Lift Theorem

The development in the text shows that from inviscid flow theory,  

The lift per unit depth of any cylinder of any shape immersed in a uniform stream equals to 
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 is the total net circulation contained within the body shape.  The direction of the lift is 90o from the stream direction, rotating opposite to the circulation.

This is the well known Kutta-Joukowski lift theorem.

For the cylindrical flows shown in Fig. 8.10 b to d, there is a downward force, or negative lift, proportional to the free stream velocity and vortex strength.  The surface pressure distribution is given by
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where     = K / (U a)  and  P  is the free stream pressure.  For a cylinder of width  b into the paper, the drag  D  is given by


[image: image48.wmf]  

D

=

-

P

s

-

P

¥

(

)

0

2

p

ò

cos

q

b

a

d

q


The lift force  L  is normal to the free stream and is equal to the sum of the vertical pressure forces (for inviscid flow) and is determined by 
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Substituting Ps - P from the previous equation the lift is given by
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