Uniform Flow in a Partly Full, Circular Pipe

Fig. 10.6 shows a partly full, circular

pipe with uniform flow. Since /”'u:%‘ i ‘..*‘\I "
frictional resistance increases with | h 07 ] |
wetted perimeter, but volume flow o ;'I
rate increases with cross sectional \ ")
flow area, -_—

the maximum velocity and flow rate
occur before the pipe is completely
full.

For this condition, the geometric i
properties of the flow are given by the e B e 0 W I
equations below.

Fig. 10.6 Uniform Flow in aPartly Full,
Circular Channel

A:RZ%—SmZZQE P=2R0 Rh:%{@—s%@%

The previous Manning formulas are used to predict V, and Q for uniform flow
when the above expressions are substituted for A, P, and Ry,.

a[R sin29[lf/3 12 2 sin26C
V == — S — —
° n% 26 % ° Q=VoR E? 2 C

These equations have respective maximafor Vo and Q given by
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V= 0.718% R®S? a §=12873P and y=0.813D

Q... :2.129% R®S” a @=151.21p and y=0.938D

Efficient Uniform Flow Channels

A common problem in channel flow is _ oty —f
that of finding the most efficient low- :
resistance sections for given conditions. :

Thisistypically obtained by maximizing
Rn for agiven areaand flow rate. This

IS the same as minimizing the wetted U —
perimeter.

Note: Minimizing the wetted perimeter for a given flow should minimizethe
frictional pressuredrop per unit length for a given flow.

It is shown in the text that for constant value of area A and o =cot 8, the
minimum value of wetted perimeter is obtained for

A:y2%(l+az)u2—ag P=4y(1+a®) " -2ay Rh:%y

Note: For any trapezoid angle, the most efficient cross section occurs when the
hydraulic radius is one-half the depth.

For the specia case of arectangle (o =0, 8 =90°), the most efficient cross section
occurs with
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Best Trapezoid Angle

The general equations listed previously are valid for any value of a. For agiven,
fixed value of area A and depth y, the best trapezoid angle is given by

a= cote—? or 8 = 60k

Example 10.3

What are the best dimensions for a rectangular brick channel designed to carry 5
m>/s of water in uniform flow with S, = 0.001?

Taking n=0.015from Table 10.1, A = 2 y2 , and Rp=1/2y ; Manning's
formulaiswritten as

1.0 23 ~1/2 3 Dl 1/2
== ARX”S” o 5m’/s= 2 0.001
Q=T 0015( y) yD ( )

This can be solved to obtain
y¥*=1882m"® o y=127m

The corresponding area and width are

A =2y*=32Im° and b :e =2.53m

Note: The text compares these results with those for two other geometries having
the same area.
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Specific Energy: Critical Depth

One useful parameter in channel V2
flow isthe specific energy E, E=y+ > g
where y istheloca water depth. 9
2
Defining aflow per unit channel E=y+ g
widthas q = Q/b wewrite 29y’

Fig. 10.8 lllustration of a

specific energy curve, depth y +
vs. the specific energy E. I
The curve for each flow rate Q onsiant 4
has a minimum energy Emin

Suberitiesl Fr<l
that occurs at acritical water v il T
depth y corresponding to £ Supercritical Fr>1
critical flow. For E > Emin 0 By EsBE..
there are two possible states, _ o _
supercritical.

3

Emin Occurs at

2ljf3 |:|Q2
gt =g

Thevaueof Emin isgivenby Enin =2 VY-

At this value of minimum energy and minimum depth we can write

V.=(gy.)"=C, and Fr=1
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Depending on the value of Erin and V, one of several flow conditions can exist.

For agiven flow, if

E < Emin No solution is possible
E = Emin Flow iscritical,y =y, V=V Fr = 1

E > Emn ,V < Ve Flow issubcritical, y >y, Fr <1, disturbances
can propagate upstream as well as downstream

Flow issupercritical,y <y¢, Fr>1,
disturbances can only propagate downstream
within awave angle given by

MY oA (+)')
v

=9
H V

E > Emin, V > V¢

Nonrectangular Channels
For flows where the local channel width varies with depth 'y, critical vaues can be
expressed as

_Q _mAO
VeT AT b, O

and

_ h.Qd”
A= H g H

where by = channel width at the free surface.

c

These equations must be solved iteratively to determine the critical area A and
critical velocity V.

For critical channel flow that is aso moving with constant depth (y¢), the slope
correspondsto acritical lope S; given by
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n“gA, _ nV? _ ng P _

f
c azboRh,c o2 4’{:3 a’R3h ~ 8h,

and o =1.for S| unitsand 2.208 for B. G. units

Example 10.6
Given: a50’, triangular channel has a
flow rateof Q =16 m3/s.
Compute: (8) ye, (b) Vg,
(c) & forn=0.018
a. For the given geometry, we have

P=2(ycsc50) A =2[y (1/2y cot 50°)]
Rnh=A/P=y/2 cos50° bo =2 (y cot 50°)

For critica flow, we can write

gA>=b,Q* or g (yg cot 500)3 = (2 Y, cot 50° )Q2

Ye=2.37m ans.
b. Withyc, we compute
P = 6.18 m Ac=4.70m° boc=3.97m
16m°/s
The critical velocity is now s = Q = =341m/s ans
A 4.70m

c. With n = 0.018, we compute the critical slope as
2 2
= 9n Pl/3 _ 9.83.(0.018) (6.112/33) — 0.0542
a“b,R~ 1.0°(3.97)(0.76)

X-12



