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X.  OPEN-CHANNEL FLOW 
 

Previous internal flow analyses have considered only closed conduits where the 
fluid typically fills the entire conduit and may be either a liquid or a gas. 
 
This chapter considers only partially filled channels of liquid flow referred to as 
open-channel flow. 
 
Open-Channel Flow:  Flow of a liquid in a conduit with a free surface. 
 
Open-channel flow analysis basically results in the balance of gravity and friction 
forces. 
 
One Dimensional Approximation 
 
While open-channel flow can, in general, be very complex ( three dimensional and 
transient),  one common approximation in basic analyses is the 
 
One-D Approximation:   
The flow at any local cross 
section can be treated as 
uniform and at most varies 
only in the principal flow 
direction. 

 
Fig. 10.2  Geometry and notation for open- channel flow. 

 
This results in the following equations. 
 
Conservation of Mass (for ρ = constant) 
 

 Q  =  V(x) A(x)  =  constant 
 
Energy Equation 
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The equation in this form is written between two points ( 1 – 2 ) on the free surface 
of the flow.  Note that along the free surface, the pressure is a constant, is equal to 
local atmospheric pressure, and does not contribute to the analysis with the energy 
equation. 
 
The friction head loss  hf  is analogous to the head loss term in duct flow, Ch. VI, 
and can be represented by 
 

h f = f x2 −x1

Dh

Vavg
2

2g
 

where   P = wetted perimeter 

Dh = hydraulic diameter = 
4A
P

 

 
Note:  One of the most commonly used formulas uses the hydraulic radius: 
 

Rh =
1
4

Dh =
A
P

 

 
Flow Classification by Depth Variation 
 
The most common classification method is by rate of change of free-surface depth.  
The classes are summarized as 
 

1. Uniform flow (constant depth and slope) 
2. Varied flow 

a. Gradually varied (one-dimensional) 
b. Rapidly varied (multidimensional) 
 

Flow Classification by Froude Number: Surface Wave Speed 
 
A second classification method is by the dimensionless Froude number, which is a 
dimensionless surface wave speed.  For a rectangular or very wide channel we 
have 
 

Fr =
V
co

=
V

gy( )1/2  where   y is the water depth  and  co= (gy).5 

and       co = the speed of a surface wave as the wave height approaches zero.   
 
There are three flow regimes of incompressible flow. These have analogous flow 
regimes in compressible flow as shown below: 
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Incompressible Flow Compressible Flow 

Fr < 1  subcritical flow 
Fr = 1 critical flow 
Fr > 1 supercritical flow 

Ma < 1 subsonic flow 
Ma = 1 sonic flow 
Ma > 1 supersonic flow 

  
 
Hydraulic Jump 
 
Analogous to a normal shock in compressible flow, a hydraulic jump provides a 
mechanism by which an incompressible flow, once having accelerated to the 
supercritical regime, can return to subcritical flow.  This is illustrated by the 
following figure. 
 

 
Fig. 10.5  Flow under a sluice gate accelerates from subcritical to critical to 

supercritical and then jumps back to subcritical flow. 
 

The critical depth  yc = Q
b2g

 
  

 
  

1/3

 is an important parameter in open-

channel flow and is used to determine the local flow regime (Sec. 10.4). 
 
 
Uniform Flow;  the Chezy Formula 
 
Uniform flow 1.  Occurs in long straight runs of constant slope 

2.  The velocity is constant with V = Vo 
3.  Slope is constant with  So  = tan θ 
4.  Water depth is constant with y = yn 

 

 
From the energy equation with  V1  =  V2  =  Vo, we have 
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 h f = Z1 − Z2 = SoL  
 
where L is the horizontal distance between 1 and 2.  Since the flow is fully 
developed, we can write from Ch. VI 
 

 h f = f L
Dh

Vo
2

2g
 and Vo = 8g

f
 
 

 
 

1/2

Rh
1/2So

1/2  

 

For fully developed, uniform flow, the quantity  
8g
f

 
 

 
 

1/2

is a constant 

and can be denoted by  C.  The equations for velocity and flow rate 
thus become 
 

Vo = C Rh
1/2So

1/2 and Q = CA Rh
1/2 So

1/2  
 
The quantity C is called the  Chezy coefficient, and varies from 60 ft1/2/s for small 
rough channels to 160 ft1/2/s for large rough channels (30 to 90 m1/2/s in  SI). 
 
Example 10.1  A straight rectangular 
channel is 6 ft wide and 3 ft deep and laid 
on a slope of 2˚.  The friction factor is 
0.022.  Estimate the uniform flow rate in 
cubic feet per second. 
Assume steady, uniform flow.  Solve using 
the Chezy formula. 

 
 

C =
2g
f

=
2 ⋅ 32.2 ft /s2

0.022
=108

ft1/2

s
 , A = b y = 6 ft ⋅ 3 ft =18 ft2

 

 

Rh =
A

Pwet
=

18 ft 2

3+ 6 + 3( ) ft
=1.5 ft  So = tanθ = tan2o

 

 

Q = C A Rh
1/2So

1/2 =108
ft1/2

s
⋅18 ft2 ⋅1.5 ft ⋅ tan2o( )1/2

= 450
ft 3

3
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The Manning Roughness Correlation 
 
The friction factor   f   in the Chezy equations can be obtained from the Moody 
chart of Ch. VI.  However, since most flows can be considered fully rough, it is 
appropriate to use Eqn 6.64: 
 

 fully rough flow:     f ≈ 2.0 log 3.7Dh

ε
 
 

 
 

−2

 

 
However, most engineers use a simple correlation by Robert Manning: 
 

 S.I. Units Vo m/s( ) ≈ α
n

Rh m( )[ ]2/3 So
1/2  

 

 B.G. Units Vo ft/s( ) ≈ α
n

Rh ft( )[ ]2/3 So
1/2  

where   n   is a roughness parameter given in Table 10.1 and is the same in both 
systems of units and α is a dimensional constant equal to 1.0 in S.I. units and 1.486 
in B.G. units.  The volume flow rate is then given by 
 
 

 Uniform flow Q = Vo A ≈ α
n

A Rh
2/3 So

1/2  

 
Example 10.2 
 
Given: 
Rectangular channel, 
depth = 1/2 channel width 
slope - S = 0.006 
Volume flow rate = 100 ft3/s 
 
Find:  Best bottom width b. 
 

 

b/2

   b

cross-section

 

θ

S = 0.006

 
 
Use the Manning formula in English units, Eqn. 10.19, to predict flow rate. 
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For a brickwork channel, from Table 10.1 use  n = 0.015 
 

A =b y =
b2

2
 Rh =

A
Pwet

=
b ⋅b /2

b + 2 ⋅b /2
=

b
4

 

 

Q =
α
n

ARh
2/3So

1/2 =
1.486
0.015

b2

2
 
  

 
  

b
4

 
 

 
 

2 /3

0.006( )1/2 =100
ft 3

s
 

 

Solving for b we obtain b8/ 3 = 65.7 b = 4.8 ft  
 
 
 Table 10.1  Experimental Values for Manning’s    n   Factor 

 


