
43

LABORATORY 6
Pass it on

Objective
This week in the lab we will be examining parameter passing. Understanding
parameterized functions will enable you to design functions that correctly com-
pute and return values to your program. Misuse of parameters is a common
problem among programmers—a problem that often results in unexpected
errors.

Key Concepts
� Programmer-defined functions

� Invocation and flow of control

� Value parameters

� Reference parameters

� const parameters

� return statement

� Local objects

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab06.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

6.1 GETTING STARTED

44

Up to this point your experience with functions has been fairly limited. How-
ever, you should not underestimate their usefulness in imposing logical struc-
ture upon programs. An important part of using functions entails the
understanding of parameters. Parameters enable functions to be flexible. With
parameters a single function can handle a variety of related tasks—the parame-
ters will determine which tasks to do and which values to compute. Parameters
have this important role because they are the primary interface between the
function to be invoked and the calling program fragment. Parameters enable
programmers to control the values or objects that pass in and out of a function.
Without parameters, we would be forced to rely on global objects as the sole
means of communicating values between the various functions. However, we
know that using global objects to share information is hazardous. Global
objects make programs hard to trace and debug, since changing one global
object could have ramifications throughout many different functions. Programs
whose functions use parameters to share information are more modular and are
easier to understand.

For each of the problems in this laboratory, perform the following activities
with your group.

� Read the program, but do not run it!

� Trace through it by hand and determine what the results of the program
will be.

� Whenever you are asked to explain or describe something, write down
your answers in the space provided.

� Discuss your results with your group and come to a consensus on the
answer. When you have reached a consensus, then open the file containing
that program and run it. (You will need to create a default workspace). The
programs are named for the respective problem—for example, Problem 1
corresponds to prob01.cpp.

� If your answer disagrees with the results produced when you ran the
program, go back and see why your answer was incorrect. If you cannot
figure out a problem, ask a laboratory instructor for assistance. Remember
to get a check-off for each solution.

Helpful Hint: When you try to trace parameters by hand, it is useful to draw
boxes for each object and then write the current value in the box. This method
enables you to see what is going on with each parameter. It also enables you to
cross out an old value and replace it with a new one every time an object is
updated.

6.2 FUN WITH PARAMETERS

Problem 1 45

� What output is produced? �

6.3 PROBLEM 1
#include <iostream>
using namespace std;
void MyFunc() {

return;
}

int main() {
int i = 10;
int j = 20;

MyFunc();

cout << "main: i = " << i << endl;
cout << "main: j = " << j << endl;
return 0;

}

✎

46

� What output is produced? �

6.4 PROBLEM 2
#include <iostream>
using namespace std;
void MyFunc(int i, int j) {

cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;

return;
}

int main() {
int i = 10;
int j = 20;

MyFunc(i, j);

cout << "main: i = " << i << endl;
cout << "main: j = " << j << endl;
return 0;

}

✎

Problem 3 47

� What output is produced? �

6.5 PROBLEM 3
#include <iostream>
using namespace std;
void MyFunc(int i, int j) {

i = i + j;
j = j + i;
cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;

return;
}

int main() {
int i = 10;
int j = 20;

MyFunc(50, j);
MyFunc(i, 50);

cout << "main: i = " << i << endl;
cout << "main: j = " << j << endl;
return 0;

}

✎

48

� What output is produced? �

6.6 PROBLEM 4
#include <iostream>
using namespace std;
void MyFunc(int i, int j) {

int temp;

temp = i;
i = j;
j = temp;

cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;
return;

}

int main() {
int a = 10;
int b = 20;

MyFunc(a, b);
MyFunc(b, a);

cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
return 0;

}

✎

Problem 5 49

� What output is produced?

� Why would it be illegal to change the first call of function MyFunc() in
the function main() to MyFunc(i, j)? �

6.7 PROBLEM 5
#include <iostream>
using namespace std;
void MyFunc(int &i, int &j) {

int temp;

temp = i;
i = 30;
j = temp;
cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;
return;

}

int main() {
int a = 10;
int b = 20;

cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;

MyFunc(a, b);
MyFunc(b, a);

cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
return 0;

}

✎

50

� What output is produced?

� Why should it be illegal to change the call of MyFunc() in the function
main() to MyFunc(10, b)?

� Why should it be legal to change the call of MyFunc() in the function
main() to MyFunc(a, 20)? �

6.8 PROBLEM 6
#include <iostream>
using namespace std;
void MyFunc(int &i, int j) {

int temp;

temp = i;
i = 30;
j = temp;
cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;
return;

}

int main() {
int a = 10;
int b = 20;

MyFunc(a, b);

cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
return 0;

}

✎

Problem 7 51

� What output is produced? �

6.9 PROBLEM 7
#include <iostream>
using namespace std;
int MyFunc(int &i, int j) {

int temp;

temp = i;
i = 40;
j = temp;
cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;
return j;

}

int main() {
int a = 10;
int b = 20;
int c = 30;

c = MyFunc(b, b);

cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
cout << "main: c = " << c << endl;
return 0;

}

✎

52

� What output is produced? �

6.10 PROBLEM 8
#include <iostream>
using namespace std;
void MyFunc(int &i, int j, int k) {

int a = 100;
int b = 200;

i = k + a;
j = k + i;
k = a;

cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;
cout << "MyFunc: k = " << k << endl;
cout << "MyFunc: a = " << a << endl;
cout << "MyFunc: b = " << b << endl;
return;

}

int main() {
int a = 10;
int b = 20;

MyFunc(b, a, b);
cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
return 0;

}

✎

Problem 9 53

� What output is produced?

� Why would it be illegal to add the statement i = a + b; to the function
MyFunc()?

6.11 PROBLEM 9
#include <iostream>
using namespace std;
void MyFunc(const int i, int &j) {

int a = 100;
int b = 200;

a = b + j;
j = i + a;

cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;
cout << "MyFunc: a = " << a << endl;
cout << "MyFunc: b = " << b << endl;
return;

}

int main() {
int a = 10;
int b = 20;

MyFunc(b, a);

cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
return 0;

}

✎

54

� What output is produced? �

6.12 PROBLEM 10
#include <iostream>
using namespace std;
void MyFunc(int i, int j = 50) {

int a = 100;
int b = 200;

i = i + j + a + b;

cout << "MyFunc: i = " << i << endl;
cout << "MyFunc: j = " << j << endl;
cout << "MyFunc: a = " << a << endl;
cout << "MyFunc: b = " << b << endl;
return;

}

int main() {
int a = 10;
int b = 20;
int c = 30;

MyFunc(a, b);
MyFunc(c);
MyFunc(0);

cout << "main: a = " << a << endl;
cout << "main: b = " << b << endl;
cout << "main: c = " << c << endl;
return 0;

}

✎

Finishing up 55

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

6.13 FINISHING UP

