
57

LABORATORY 7
Functional living

Objective

The goal of this week’s lab is to show you how to use functions in problem
solving. We do so first by considering programs that practice name reuse
within their various scopes. We next develop some functions using both value
and reference parameters. One of the functions makes use of recursion.

Key Concepts

� Local scope

� Global scope

� Recursion

� User-defined functions

� Program ordering

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab07.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

7.1 GETTING STARTED

58

In last week’s lab, you considered parameter passing behavior by analyzing
various programs and determining their output. You will now perform a similar
analysis to explain name reuse as it applies to some different scopes that can
appear in a program.

For the next several problems, do the following:

� Read the program, but do not run it!

� Trace through it by hand and determine what the results of the program
will be.

� Whenever you are asked to explain or describe something, write down
your answers in the space provided.

� Discuss your results with your group and come to a consensus on the
answer. When you have reached a consensus, open the file containing that
program and run it. (You will need to create a default workspace). The pro-
grams are named for the respective problem—for example, Problem 1 cor-
responds to prob01.cpp.

� If your answer disagrees with the results produced when you ran the
program, go back and see why your answer was incorrect. If you cannot
figure out a problem, ask a laboratory instructor for assistance. Remember
to get a check-off for each solution.

7.2 FUN WITH SCOPE

Problem 1 59

� What output is produced? �

7.3 PROBLEM 1
#include <iostream>
using namespace std;

int i = 0;

int I = 1;

void f() {

cout << "i: " << i << endl;

cout << "I: " << I << endl;

i = 10;

I = 20;

}

int main() {

int i = 2;

int I = 3;

cout << "i: " << i << endl;

cout << "I: " << I << endl;

f();

cout << "i: " << i << endl;

cout << "I: " << I << endl;

return 0;
}

✎

60

� What output is produced? �

7.4 PROBLEM 2
#include <iostream>
using namespace std;

int counter = 0;

void f() {

++counter;

}

void g() {

f();
f();

}

void h() {

f();

g();

f();

}

int main() {

f();

cout << counter << endl;

counter = 0;

g();

cout << counter << endl;

counter = 0;

h();

cout << counter << endl;

return 0;
}

✎

Problem 3 61

� What output is produced? �

7.5 PROBLEM 3
#include <iostream>
using namespace std;

int i = 0;

int main() {

int i = 1;

cout << "i: " << i << endl;

{

cout << "i: " << i << endl;

int i = 2;

cout << "i: " << i << endl;

{

cout << "i: " << i << endl;

int i = 3;

cout << "i: " << i << endl;
}

cout << "i: " << i << endl;
}

cout << "i: " << i << endl;

cout << "i: " << ::i << endl;

return 0;
}

✎

62

First determine whether the following program is correct. If it is not, indicate
why. If it is correct, determine its output.

� What is your analysis (and output if any)?

� Suppose main() included the invocation f(2.5). Would the program
still compile? Why? �

7.6 PROBLEM 4

#include <iostream>
using namespace std;

void f(int a) {

cout << "int a: " << a << endl;

return;
}

void f(char a) {

cout << "char a: " << a << endl;

return;
}
int main() {

int i = 1;

char c = 'c';

f(i);

f(c);

return 0;
}

✎

Problem 5 63

The following program makes use of a recursive function Sum(). In C++, a
function can invoke other functions including itself to do its task.

� To assist in your determination of the program output, fill in the depictions
of the activation records on the following page. Remember each
invocation of a function gets a new activation record. When a function
makes a recursive invocation (as in other function invocations), the current
invocation is suspended and the new invocation begins. When the new
invocation finishes, its return value is brought back to the now reactivated
invocation. The program you are considering will at one point in its
execution suspend main() and invocations of Sum(3) and Sum(2) while
it executes the invocation of Sum(1).

� main()

7.7 PROBLEM 5

#include <iostream>
using namespace std;

int Sum(int number) {

if (number == 1) {
return 1;

}
else {

int n = number - 1;

int result = Sum(n);

return number + result;
}

}

int main() {

int Answer = Sum(3);

cout << "Answer: " << Answer << endl;

return 0;
}

Answer

Sum(3) Sum(2) Sum(1)main()

Activation tree

64

� Activation record for invocation of Sum(3).

� Activation record for invocation of Sum(2).

� Activation record for invocation of Sum(1).

� What is the output? �

In this activity you will write some small text-processing functions. The first is
a function IsEndOfSentence() that determines whether its formal parameter
c is either a period, a question mark, or an exclamation point. If the formal
parameter is such a value, the function returns true; otherwise, the function
returns false. Although there are various ways to implement this function, we
shall consider only a single implementation.

number

n

result

number

n

result

number

n

result

7.8 YOUR VERY OWN FUNCTIONS

✎

Your very own functions 65

� In designing a function, you must be concerned with its interface. Because
IsEndOfSentence() returns a value, its return type cannot be void.
What should the return type be?

� Is formal parameter c a value or reference parameter? To answer this ques-
tion, consider whether you expect or want the actual parameter to perma-
nently change?

� Given these choices, how should you define the interface of the function?

� The body of the function is relatively simple. Some case analysis must be
performed. If the value of c is a period, question mark, or exclamation
point, the function returns true; if the value of c is something different, the
function returns false. Such actions suggest an if-else statement with a
test expression that is true if c is a period, question mark, or exclamation
point. If the test expression is true, a return true is executed; otherwise,
a return false is executed. Because the test expression can be made
true in one of three ways, test expression needs three terms that are
combined in a disjunctive manner, that is the terms are joined using the or
operator. That way if any of the terms are true, the test expression as a
whole is true. Each term will test whether c has a particular value. What
should the test expression be?

� Open the file text.cpp and add function IsEndofSentence() after
function main(). �

The next function to consider is a function LineSpace() that has an optional
parameter n. If n is positive, the function inserts n copies of the newline char-
acter ('\n') to the standard output stream cout. If n is negative or not present,
the function inserts one copy of the new-line character to the standard output
stream cout.

return type

c’s parameter type

✎

66

� Should our function return a value? What should the return type then be?

� Is formal parameter n, a value or reference parameter?

� Because an invocation of function LineSpace() does not require that an
actual parameter be supplied, the specification of formal parameter n must
include a default value. What should this value be? Given this and your
previous choices, how should you define the interface of the function?

� Every invocation of function LineSpace() must insert at least one new-
line character, so our function body begins with such an insertion.

� An iterator i will be used to control a loop that displays any additional
new-lines. The iterator will represent the number of new-lines that have
been inserted so far. How should i be defined so that it is properly
initialized?

� The loop should iterate as long as more new-line characters need to be
inserted. What should the test expression of the loop be?

� The basic action to be accomplished by the loop is an insertion of the new-
line character.

Once the new-line is inserted, one additional action needs to be performed
to prepare for the next testing/iteration of the loop. What is this action?

return type

n’s parameter type

cout << '\n';

cout << '\n';

Your very own functions 67

� Implement LineSpace() before function main() in text.cpp. �

The next function to consider is a function Update() that has two parameters
counter and val. Parameter counter is a reference parameter; parameter
val is a value parameter. Function Update() determines whether val is an
end-of-sentence punctuation character. If it is, counter is incremented by one;
otherwise, counter is not modified.

� In general, functions with reference parameters are void functions—it is
simpler to understand a function that brings information back to the
invoking function in a single way rather than through both the return value
and the parameter list. How should the interface of our function be
defined?

� Our function is to modify counter only if val is an end-of-sentence
punctuation character. Therefore an if statement is appropriate where
counter is incremented only if the test expression is true. What should
this test expression be?

� Implement function Update() after function IsEndOfSentence() in
text.cpp. �

� Save your changes to text.cpp. This file implements a program that
counts the number of sentences in a user-specified text file.

� Run the program in text.cpp using the data file example.txt and
single spacing, that is LineSpace() should be invoked using its default
parameter capability. (You will need to create a default workspace). Does
the program produce the correct answer? If it does not, correct your
functions so that they are properly implemented.

� Run the program a second time using double-spacing, that is function
LineSpace() should be invoked with an actual parameter of 2. �

� Suppose function prototypes are not used. Where must functions
Update() and IsEndOfSentence() be located in the program file
relative to function main() and to each other? �

✎

✎

✎

✎

68

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

7.9 FINISHING UP

