
Laboratory Manual
With Lecture Notes

for use with

C++ Program Design
An Intorduction to

Object-Oriented Design

Third Edition

James A. Cohoon
University of Virginia

Jack W. Davidson

University of Virginia

Laboratory Manual with Lecture Notes for use with
C++ PROGRAM DESIGN: AN INTRODUCTION TO OBJECT-ORIENTED DESIGN, THIRD EDITION
JAMES A. COHOON AND JACK W. DAVIDSON

Published by McGraw-Hill Higher Education, an imprint of The McGraw-Hill Companies, Inc.,
1221 Avenue of the Americas, New York, NY 10020. Copyright © The McGraw-Hill Companies, Inc., 2002, 1998.
All rights reserved.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, network or other electronic
storage or transmission, or broadcast for distance learning.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 QPD/QPD 0 3 2 1

ISBN 0-07-251859-6

www.mhhe.com

General manager: Tom Casson
Publisher: Elizabeth A. Jones
Senior developmental editor: Kelley Butcher
Marketing manager: John Wannemacher
Senior project manager: Kay Brimeyer
Production supervisor: Enboge Chong

http://www.mhhe.com/

iii

Contents

Preface, v
Slide set 1

Basics of machine, software, and program design, S1
Slide set 2

Fundamentals of C++, S16
Slide set 3

Modifying objects, S32
Slide set 4

If constructs, S55
Slide set 5

Iterative constructs, S69
Slide set 6

Libraries, S103
Slide set 7

Programmer-defined functions, S114
Slide set 8

Class construct, S139
Slide set 9

Abstract data types, S148
Slide set 10

Arrays, S171
Slide set 11

Vectors, S189
Slide set 12

EzWindows API, S213

iv

Slide set 13
Pointers and dynamic objects, S226

Slide set 14
Inheritance, S248

Slide set 15
Templates and polymorphism, S265

Laboratory 1
Riding the wave of the future, 1

Laboratory 2
Attacking your first problem, 9

Laboratory 3
Inquiring minds want to know about the if statement, 17

Laboratory 4
Let’s go looping now, everybody is learning how, 25

Laboratory 5
Taking a trip to the library, 37

Laboratory 6
Pass it on, 43

Laboratory 7
Functional living, 57

Laboratory 8
Getting classy, 69

Laboratory 9
Now that’s classy, 77

Laboratory 10
EzWindows and event-based programming, 83

Laboratory 11
Hurray for arrays, 93

Laboratory 12
Vectoring in on vectors, 103

Laboratory 13
Inheritance, 113

Laboratory 14
So far so good, 121

Appendix A
EzWindows API reference manual, 127

v

Preface

INTRODUCTION
This revised laboratory manual and accompanying lecture slides are designed
to be used in conjunction with a C++ introductory text providing broad inte-
grated coverage of the ANSI C++ standard and its Standard Template Library
(STL). In particular, the manual is a companion to the text C++ Program
Design: An Introduction to Programming and Object-Oriented Design 3rd Edi-
tion. We have also revised our EzWindows Graphical API in response to user
feedback.

Unlike most laboratory manuals that are designed to be self-study aids for
mastering syntax or to have students perform straightforward, self-guided
activities in “open” laboratories at a time and place of the students’ choosing,
this laboratory manual is designed for use in a “closed” laboratory. A closed
laboratory meets at an assigned time and place with a laboratory instructor,
and, depending upon class size, laboratory assistants. Each closed laboratory
activity typically illustrates concepts from lecture by using examples, imple-
mentations, and problems that are designed to challenge the student. A closed
laboratory environment provides a student with the opportunity to try various
options or approaches and to receive immediate feedback. Similarly, when mis-
takes are made or clarification is needed, help is immediately available.

We have used closed laboratories in our introductory computer science
course for the past nine years, and our department has been extremely pleased
with the results. Standardized tests show that on average our students leave the
course with a much better mastery of the material than they did prior to our
switch to closed laboratories. Additionally, student evaluations show that they
believe the laboratory activities are a major contributor to their understanding
of course material. Students cite the laboratories as the most interesting, useful,
and fun part of the course. Another indicator of the positive effect of the closed
laboratory is the large number of students who volunteer as laboratory assis-
tants in subsequent offerings of the class.

vi

USING THIS MANUAL
In each week of the course we teach there are two lectures followed by a two-
hour laboratory. Each laboratory activity in this manual is designed to illustrate
and explore concepts from that week’s lectures. Thus, the pace of the course is
very much driven by the laboratory activities.

Our typical laboratory has close to forty-five students, with two supervis-
ing laboratory instructors and two undergraduate teaching assistants. Every
student has a computer, but we have found that having students work together
in small groups of two or three is often quite useful—students help each other
and share the responsibility of teaching and learning. We arrange students to
have different partners each week, and encourage them to seek assistance from
a laboratory instructor at any point during the laboratory if they need help.

Individual activities are not graded but attendance is recorded and is a fac-
tor in the final grade. We purposely do not grade individual activities because
we view the laboratories as a chance to explore and learn without time or grade
pressures. However, some of the laboratories are designed so that an average
student is hard-pressed to finish in the allotted time. Students who do not com-
plete laboratories are encouraged to finish them independently.

Each closed laboratory consists of a set of experiments to be performed by
the student. This model is very much like the familiar closed laboratories of
chemistry or physics courses. For each laboratory there is a write up, a check-
off sheet, and an experimental “apparatus.” A tear-out check-off sheet for each
laboratory can be found at the back of this manual. The experimental apparatus
is a set of programs and data files that the student sets up at the beginning of
each laboratory by obtaining the appropriate files and loading them onto the
computer. These files are contained in a self-extracting archive whose location
is specified by the laboratory instructor.

Versions of the self-extracting archives for several popular compilers can
be found by visiting our home page

http://www.mhhe.com/c++programdesign/
At various points throughout the laboratory, students are required to dem-

onstrate some code, answer a question, or explain some behavior that they have
observed. These points are indicated by the

symbol in the margin and a ✔ in the text. Depending on the circumstances, the
student is asked to write an answer in a boxed area or to simply give the answer
to a laboratory instructor. When a student reaches one of these “check-off”
points and believes he or she is ready, the student signals a laboratory instructor
and gives her or his answer. Depending on the type of question, the response,
and the student involved, the laboratory instructor may simply initial the corre-
sponding entry on the laboratory check-off sheet and proceed to the next stu-
dent who requests assistance. If the response is incorrect or incomplete, the
laboratory instructor may help until the student is comfortable with the concept
being explored. For some motivated students, the instructor may suggest an

✎

vii

additional experiment. For those questions for which there is no right or wrong
solution, the laboratory instructor may explore other solutions with the student
to further reinforce comprehension. When students complete the laboratory,
they turn in their check-off sheets to the laboratory instructor to serve as a
record of laboratory progress.

Many of the laboratories make use of a graphical Application Programmer
Interface (API) designed specifically for beginning programmers to develop
interesting programs. We provide a portable, object-oriented graphical library,
named EzWindows, for the easy display of simple geometric, bitmap, and text
objects. Using the API provides several important experiences for the student.
First, students are client users of a software library. Using well-designed
objects helps students to appreciate good object-oriented design. Their experi-
ence as users forms the basis for becoming designers. Second, the API intro-
duces students to the real-world practice of developing programs using an
application-specific library. Third, using EzWindows to perform graphical
input and output exposes the student to event-based programming and the dom-
inant mode of input and output used in real applications, and it permits devel-
opment of exciting and visually interesting programs. This experience
motivates the students, and it provides a visually concrete set of objects that
help students understand the object-oriented paradigm. EzWindows is simple
enough that it allows even the first programming assignments to be graphical.
A complete description of the EzWindows library is provided in the appendix.

LABORATORY SUMMARIES
� Laboratory 1: Riding the wave of the future. This introductory laboratory

teaches students the basic skills that they will need to complete future lab-
oratories. These skills include copying files, deleting files, backing up files
to a floppy disk, creating directories, compiling C++ programs, executing
C++ programs, and accessing the C++ compiler’s on-line help facility.

� Laboratory 2: Attacking your first problem. In this laboratory students are
guided through the process of decomposing a problem into steps and then
translating those steps into working C++ code. The laboratory also exer-
cises basic C++ programming skills that have been introduced in the lec-
tures. Students practice input and output operations using the iostream
objects cin and cout and also translating mathematical formulas into C++
assignment statements. In addition, the laboratory guides the students
through the creation of a project file that uses the EzWindows API and
some of its graphical objects.

� Laboratory 3: Inquiring minds want to know about the if statement. The
objective of this laboratory is to ensure that students have a good under-
standing of the operation and use of the if statement. This laboratory also
introduces the concepts of syntax and logic errors and differentiates
between them. Students learn the practical skill of how to use a debugger
to find and fix logic errors. The laboratory also continues to develop the

viii

student’s familiarity with object-oriented programming by using some of
graphical objects found in the EzWindows library.

� Laboratory 4: Let’s go looping now, everybody is learning how. In this
laboratory the students explore two C++ looping constructs—the while
and for statements. In addition to teaching students how to use and write
looping constructs, the laboratory teaches students about common looping
problems, such as infinite loops, off-by-one loops, improper initialization
of a loop counter, and incorrect termination conditions. This laboratory
also reinforces the very important skill of reading a stream of data from a
file. The laboratory concludes by having the student finish a program that
uses nested loops to construct a complex geometric pattern using the
EzWindows library.

� Laboratory 5: Taking a trip to the library. An important component of
becoming a productive, proficient programmer in a programming lan-
guage is to learn the facilities and capabilities that are offered by the librar-
ies of that language. This laboratory introduces students to some of the
facilities and capabilities provided by the standard C++ class string. The
laboratory also strengthens student understanding of how to use and
manipulate objects with nontrivial attributes and behaviors.

� Laboratory 6: Pass it on. This laboratory begins an in-depth exploration of
function invocation. The focus of this laboratory is C++’s parameter pass-
ing mechanisms. Through numerous examples the laboratory has the stu-
dent explore value and reference parameter passing mechanisms. After
completing the laboratory, the student will have a strong understanding of
C++’s parameter passing mechanisms.

� Laboratory 7: Functional living. The exploration of functions continues
with this laboratory. Through numerous examples the laboratory rein-
forces and refines the student’s knowledge of scope and name reuse. This
laboratory also explores recursion by carefully examining the execution of
a factorial program. The laboratory concludes by guiding the student
through the development of a text-processing program that involves imple-
menting various utility functions.

� Laboratory 8: Getting classy. In the preceding laboratories students have
used objects from both the standard C++ libraries (e.g., cin, cout,
string) and the EzWindows API (RectangleShape and SimpleWin-
dow), but they have not defined their own class types. This laboratory
begins the students’ exploration of the class construct by examining a class
that they have used in many of the previous laboratories—Rectangle-
Shape. The laboratory explores the fundamental concepts of a class such
as public, protected, and private members, inspectors, mutators, and facili-
tators. The laboratory concludes by having the students develop a class to
represent a line segment in three-dimensional space.

� Laboratory 9: Now that’s classy. This laboratory continues the exploration
of C++’s class construct. In this laboratory, an abstract data type
Rational is extended in several ways. The student modifies class

ix

Rational so that the rational number is maintained in a reduced form,
and the student adds comparison operators to the class by overloading the
operators ==, <, and >.

� Laboratory 10: EzWindows and event-based programming. In this labora-
tory, the student explores more of the capabilities of the EzWindows API.
The student examines the concepts and mechanics of event-based pro-
gramming by developing programs that use both the mouse for input and
timers to control when actions take place. This laboratory also introduces
how to load and display graphical images called bitmaps.

� Laboratory 11: Hurray for arrays. This laboratory develops the ability to
use and manipulate arrays. Programs that contain common array manipu-
lation errors are examined. This laboratory also introduces the activity of
searching a list for a key value by examining, modifying, and running pro-
grams that use several different search techniques. The student performs
an experiment that measures the efficiency of these search techniques.

� Laboratory 12: Vectoring in on vectors. This laboratory develops the abil-
ity to use and manipulate lists using the container vector from the Standard
Template Library (STL). Several programs using the principal member
functions of the STL are examined and developed. Lab coverage includes
the use of both subscripts and iterators. The student also develops an
implementation of the MergeSort sorting algorithm.

� Laboratory 13: Inheritance. Laboratory 13 examines C++’s inheritance
mechanism. To explore the concepts and mechanics of inheritance, the stu-
dent creates a new graphical shape called BoxShape. To illustrate how
inheritance supports reuse, the class BoxShape is derived from the famil-
iar RectangleShape class. At the conclusion of the laboratory, the stu-
dent has the ability to extend existing C++ classes via single inheritance.

� Laboratory Review: So far so good. This laboratory reviews the skills
developed in the first several laboratories by requiring the student to
develop several small programs. We use this lab for the students to prepare
for the mid term. Each program focuses on a programming skill that stu-
dents should now be able to perform on their own. The featured skills are
prompting for and extracting input, translating mathematical formulas to
C++ code, checking the validity of input according to some stated criteria,
writing a function that accepts optional parameters, opening a data file and
processing the data, and using the EzWindows API to create a simple dis-
play according to a given specification.

The instructor has some flexibility in deciding how to use the laboratories.
Much of Laboratory 1 should be review material for many students. If desired,
Laboratories 1 and 2 can be combined into a single laboratory. For curricula
with a required course that covers the skills developed in Laboratory 1, this
laboratory can also be deleted. A review laboratory for the first half of the
course is also included. Laboratory 10 covers the EzWindows API and it can be
moved to later in the course. We often cover the EzWindows API before arrays

x

and vector and inheritance because students like to use it in their final program-
ming project.

THE AUTHORS
Jim Cohoon is a professor in the computer science department at the University
of Virginia and is a former member of the technical staff at AT&T Bell Labora-
tories. He joined the faculty after receiving his Ph.D. from the University of
Minnesota. He has been nominated twice by the department for the university’s
best-teaching award. In 1994, Professor Cohoon was awarded a Fulbright Fel-
lowship to Germany, where he lectured on C++ and software engineering. Pro-
fessor Cohoon’s research interests include algorithms, computer-aided design
of electronic systems, optimization strategies, and computer science education.
He is the author of more than 60 papers in these fields. He is a member of the
Association of Computing Machinery (ACM), the ACM Special Interest Group
on Design Automation (SIGDA), the ACM Special Interest Group on Com-
puter Science Education (SIGCSE), the Institute of Electrical and Electronics
Engineers (IEEE), and the IEEE Circuits and Systems Society. He is a member
of the ACM Publications and SIG Boards and is past chair of SIGDA. He can
be reached at cohoon@virginia.edu . His Web homepage is http://
www.cs.virginia.edu/cohoon .

Jack Davidson is also a professor in the computer science department at
the University of Virginia. He joined the faculty after receiving his Ph.D. from
the University of Arizona. Professor Davidson has received NCR’s Faculty
Innovation Award for innovation in teaching. Professor Davidson’s research
interests include compilers, computer architecture, systems software, and com-
puter science education. He is the author of more than 60 papers in these fields.
He is a member of the ACM, the ACM Special Interest Group on Programming
Languages (SIGPLAN), the ACM Special Interest Group on Computer Archi-
tecture (SIGARCH), SIGCSE, the IEEE, and the IEEE Computer Society. He
serves as an associate editor of Transactions on Programming Languages and
Systems, ACM’s flagship journal on programming languages and systems. He
was chair of the 1998 Programming Language Design and Implementation
Conference (PLDI ’98). He can be reached at jwd@virginia.edu . His Web
homepage is http://www.cs.virginia.edu/~jwd .

ACKNOWLEDGMENTS
We thank the University of Virginia and its department of Computer Science
and the National Science Foundation for providing an environment that made
this laboratory manual possible. Numerous colleagues, teaching assistants, and
CS101 students have contributed to this laboratory manual. In particular, we
would like to thank Alan Batson, Scott Briercheck, Tom Horton, John Karro,
John Knight, Sean McCulloch, Jane Prey, Paul Reynolds, Stephen Wassell,
Alfred Weaver, and Bill Wulf for their advice, comments, and suggestions.

xi

We thank all of the people at McGraw-Hill for their efforts in making this
project a reality. In particular, we thank: Tom Casson, for his support and
encouragement; Sandra Hahn for her product management skills; Sandra
Schnee for her project management skills; and John Wannemacher for his cre-
ative marketing ideas. Special thanks go to executive editor and publisher
Betsy Jones and senior developmental editor Kelley Butcher for their unflag-
ging support and efforts.

We thank our spouses Audrey and Joanne and our children for their
efforts, cooperation, and sacrifices in making this book happen.

Finally, we thank the users of this book. We welcome your comments,
suggestions, and ideas for improving this material. Please write in care of the
publisher, McGraw-Hill, Inc., or send E-mail to cohoon@virginia.edu or
jwd@virginia.edu.

J. P. C
J. W. D

1

LABORATORY 1
Riding the wave of the future

Objective
As we all know, computers are vital tools for solving problems in business,
industry, or research. Understanding a computer’s full capabilities better
enables us to pursue whatever endeavor we choose. This laboratory manual is a
tool that will allow you to experiment with computer science. As you progress
through each laboratory, you may wonder how or why something works. The
best way to discover the answer is to try things out.

Some of instructions in this lab might already be familiar to you. However,
they are not familiar to everyone and our goal is to get everyone up to full
speed.

Key Concepts
� Copying files

� Backing up files

� Creating directories

� Editing a C++ program

� Compiling a C++ program

� Executing a C++ program

� Accessing on-line help

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab01.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

1.1 GETTING STARTED

2

Let’s learn how to make backups of files by copying hello.cpp from the
cpplab directory to a directory on the floppy drive. Backing up files is a good
idea in case something goes wrong and you want to go back to an older version
of a file and start again.

� Put your floppy disk in the appropriate drive. On most machines, the
floppy disk drive is called the a: drive. Throughout this laboratory, we
will assume that a: is the name of the floppy disk drive. If your computer
uses a different drive letter for the floppy disk drive, please use that letter
instead of a:.

� You are going to create a directory on your disk. Directories are useful for
organizing files. You might have a directory for programs, one for
homework, and another for personal correspondence. This manual
requires you create one or more directories to store the materials for each
lab. For this lab you will create two directories in the root directory of your
floppy. We will do this using the Windows Explorer. It can be found on
most systems by clicking the Start button on the bottom tool bar. On some
systems it might be necessary to then select the Programs submenu. Once
you have found the Windows Explorer you can start it with a single click
of the mouse.

� Scroll the left subwindow of Windows Explorer until you find the floppy
disk icon and then click on the floppy drive icon.

� You want to create a new directory lab01 on your floppy disk. Click once
on the word File on the Windows Explorer’s menu bar. Then select New
by clicking on it. A submenu should appear. Next select the New Folders
option. A directory initially named New Folder is created. Then supply
the desired name lab01.

� Using the Windows Explorer, open the directory that contains the
extracted laboratory files (the location is usually c:\cpplab). If you are
unsure where you placed the archive lab01.exe, consult your laboratory
instructor.

� Click once on the hello.cpp file in the Windows Explorer’s listing of the
desired directory.

� Click on the Edit menu and then select the Copy option.

� Return to directory a:\lab01.

� Click on the Edit and select the Paste option.

� Click on the copy of hello.cpp and then repeat the Edit Copy and Edit
Paste actions to make a second copy of hello.cpp.

� Rename the second copy of hello.cpp to greet.cpp. You can do so by
clicking on the file and then clicking on the File menu of Windows
Explorer and then selecting Rename.

1.2 FILE MANIPULATION

The integrated development environment manipulation 3

� Delete hello.cpp by clicking on the file and then selecting the Delete
option from the File menu.

� When the computer asks for confirmation of the deletion, click on the Yes
button.

� File hello.cpp no longer exists, but a copy greet.cpp does exist in the
lab01 directory of the floppy drive.

� Return to the root directory of your floppy disk by double-clicking on its
icon in the left subwindow.

� To delete the lab01 directory on the floppy disk, click on the icon for the
lab01 directory. Delete this directory the same way you deleted
hello.cpp. Observe that the file greet.cpp is also deleted.

� Show the laboratory instructor that you can make a new directory called
check on the floppy drive and then delete it. ✔

The compiler’s Integrated Development Environment or IDE allows you to cre-
ate and edit program and other text files, compile and run the programs, and
perform debugging activities.

� If the compiler with its IDE isn’t already running, start it up as described
in your laboratory instructor’s handout.

� Select the Open option from the File menu.

� In the Open a File window, update its Look In component to the cpplab
directory. To change to this directory, select the down arrow with the
mouse. A pull-down menu displays the available file systems for this
machine. Choose the appropriate file system. For example, if you
extracted the files to your hard disk drive, you would most likely choose
c: from the pull-down menu. If you are unsure which drive to choose, ask
your laboratory instructor.

� Check the Look In component again. Are you working in the cpplab
directory? If so, proceed to the next step. If not, navigate through the file
system by traversing (selecting) the directory path that leads down to
cpplab.

� In the Open a File window, you should see a list of cpp files that were
created when you executed lab01.exe. The file you want is hello.cpp.
Click on this file name and then click on the Open button on the right side
of the dialog box.

� The file will appear in its own window. You want this window to the active
window, so click on its title bar.

� Header information for the program should appear at the top of the file.
Modify the heading to show your name, the lab section, today’s date, etc.

1.3 THE INTEGRATED DEVELOPMENT
ENVIRONMENT MANIPULATION

✎

4

If you click somewhere in this window, you should see a blinking
horizontal line called the insertion point. When you start typing, whatever
you type will appear here. You can move the insertion point with the
mouse or the arrow keys.

� Enter the rest of the hello.cpp program exactly as it appears below
along with the requested biographical information. You may need to click
on this window to make it the active window that receives your keystrokes.

� When you are done typing in the program, save your program by selecting
the Save option from the File menu. If you do not save the program you
can lose everything that you typed.

� Make sure that the hello.cpp window is still the active window. If so,
you can compile and link your program by selecting the Build option from
the Build menu. When the IDE asks whether a default workspace should
be created, indicate yes. The Build operation will then produce a new
window named Message. This window contains warning messages and
errors.

� If you have problems compiling, compare the above program with the
source line at which the compiler is signaling the error. Be sure that the
lines are identical, including the punctuation! Sometimes it is necessary to
check the preceding line for errant typing. After correcting the errors, if
any, rebuild the program. If you cannot determine the error, consult the
laboratory instructor.

� Make sure your program is the active window. Once you have a successful
compilation, choose the Run option from the Debug menu. (The lightning
icon also works). ✔

// Name:
// Student Id:
// Electronic Id:
// Lab section:
// Course section:
// Laboratory instructor:
// Date:
// Honor pledge:
// hello.cpp: displays a greeting multiple times
#include <iostream>
using namespace std;
int main (){

for (int i = 0; i < 5; ++i) {
cout << "Hello, World" << endl;

}
cout << endl << "Hit enter to finish" << endl;
char reply;
cin.get(reply);
return 0;

}

✎

Getting help 5

� To close the window that contains your program’s output, click on the icon
in the upper-left corner of the output window. The output window must be
closed before the program can run again.

If you don’t know or have trouble remembering the syntax of a certain C++
statement or function (which happens more often than some of us like to
admit), the IDE provides a handy utility called context-sensitive help.

� Position your cursor over the keyword for in hello.cpp and click. Then
press the function key F1.

� When you are done with that help file, make the hello.cpp window the
active window and remove the semicolon from the end of the cout line.
Build the program. The compilation will end with errors, and you should
see various complaints about the syntax of your program in the Message
window. Triple click on an error message and then press F1. You should
see a help window that explains the error message.

� Finally, click on the word namespace in hello.cpp and perform the
same action as you did before for getting context-sensitive help with the
keyword for. You are now looking at the help topics for the keyword
namespace. Select one of the context topics. In some of the topic
discussions many of the words are color-coded to indicate that they are
links to further information. Click on one such link.

� Close the hello.cpp workspace by selecting the Close Workspace option
from the File menu.

� Select the File option on the menu bar and then select the Open option.
Open the file test1.cpp from the cpplab directory.

� Build and run the program test1.cpp. (You will need to create a default
workspace.)

� Follow the instructions on the output window and have fun.

� After the program runs, read the code and try to understand how it works.

� Personalize the program by adding your own cout insertion statements at
the beginning and end of the program. Save your program and then rebuild
it.

� Run the program to test it. Remember you need to close the output
window before you rebuild the program. ✔

� Close the current workspace. However, do not close the IDE itself.

1.4 GETTING HELP

1.5 MAKING PROGRAM MODIFICATIONS

✎

6

When you run the next program, pay particular attention to the correctness of
the results.

� Open the file test2.cpp.

� Examine the code. It translates an age in years to an age in hours, minutes,
and seconds. Does anything look incorrect?

� Build the program and run the program. (You will need to create a default
workspace).

� Unless you can read very quickly or have a very slow machine, the
program executes too fast to view the output. We need an alternative way
of running the program.

� Click on the Windows Start button. Then, on either the menu that pops up
or the Programs submenu, click on the entry Command Prompt.
(Sometimes the entry is named MSDOS Prompt).

� Change to the directory where IDE has placed your translated program
and make that direct directory your current directory. On most systems it
will be C:\cpplab. For other systems, it is often C:\localdata. The
following commands make C:\cpplab the active directory.

� Test the program by running it with the following ages: one year old, two
years old, six years old, your age, and one hundred years old. Record your
results in the following table. Depending upon the integer representation
used by the IDE there might be a miscalculation. What would be this
representation error? Show your laboratory instructor your results. ✔

� Select the Exit option from the IDE File menu.

1.6 NOTHING IS PERFECT

C:
cd \cpplab

Age
(Years)

Age
(Hours)

Age
(Minutes)

Age
(Seconds)

1

2

6

Your age

100

1.7 FINISHING UP

✎

Finishing up 7

� Copy any files you wish to keep to your own drive using the Windows
Explorer.

� If you are instructed, use the Windows Explorer to delete the cpplab
directory.

� If you are instructed, shutdown or reboot the machine.

� Hand in your check-off sheet.

	Cohoon LM titlepage.pdf
	Third Edition
	
	University of Virginia

	Jack W. Davidson
	
	University of Virginia

