
69

LABORATORY 8
Getting classy

Objective
Objects are the basic unit of programming in object-oriented languages like
C++. The C++ construct for defining new types of objects is the class. A class is
the “blueprint” from which an object can be created. This laboratory examines
the basic mechanisms of class types by inspecting several different classes.

Key Concepts
� class construct

� Access specification

� Information hiding

� Constructors

� Encapsulation

� Inspectors

� Data members

� Mutators

� Facilitators

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab08.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself. 

8.1 GETTING STARTED



70

Objects are the fundamental units of programming in object-oriented lan-
guages such as C++. Objects are models of information and are implemented as
software packages that contain or encapsulate both attributes and behavior. A
data abstraction is a representation of information and the operations to be per-
formed on it.

A fundamental type is a type that the programming language provides. For
example, in C++, the type int and the operations on it are part of the language
definition. That is, all C++ compilers must provide int objects. In addition to
the fundamental types, C++ provides several mechanisms to define other types.
These other types are called programmer- or user-defined types.

The class construct is the most important mechanism for defining new types.
With this construct, software engineers can define encapsulated objects.

When defining a class, we typically use the information-hiding principle:

All interaction with an object should be constrained to use a well-
defined interface that allows underlying object implementation details
to be safely ignored.

By following the information-hiding principle, we can create classes that tend
to be reliable and easily reused.

To consider the basics of creating a new object type using the class construct,
we first examine the declaration of a programmer-defined type we have used
previously—RectangleShape. Whenever one is designing something, it
helps to know how the thing will be used. Our goal in designing the class
RectangleShape is to create a graphical object that is both easy to construct
and simple to use. 

The first thing to do when creating a class-type object is to determine the
attributes of the object. For rectangle objects in a graphical display system, the
necessary attributes are the window in which it will be displayed, its location
within the display window, its color, and of course, its size. In C++, the
attributes of a class-type object are referred to as the data members. The fol-
lowing are the declarations of the data members of RectangleShape:

The second step when creating a class-type object is to determine the messages
the object can receive and the operations that can be performed on the object.
This portion of an object is called its behavior component. The behavior com-
ponent of a class-type object is a collection of member functions that provide
the ability to send messages to the object requesting it to perform some action.
These member functions provide the public interface to achieve the desired

8.2 CLASSES

SimpleWindow &Window;
float XCenter;
float YCenter;
color Color;
float Width;
float Height;



Classes 71

behavior; other member functions are often present to assist the member func-
tions that are part of the public interface.

For a rectangle shape in a windowed graphical display system, we can divide
the messages that a rectangle needs to handle into three sets. One set of mes-
sages directs a RectangleShape object to return an attribute’s value. The sec-
ond set of messages directs a RectangleShape object to change the value of
an attribute. The third set of messages directs a RectangleShape object to
perform a service.

Messages that return the value of an attribute are called inspectors. For maxi-
mum flexibility, our definition of RectangleShape includes inspectors for all
of the data members.

Inspectors will have the qualifier const after their parameter list. The qualifier
indicates that the member function does not modify the object. An inspector
name usually begins with Get. Notice that the inspector GetWindow() returns
a reference (indicated by the ampersand (&) after the class name). The amper-
sand tells the compiler that it should return a reference to the window that con-
tains the rectangle. If the ampersand were omitted, the compiler would attempt
to return a copy of the window that contains the rectangle. We really do not
want to create another window, so returning a reference is the correct action.

Messages that change or set an attribute are called mutators. Again, to make
the RectangleShape as flexible as possible, we will have mutators for the
attributes that control the appearance and location of a RectangleShape.

There will be no mutator for setting the window display because a Rectan-
gleShape object when defined is associated with a particular display that can-
not be changed.

There is one class member function that is neither an inspector nor a mutator.
The draw message tells the rectangle to display itself in the window.

Draw() is an example of a facilitator. A facilitator performs a service.

In addition to the class member functions that process messages, a class defini-
tion will also specify class constructors. A constructor is a member function
that initializes an object of that class. A constructor has the same name as the
class. The appropriate constructor is invoked automatically when a Rectan-
gleShape object is defined.

color GetColor() const;
void GetSize(float &Width, float &Height) const;
float GetWidth() const;
float GetHeight() const;
void GetPosition(float &XCoord, float &YCoord)

const;
SimpleWindow& GetWindow() const;

void SetColor(const color &Color);
void SetPosition(float XCoord, float YCoord);
void SetSize(float Width, float Height);

void Draw();



72

The following RectangleShape constructor expects an initial value for each
of the data members. Unlike other functions, a constructor does not have a
return type.

Besides listing the various members, the definition of a class also indicates
which parts of a program can use the members. There are three kinds of access
permissions: public, private, and protected. The general rule is

A public member has unrestricted access.

A private member can be accessed only by other members of the
same class.

A protected member does not have unrestricted access. It can be
accessed only by other members of the same class or classes derived
from this class.

� Open the file rect.h to see the class definition for RectangleShape. It
should resemble the following:

� Examine the code.

� Explain to your laboratory instructor the purpose of the preprocessor
directives ifndef, define, and endif. If you are unsure about any
aspects of the definition of class RectangleShape, consult your
laboratory instructor before proceeding. �

RectangleShape(SimpleWindow &Window, float XCoord,
float YCoord, const color &Color, float Width,
float Height);

#ifndef RECTSHAPE_H
#define RECTSHAPE_H
#include "ezwin.h"
class RectangleShape {

public:
RectangleShape(SimpleWindow &Window,
 float XCoord, float YCoord, 
 const color &Color,
 float Width, float Height);
void Draw();
color GetColor() const;
void GetSize(float &Width,
 float &Height) const;
void GetPosition(float &XCoord,
float &YCoord) const;
SimpleWindow& GetWindow() const;
void SetColor(const color &Color);
void SetPosition(float XCoord,
 float YCoord);
void SetSize(float Width, float Height);

private:
SimpleWindow &Window;
float XCenter;
float YCenter;
color Color;
float Width;
float Height;

};
#endif

✎



Classes 73

When defining a class, we give the public section first because the members
in this section can be used by anyone. We give the protected section (if it
exists) next. The private section comes last.

� Open the file element.h. The code should resemble the following:

� This file describes the interface for the class Element that represents an
element of three-dimensional space. Identify the data members,
inspectors, mutators, facilitators, and constructors of class Element. �

� Open the project blue.dsw. Then open the file blue.cpp from that
project. Examine the function ApiMain() and its helper functions
DisplayRectangleAttributes() and Convert(). Observe that to
access a member, we use the selection operator, which is the period (.).

� Build the project and examine the results.

� Modify the program by defining and drawing a second RectangleShape
object S. Have S be different in size, color, and position from the
RectangleShape object R already defined in the program. Make a
second call to DisplayRectangleAttributes() to also display the
characteristics of S. Demonstrate your modified program to the laboratory
instructor. �

We will now test whether the access permissions associated with the Rectan-
gleShape are truly in effect. Rather than using the inspectors inside Dis-
playRectangleAttributes() to obtain the data member values, we will
attempt to directly access the data members. For example, to get a copy of the
color of the formal parameter r of DisplayRectangleAttributes(),
assign local object c with the value r.Color.

� Compile your modified file. Examine the compiler messages. �
� Restore blue.cpp so that it uses the inspectors.

� Open the file rect.cpp. Examine the functions defined in that file.
Observe that the class name and the scope resolution operator precede the
member function name. Note that the scope resolution operator is a double

#ifndef ELEMENT_H
#define ELEMENT_H
class Element {

public:
Element(int x, int y, int z);
int GetX() const;
int GetY() const;
int GetZ() const;
void SetX(int x);
void SetY(int y);
void SetZ(int z);

private:
int X;
int Y;
int Z;

};
#endif

✎

✎

✎



74

colon (::). The member functions must be identified this way so that the
compiler can tell that they belong to a class.

The first function defined in the file is a RectangleShape constructor. A con-
structor for a class is invoked when an object of that class is defined. 

� To verify that the RectangleShape constructor is invoked when a
RectangleShape object is defined, add an insertion statement in
RectangleShape’s constructor that inserts the following message to the
stream cout:

RectangleShape constructor called.

Also, add two insertion statements in the function ApiMain(). Add one
before the definition of object R and one after it. Execute the modified
program. Describe what is happening to the laboratory instructor. �

� Remove the insertion statements you added to RectangleShape’s
constructor and to function ApiMain().

� Observe that the constructor uses the available mutators for setting the
attributes. The constructor uses an initialization list for specifying the data
member Window.

� Modify the constructor so that mutators are not used. That is, set the values
of the data members using assignment operations. Compile the file
rect.cpp. Observe that a member function of a class, even a public
member function, can access the private members. �

You may wonder why the constructor uses the mutators to set the values of the
data members when the constructor could access the data members directly.
The key idea is that all access to the data members should be through the same
interface (i.e., member function). Thus a client user of a class changes the data
members the same way a public member function of the class changes them.
Using this strategy means that we can change the representation of a data mem-
ber without having to modify every class member function that changes the
value of the data member. Since all access to the data member is through the
mutator, we need to change only the implementation of the mutator. This con-
cept is probably fuzzy because you have not yet seen enough code to appreci-
ate this very important design strategy. However, as you develop additional
classes and modify existing classes, you will see that always using a mutator to
change a data member value (whether the entity doing the changing is a client
user of the class or a member function of the class) makes software more flexi-
ble, easier to maintain, and easier to modify.

� Restore rect.cpp so that the mutators are used.

� Add a RectangleShape member function Double() to the file
rect.cpp. This function first doubles the width and height of the object
and then draws the object. Have your function Double() use the
RectangleShape inspector GetSize() to get copies of the current
width and height and then use mutator SetSize() to assign the new

✎

✎



Its elementaRY 75

width and height values. Is Double() an inspector, mutator, or facilitator?
Should the qualifier const be used?

� Modify ApiMain() so that RectangleShape object R has its size
doubled. Also display its attributes after it has been doubled.

� Make the project blue.dsw. Can you remove all errors regarding function
Double()? Why?

� Modify the class definition of RectangleShape in rect.h to include a
member function Double(). Remake and run the project blue.dsw. �

� Close the blue.dsw project.

� Now open the project element.dsw and its files eletest.cpp and
element.cpp. Complete the member function bodies of the various
member functions in element.cpp. In particular, use mutators for the
Element constructor.

� Test your implementation by building and running the project. �
� Change the line in eletest.cpp so that instead of changing

OtherPoint’s x-axis value, a change is made to Center’s x-axis value.

� Recompile eletest.cpp. How does the compiler know that it is wrong
for Center to invoke its member function SetX(), but not wrong for it to
invoke its member function GetX()?

A common graphical object is a line segment (see Figure 8.1). A line segment
in three-dimensional space is specified by its three-dimensional endpoints.

� Suppose you are to develop a class to represent three-dimensional line
segments. What inspectors and mutators should be present? What
facilitators might be helpful? Does it make a difference whether the class
is supposed to represent mathematical or graphical objects? Should it
make a difference? Discuss your answers with your laboratory
instructor. �

8.3 ITS ELEMENTARY

✎

✎

✎



76

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

Figure  8.1
A line segment in
3-space

8.4 FINISHING UP

Z-A
xis

X-Axis

Endpoint

Endpoint

Y
-A

xi
s


