Uniform Flow in a Partly Full, Circular Pipe
	Fig. 10.6 shows a partly full, circular pipe with uniform flow.  Since frictional resistance increases with wetted perimeter, but volume flow rate increases with cross sectional flow area,

the maximum velocity and flow rate occur before the pipe is completely full.

For this condition, the geometric properties of the flow are given by the equations below.
	[image: image1.wmf]
Fig. 10.6 Uniform Flow in a Partly Full, Circular Channel
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The previous Manning formulas are used to predict Vo and Q for uniform flow when the above expressions are substituted for A, P, and Rh.  
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These equations have respective maxima for Vo and Q  given by
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Efficient Uniform Flow Channels

	A common problem in channel flow is that of finding the most efficient low-resistance sections for given conditions.

This is typically obtained by maximizing Rh for a given  area and flow rate.  This is the same as minimizing the wetted perimeter.
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Note:  Minimizing the wetted perimeter for a given flow should minimize the frictional pressure drop per unit length for a given flow.

It is shown in the text that for constant value of area A and   = cot  the minimum value of  wetted perimeter is obtained for 
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Note:  For any trapezoid angle, the most efficient cross section occurs when the hydraulic radius is one-half the depth.

For the special case of a rectangle ( = 0,  = 90˚),  the most efficient cross section occurs with
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Best Trapezoid Angle

The general equations listed previously are valid for any value of .   For a given, fixed value of area A and depth y, the best trapezoid angle is given by
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Example 10.3

What are the best dimensions for a rectangular brick channel designed to carry 5 m3/s of water in uniform flow with So = 0.001?

Taking n = 0.015 from Table 10.1,    A  =  2 y2 ,  and  Rh = 1/2 y ; Manning’s formula is written as
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This can be solved to obtain
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The corresponding area and width are
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Note:  The text compares these results with those for two other geometries having the same area.

Specific Energy:  Critical Depth

	One useful parameter in channel flow is the specific energy   E, where  y is the local water depth.

Defining a flow per unit channel width as    q  =  Q/b    we write
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	Fig. 10.8 Illustration of a specific energy curve,  depth  y  vs. the specific energy E.

The curve for each flow rate Q has a minimum energy Emin that occurs at a critical water depth yc corresponding to critical flow. For E > Emin there are two possible states, one subcritical and one supercritical.
	[image: image23.wmf]
Fig. 10.8  Specific Energy Illustration


Emin  occurs at
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The value of   Emin   is given by  
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At this value of minimum energy and minimum depth we can write
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Depending on the value of Emin and V, one of several flow conditions can exist.

For a given flow, if

	E   <   Emin
E   =   Emin
E   >   Emin  , V  <  Vc
E   >   Emin  ,  V  >  Vc
	No solution is possible

Flow is critical, y = yc, V = Vc   Fr  =  1

Flow is subcritical, y > yc , Fr < 1 , disturbances can propagate upstream as well as downstream

Flow is supercritical, y < yc , Fr > 1, disturbances can only propagate downstream within a wave angle given by



[image: image27.wmf]m

=

sin

-1

C

o

V

=

sin

-1

g

y

(

)

1

/

2

V




Nonrectangular Channels

For flows where the local channel width varies with depth y, critical values can be expressed as
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and
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where bo = channel width at the free surface.

These equations must be solved iteratively to determine the critical area  Ac  and critical velocity  Vc.

For critical channel flow that is also moving with constant depth (yc), the slope corresponds to a critical slope  Sc  given by
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and        = 1. for S I units and 2.208 for B. G. units

	Example 10.6

Given:  a 50˚, triangular channel has a flow rate of Q = 16 m3/s. 

Compute:  (a) yc,   (b)  Vc,  

 
(c)    Sc  for n = 0.018
	[image: image31.wmf]


a.  For the given geometry, we have


P = 2 ( y csc 50˚)
A = 2[y (1/2 y cot 50˚)]



Rh = A/P = y/2  cos 50˚
bo = 2 ( y cot 50˚)

For critical flow, we can write
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yc = 2.37 m 

ans.

b.  With yc, we compute  


Pc = 6.18 m
Ac = 4.70 m2

bo,c = 3.97 m

The critical velocity is now  
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    ans.

c.  With n = 0.018, we compute the critical slope as
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