
77

LABORATORY 9
Now that’s classy

Objective
This week in lab you will work with an existing class type. The objective of the
laboratory is to further explain how a class is constructed, to demonstrate how
to overload an operator, and to show how a properly constructed class can be
extended in useful ways without affecting any client programs that already use
the class.

Key Concepts
� Abstract data type (ADT)

� Facilitators

� Constructors

� const member functions

� Inspectors

� Auxiliary functions and operators

� Mutators

� Operator overloading

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab09.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

9.1 GETTING STARTED



78

Sophisticated problem solving requires that we develop our own representa-
tions for the information to be manipulated. In object-oriented programming
terminology, the representation and the operations to be performed on the rep-
resentation form a data abstraction.

Data abstractions are developed using classes, functions, and operators. In
developing an abstraction, we normally follow the information-hiding princi-
ple. Enforcing information hiding through encapsulation helps to maintain the
integrity of the data (e.g., preventing an errant client application from setting
the denominator of rational number to zero). In addition, because client pro-
grams use public methods, they are generally immune to changes in the imple-
mentation of the abstraction.

A well-defined abstraction allows its objects to be created and used in an intui-
tive manner. Therefore, the programming syntax for the definition and manipu-
lation of objects of an abstraction should have a form analogous to
fundamental-type and standard-class objects doing comparable activities.

A well-defined class using the information-hiding principle coupled with the
appropriate library functions is an abstract data type or ADT.

The class Rational is an example of an abstract data type. In the following
code segment, we display the result of summing 1/2 and 1/3.

Rational addition and insertion have the same form as the corresponding dis-
play of the sum of two int or float objects would have. This analogous form
would not be the case in traditional languages such as C or Pascal. In traditional
languages, a programmer can neither have objects with methods nor extend
existing operators to work with new types of objects. The programmer is
forced to define functions and additional temporary objects. The resulting code
is generally unnatural and awkward.

Your first task in the lab is to define two member functions Subtract() and
Divide() to support Rational subtraction and division. The members are
used by Rational auxiliary operators: minus (-) and slash (/). The two mem-
bers Subtract() and Divide() are necessary because the auxiliary opera-
tors are not members and therefore have no access to the data member values.

� Open the project file rational.dsw. Open the file ratextra.cpp. Scan
through ratextra.cpp to see the definitions of auxiliary operators - and
/. See that they invoke Rational member functions Subtract() and
Divide().

� Open the file rational.h. Make sure that Subtract() and Divide()
are listed in the class division as public member functions. Make sure that

9.2 ABSTRACT DATA TYPES

Rational a(1,2); // a = 1/2
Rational b(2,3); // b = 2/3
cout << a << " + " << b << " = " << a + b << endl;



Reducing rational numbers 79

- and / have been prototyped as auxiliary operators. Notice that they are
prototyped outside the class definition.

� The function body of the Rational member function Subtract() is
incomplete. Remember the operation a/b - c/d equals (ad - bc)/bd.
Complete this function.

� The Rational member function Divide() needs to be completely
written. Add this new function to ratextra.cpp. Remember the
operation (a/b) / (c/d) equals ad / bc.

� Open the file ratmain.cpp from the project rational.dsw. Observe
what function main() does.

� Make and run project rational.dsw. Use the following inputs to test the
program. �

� Observe that 4/5 - 1/5 did not produce 3/5. Instead, it produced 15/25,
which is equivalent to 3/5.

� Close and save your modified rational.dsw project.

In a reduced rational the numerator and denominator do not have a common
divisor other than the factor 1. For example, the rational number 9/10 is
reduced, while the rational number 8/10 is not. 8/10 can be reduced to 4/5. Pro-
ducing rational numbers that are not reduced is unsatisfactory. With nonre-
duced numbers, determining whether two rationals are equal is difficult. In
addition, the numerators and denominators of rationals that are being com-
puted can get larger than they need to be, which can cause unnecessary over-
flow problems.

You are to modify the Rational class so that all arithmetic operations return a
reduced result. A simple way to reduce a fraction is to divide both the numera-
tor and denominator by their greatest common divisor (GCD). A simple algo-
rithm for computing the GCD of two positive integers m and n follows.
1. Let r be the remainder of m divided by n.
2. If r is zero, the algorithm terminates and n is the GCD. If r is not zero, then 

set m = n and n = r; and return to step 1.

A C++ function that implements this algorithm is contained in gcd.cpp, and
the interface is in gcd.h. Examine the function and make sure it corresponds
to the algorithm. Before using a function, you should make sure that the func-
tion works as advertised. One way to do so is to supply a test harness and test
the function. Before making the modifications to the rational class, write a test

4/5 1/5
3/2 7/9
5/5 2/2
0/5 -1/5

9.3 REDUCING RATIONAL NUMBERS

✎



80

harness and test gcd.cpp. Your test program should prompt for two integers
and print the greatest common divisor.

� Open the file gcdtest.cpp and put your the test code inside function
main().

� Make and run the project gcd.dsw. This project uses gcdtest.cpp.

� Run your program on the following inputs to make sure function gcd() is
working correctly.

12 6
55 44
15 0
461952 116298

� Explain the results to your laboratory instructor. �
� Open the reduce.dsw project.

� Make the changes to rational.h and rational.cpp so that reduced
rationals are used. You will need to develop a new protected member
Rational function Reduce(), whose class prototype is

void Reduce();

Recall that the implementation of Reduce() should go in the file ratio-
nal.cpp, while the interface to Reduce() is part of the Rational class defi-
nition in rational.h.

� Add the prototype for Reduce() to the class Rational in rational.h. 

� Include the library gcd.h at the beginning of rational.cpp.

� Add the implementation of Reduce() to the file rational.cpp. Note
that in the implementation file when defining Reduce() you must begin
the definition in the following manner:

void Rational::Reduce()

Because the implementation of Reduce() is not contained with its class
definition, you need to prepend the function name Reduce with its class
name Rational through the use of the scope resolution operator. This
syntax tells the compiler which function Reduce() we are defining—in
this case the one that is a member function of the class Rational.

� Show your laboratory instructor the change you made to rational.h and
your implementation of Reduce() in rational.cpp. Remember that
gcd() expects that both of its parameters are positive. Therefore, some
case analysis is required in Reduce(). �

The next step is to decide where and when to call Reduce(). Our implementa-
tion of the Rational class requires only two calls of Reduce() in the
Rational member functions. One of these calls is in the nondefault construc-
tor.

� Examine the Rational implementation and determine where to place the
other call to Reduce(). Tell your laboratory instructor where you want to

✎

✎



Overloading operators 81

place this call. Hint: the call is not added to SetNumerator() or
SetDenominator(). �

� After making all the necessary changes, demonstrate that your
implementation of the Rational class produces reduced results. Build
and run the project reduce.dsw on appropriate inputs. The test harness
for this project is rattest.cpp. �

� Close the project reduce.dsw.

For the next part of the laboratory, you are to develop relational auxiliary oper-
ators for the class Rational.

Rationals a/b and c/d are equal if ad equals bc. Rational a/b is less than rational
c/d if ad is less than bc. Rational a/b is greater than rational c/d if ad is greater
than bc.

The overloaded relational auxiliary operators will use a public member facilita-
tor Compare() that expects a single constant reference parameter r as its
parameter. Facilitator Compare() returns a negative value if the invoking
object is less than r, it returns 0 if the invoking object is equal to r, and it
returns a positive value if the invoking object is greater than r.

You can use member function Compare() to implement the relational opera-
tors ==, < and >. For example Rational object s is less than Rational object
t if s.Compare(t) is negative.

� Open the project comp.dsw.

� Make the changes necessary to both rational.h and rational.cpp to
make Compare() a member function of the Rational ADT. Remember
that the interface (i.e., the prototype) goes in rational.h and the
implementation of the overloading goes in rational.cpp.

� Make the changes necessary to both rational.h and rational.cpp to
make ==, < and > auxiliary relational operators of the Rational ADT.
Remember that the interface (i.e., the prototype) goes in rational.h and
the implementation of the overloading goes in rational.cpp.

� Test your auxiliary operators by making and running the project
comp.dsw. Demonstrate your program to a laboratory instructor. �

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

9.4 OVERLOADING OPERATORS

9.5 FINISHING UP

✎

✎

✎



82


