
25

LABORATORY 4
Let’s go looping now, everybody is

learning how

Objective

In this laboratory you will use the two principal looping statements—the
while and for. You will also practice extracting input values from sources
other than cin.

Key Concepts

� Looping

� while statement

� for statement

� Common looping problems

� EzWindows API

� File stream extraction

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab04.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

4.1 GETTING STARTED

26

C++ provides several looping mechanisms. In this lab, you first consider the
while and then the for statement. As a reminder, a while statement has the
following form:

Consider the following program that is meant to display the sum of the integers
in the range 1 … n, where n is a user-supplied positive value. The program has
two mistakes.

� One mistake is a matter of good programming practice—the user-supplied
value is not verified to be positive. Determine where a modification should
be made so that if a negative value is supplied, the inverse of that value is
used instead. The modification should notify the user that a change was
made to the input. The inverse can be computed in the following manner:

� The second mistake in the program takes place in updating Sum. Identify
the mistake and determine what the corrected expression should be.

� Start the compiler as described in previous labs. Open the file called
sum.cpp. It should contain the preceding program along with some
additional comments.

� Determine manually the sum of the integers from 1 to n for the following
values of n: 3, 5, 10. Record your answer in the following table.

� Correct the two mistakes. Then build and run the program to observe the
output using the preceding values for n. (You will need to create a default

4.2 LOOPING

#include <iostream>
using namespace std;
int main() {

cout << "Enter a positive integer: ";
int n;
cin >> n;
int i = 1;
int Sum = 0;
while (i <= n) {

Sum = Sum + n;
++i;

}
cout << "The sum from 1 to " << n << " is "
<< Sum << endl;
return 0;

}

n = -n;

Logical expression that determines
whether the action is to be executed

while (Expression) Action

Action to be iteratively
performed until logical

expression is false

Looping 27

workspace.) Also try -5 and 0 as inputs. Record the program answers in
the preceding table.

� Did you get the same answers for your manual calculations as you did
from the computer program? If not, try to figure out why. If you cannot
determine the reason, seek help.

� Let’s modify the program to calculate a different sum. Rather than
calculating the sum of integers from 1 to n, you will instead calculate the
sum of integers from m to n, where m and n are user-supplied values and

.

� The program requires several changes.

— Two input values m and n must be prompted and extracted.

— n does not have to be positive.

— The value of m must be verified to be less than n. If m > n, then swap
the values of m and n and tell the user of your correction.

— Object i, instead of taking on the values 1 … n, must take on the
values m … n.

� Modify sum.cpp so that it correctly implements the preceding changes.

� Manually determine the sum of values in the intervals -5 … -1; -3 … 3;
and 5 … 10. Record your answers in the following table.

� Build and run the modified program to observe the output using the
specified intervals. Also try the interval 8 … 6. Record your program
answers in the preceding table.

n manual program

3

5

10

-5

0

m … n manual program

-5 … -1

-3 … 3

5 … 10

8 … 6

m n≤

28

� Does your program perform correctly? If not, try to figure out why. Show
your results to your laboratory instructor. ✔

� Modify sum.cpp to use a for loop instead of a while loop, where a for
statement has the following form.

� For our problem the initialization step component of the for statement
should define and initialize object i. The loop test expression does not
need to change. The post expression needs to increment i once for each
updating of Sum. The updating of Sum should be the sole action of the for
loop body.

� Build and run the modified program to observe the output using the same
intervals as previously. Record your program answers in the following
table.

� Does your program perform correctly? If not, try to figure out why. Show
your results to your laboratory instructor. ✔

� Save and close sum.cpp workspace.

Consider the following program.

m … n program

-5 … -1

-3 … 3

5 … 10

8 … 6

#include <iostream>
using namespace std;
int main() {

int Counter1 = 0;
int Counter2 = 0;
for (int i = 1; i <= 10; ++i) {

++Counter1;
}

✎

Logical expression that determines
whether the action is to be executed

for (ForInit ; ForExpression ; PostExpression)
 Action

Preparation for next
iteration of the for loop

Initialization step to prepare
for the for loop execution

Action to be performed for each
iteration of the for loop

✎

Looping 29

� Determine the output of the program and record your answers in the
following table.

� Open the file called count1.cpp. It should contain the preceding
program along with several additional comments.

� Build and run the program. (You will need to create a default workspace).
Record the program output in the preceding table. Did you get the same
answers for your manual calculations as you did from the computer
program? If not, try to figure out why. If you cannot determine the reason,
seek help.

� Close the current workspace.

Now consider the following program:

� Determine the output of the program and record your answers in the
following table.

for (int j = 1; j <= 15; ++j) {
++Counter2;

}
cout << "Counter1: " << Counter1 << endl;
cout << "Counter2: " << Counter2 << endl;
return 0;

}

count1.cpp manual program

counter1

counter2

#include <iostream>
using namespace std;
int main() {

int Counter1 = 0;
int Counter2 = 0;
for (int i = 1; i <= 10; ++i) {

++Counter1;
for (int j = 1; j <= 15; ++j) {

++Counter2;
}

}
cout << "Counter1: " << Counter1 << endl;
cout << "Counter2: " << Counter2 << endl;
return 0;

}

count2.cpp manual program

counter1

counter2

30

� Open the file called count2.cpp. It should contain the preceding
program along with several additional comments.

� Build and run the program. (You will need to create a default workspace).
Record the program output in the preceding table. Did you get the same
answers for your manual calculations as you did from the computer
program? If not, try to figure out why. If you cannot determine the reason,
ask for help.

� Why do count1.cpp and count2.cpp produce different results?

� These simple programs demonstrate the power of nested looping—with
nested loops, actions can take place a significant number of times. Show
your results to a laboratory instructor. ✔

� Close the current workspace.

The next exercise shows how loops can accomplish a significant amount of
work using a small number of statements. You will be drawing a geometric pic-
ture that should resemble the one in the following figure. The picture has five
elements and each element is a series of concentric rectangles that alternate in
color.

� Open the project five.dsw that uses the EzWindows API.

� Open the file five.cpp of project five.dsw. The principal component
of that file is a function ApiMain(). As written, the function displays only

4.3 CONCENTRIC RECTANGLE DISPLAY

✎

Concentric rectangle display 31

three of the concentric elements. If you run the program with this
ApiMain(), the output would resemble the following display.

� The initial section of function ApiMain() first defines several constants.
This section also defines and opens the window that contains the graphical
displays.

� Object Size represents the width and height of the window that contains
the concentric rectangles. Objects Cx and Cy represent the center
coordinates of the window. You use constants Size, Cx, and Cy to
construct and open object W. The concentric rectangles are displayed in W.
Object Offset represents one-quarter of the length of a side of window W.
You can use Offset to help determine the centers of the concentric
rectangles that abut the sides of the window. Constant n represents the
number of concentric rectangles drawn per series. Object Scaling
represents the factor by which the concentric rectangles shrink.

const float Size = 10;
const float Cx = Size / 2.0;
const float Cy = Size / 2.0;
const float offset = Size / 4.0;
const float n = 15;
const float Scaling = 0.8;
SimpleWindow W("Concentricity", Size, Size);
W.Open();

32

� Function ApiMain() next defines an object Side. Object Side represents
the current size of a side of the rectangles being drawn. The first rectangles
that are displayed have sides whose lengths are equal to Size.

� A for loop occurs next in the function. The loop iterates n (15) times. In
each iteration, three rectangles are drawn—one rectangle for each of the
three concentric series being displayed. (Your job is to modify the code so
that it also displays the other two series.)

� The first task of the for loop is to determine the color of the rectangles to
be drawn for the current iteration. If the value of i is even, the rectangle is
yellow; otherwise, the rectangle is blue.

� Three rectangles are then constructed: R1, R2, and R3. In each iteration, R1
represents the current rectangle from the concentric series that abuts the
upper-left corner of window W. Objects Cx, Cy, and Offset determine the
center of this rectangle. By subtracting Offset from Cx and from Cy, you
are indicating a rectangle closer to the origin with respect to both the x-
axis and y-axis.

� Rectangle R2 represents the current rectangle from the series that abuts the
lower-right of window W. A positive Offset added to the center
coordinate gives R2 the correct location.

� R3 is constructed to be at the center of window W. Because it is at the
center, object Offset is not needed.

� Once the three rectangles are constructed, they are drawn. Note that the
order in which the rectangles are drawn can affect the display.

� To prepare for the next iteration, object Side is updated. In the next
iteration, you draw rectangles whose size is 80 per cent (the value of
Scaling) of the current rectangles.

float Side = Size;

color C;
if (i % 2 == 0)

C = Yellow;
else

C = Blue;

RectangleShape R1(
W, Cx - Offset, Cy - Offset, C, Side, Side);

RectangleShape R2(
W, Cx + Offset, Cy + Offset, C, Side, Side);

RectangleShape R3(W, Cx, Cy, C, Side, Side);

R1.Draw();
R2.Draw();
R3.Draw();

Side = Side * Scaling;

Using input file streams 33

� Now modify the for loop body to construct and draw two more rectangles
per iteration. These rectangles should take care of the corners of the
window currently being ignored.

� Demonstrate your completed work to a laboratory instructor. Why are the
rectangles from one iteration left on the screen for the next iteration? ✔

� Before proceeding to the next section, close the current workspace.

We often need to examine a data file using some program or command. There
are also instances where we want to read data both from a file and the keyboard
within the same program. Similarly, we may want to have display output both
to the monitor and a file. In this exercise, you learn to use input file streams to
extract data from a file. The other types of processing will be considered else-
where.

� Open the file wc.cpp. The program in this file counts the number of
words in the text that it extracts. As written, the program extracts its values
from standard input.

� Examine the program to get a sense of how it accomplishes its task. In
particular, observe that the program uses the library function isspace().
This function, when a given a character value as its parameter, returns true
if the character is white space and returns false otherwise. By default, a
character is considered white space if it is a blank, a tab, a form feed, a
new-line character, a backspace, or a carriage return character.

� Compile and run the program. (You will need to create a default
workspace). Note that the program does not issue a prompt to the user to
start supplying text. Type the following text as your input. When you are
finished typing the text, you need to signal to the program that you are
done. On most PCs, typing a line consisting solely of a CTL-z followed by
Enter produces the signal; other systems often use CTL-d followed by a
carriage return.

� Make sure that the answer provided by the program agrees with your
expectation.

You will now modify the program to extract values from a file rather than from
standard input. The class ifstream is the input stream type for representing a
file. The type is defined in the standard library file fstream. In this example,
you define and use a stream object named fin that represents the input file
stream that you need to process. The only thing special about the name fin is
that it is reminiscent of cin; for example, you could have also used the name
FileIn.

4.4 USING INPUT FILE STREAMS

C++ is the greatest.
This course is fantastic.
This-line-is-a-single-word.

✎

34

The first thing you must do is associate fin with the actual file. Suppose the
input file was contained on the c: drive of our system in a file named exam-
ple.txt in the directory \text of the c: drive. To define and initialize fin to
be associated with that file, you do the following:

The two backslashes are necessary because a backslash in C++ indicates the
start of a special character sequence (e.g., \n represents the new-line charac-
ter). The preceding code statement defines an object fin of type ifstream
that will do its extracting from the file example.txt.

� Using the above definition as a model, use the file input1.txt as the
input file from which wc.cpp does its extractions. The file is in the same
directory as wc.cpp. Add your definition of fin before the while loop.

� At the beginning of the file wc.cpp, add the following preprocessor line
so that the definitions in the fstream library are part of your program.

� These changes allow the stream fin to be an input source. To extract
values from it, you need to change the stream being processed in the
while loop test expression from cin to fin (i.e., the program performs a
fin.get(CurrentCharacter). Make this change to the program.

� Open the file input1.txt and examine its contents. Record your
expectation of the program’s output in the following table.

� Compile and run the program in wc.cpp; make sure you agree with the
program output.

� Modify the definition of fin so that it is now associated with the file
input2.txt, which is located in the same directory as input1.txt.

� Open the file input2.txt and examine its contents. Record your
expectation of the program’s output in the preceding table.

� Recompile and run the program in wc.cpp and make sure you again agree
with the program output. Show your results to your laboratory
instructor. ✔

� Close all existing files.

ifstream fin("c:\\text\\example.txt");

#include <fstream>

file manual program

input1.txt

input2.txt

✎

Flawed looping 35

Improper initialization statements and termination conditions are often major
causes of program misbehavior. The next examples illustrate some common
mistakes.

� Open the file fraction.cpp. Examine the program to get a sense of what
occurs during execution.

� Run the program and observe its output or in this case lack of output. (You
will need to create a default workspace). The program has an infinite loop.
To terminate the program, you must enter an escape sequence. On PCs this
sequence is normally CTL-ALT-DEL. A help window should appear, and
you can then terminate the errant process. Sometimes as a result of the
infinite loop, you are forced to restart the machine without saving your
program. In this case you will lose your unsaved modifications. Therefore,
as a precaution, you should always save a program before running it.

� Using your debugger, observe the values of objects LoopCounter,
Fraction, and Total. Step through the program to determine the
problem.

� Correct the problem with the object types and again step through the
program to observe the behavior of the objects. The program should now
work correctly. Show your results to a laboratory instructor. ✔

� Modify n so that it is float and has the value 10.0. Again step through
the program and observe the output. If necessary, terminate the program.

The first time you ran the program, a mismatch occurred in the types of frac-
tional expression and the object Fraction itself. That error is most likely not
the problem with this run. Therefore, a different problem is occurring in the
loop. The problem now is that the fraction 1/10.0 is not represented perfectly
by the machine. As a result, the desired sum is not achieved. Is this problem
something you can fix or overcome? Show your results to a laboratory
instructor. ✔

� Close the existing files and then open the file upper.cpp.

4.5 FLAWED LOOPING

#include <iostream>
using namespace std;
int main() {

int Total;
int n = 2;
int Fraction = 1/n;
int LoopCounter = 0;
for (Total = 0; Total != 1; Total += Fraction) {

++LoopCounter;
}
cout << "The total is " << Total << "\n";
return 0;

}

#include <iostream>
#include <cctype>
using namespace std;

✎

✎

36

� Examine the program to get a sense of what occurs during execution.
Modify the program so that it reads from the file input3.txt. Make and
run the program.

� The program does not produce the correct output, does it? Step through the
program and trace the behavior of object NbrUpperCase. Fix the program
and again step through it to verify your correction. Show your results to a
laboratory instructor. ✔

These examples have demonstrated representation error, numerical inaccuracy,
and lack of initialization. Such problems can lead to infinite loops and incorrect
output. A useful programming technique is to develop a loop invariant for each
loop. The invariant is a Boolean expression or predicate that describes what
you expect to be true each time through the loop. By developing code that
ensures the correctness of the invariant, you can increase your chances of pro-
ducing correct code.

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

int main() {
int NbrUpperCase;
char CurrentCharacter;
while (cin >> CurrentCharacter) {

if (isupper(CurrentCharacter)) {
++NbrUpperCase;

}
}
cout << "Upper case chars: " << NbrUpperCase
< endl;
return 0;

}

4.6 FINISHING UP

✎

