LABORATORY 10

EzWindows and event-based
programming

Objective

Most user applications such as word processing programs, spreadsheets, and
personal information organizers use the mouse for input and the graphical dis-
play for output. The use of the mouse as an input device coupled with the
ability to display graphical images has reduced the complexity of using these
powerful programs. The objective of this laboratory is to become familiar with
EzWindows, a simple interface for using the mouse and displaying graphical
objects.

Key Concepts

« Event-based programming
o Callbacks

o Mouse events

« Timer events

e Bitmaps

o Coordinate system

GETTING STARTED

= Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive 1ab10.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

= Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

83

84

(08 EZWINDOWS COORDINATE SYSTEM

Before exploring the EzZWindows API further, we need to revisit the coordinate
system for positioning objects. EzZWindows uses the metric system for specify-
ing both the position of an object and its size. For example, the EzZWindows
declaration

SimpleWindow TestWindow("Sample Window",
10.0, 5.0, Position(4.0, 4.0));

creates a window labeled “Sample Window” that is 4 centimeters from the left
edge of the screen and 4 centimeters from the top edge of the screen. The win-
dow is 10 centimeters in length and 5 centimeters in height. The prototype of
this constructor for the Simp1eWindow class is
SimpleWindow(string WindowTitle = "Untitled",
float Width = 8.0, float Height = 8.0,

const Position &WindowPosition
= Position(0.0, 0.0));

Notice that the object specifying the position of the window relative to the
upper-left corner of the screen is an instance of the class Position. In earlier
laboratories, the position of a window object was specified by separate x- and
y-coordinates. We did not use the Position class in order to keep the number
of classes you were dealing with to a minimum. Now that you have a better
understanding of objects and object-oriented programming, it makes sense to
use the most appropriate representation. It is convenient and natural to encap-
sulate a window location as a single entity. Consequently, EZWindows contains
a class Position that holds the logical window coordinates of a window
object. The class definition of Position is given below.
class Position {
public:

Position(float x = 0.0, float y = 0.0);

int GetXDistance() const;

int GetYDistance() const;

void SetXDistance(float x);

void SetYDistance(float y);

private:
float XDistance;
float YDistance;
s

Henceforth, we will use a Position object to specify the position of a Sim-
pTeWindow object on the screen. Similarly, we will use a Position object to
specify the position of EzZWindow objects within a Simp1eWindow object. The
methods previously used still work, but they do not encapsulate the notion of a
position as well.

Bitmaps 85

(068 BITMAPS

Most window systems have facilities for displaying images. Bitmap files are
recognizable by their bmp file extension. For example, Microsoft provides the
bitmap brick.bmp in its Windows operating system for tiling the background.
EzWindows provides a class for displaying and manipulating graphical images
in bitmap format.

The following is a partial list of EzWindows BitMap class public member
functions:

BitMap: :BitMap(SimpTleWindow &w)
Creates a BitMap object with BitMapStatus NoB1itMap. The object
is associated with window w.

BitMap::BitMap()
Creates a BitMap object with BitMapStatus NoB1itMap. The object
is not associated with any window.

BitMapStatus BitMap::Load(const string &Filename)
The file whose name is pointed to by string Filename is used to set
the bitmap. If the file contains a valid bitmap, the status of the object
is set to BitMapOkay; otherwise, the status of the object is set to
NoBitMap.

void BitMap::SetWindow(SimpleWindow &w)
Associates the bitmap with window w. The BitMapStatus of the bit-
map is set to NoBi tMap.

bool BitMap: :Draw()
Attempts to display the bitmap object to the associated window. The
BitMapStatus of the object must be BitMapOkay for the display to
be successful. If the bitmap is displayed, the function returns true;
otherwise, the function returns false.

bool BitMap::Erase()
Overwrites the bitmap on the display by drawing a white rectangle of
the same size. If the bitmap is successfully erased, the function returns
true; otherwise, the function returns false.

bool BitMap::IsInside(const Position &p) const
Returns true if position p lies within the bitmap; otherwise, the func-
tion returns false.

BitMapStatus BitMap::GetStatus() const
Returns the current BitMapStatus value associated with the object.

float BitMap::GetXPosition() const
Returns the distance from the center of the bitmap to the left edge of
the associated window. The distance is in centimeters.

float BitMap::GetYPosition() const
Returns the distance from the center of the bitmap to the top edge of
the associated window. The distance is in centimeters.

float BitMap::GetWidth() const
Returns the width of the bitmap in centimeters.

86

float BitMap::GetHeight() const
Returns the height of the bitmap in centimeters.
void BitMap: :GetSize(float &Width, float &Height) const
Returns the width and height of the bitmap in centimeters.
void BitMap::SetPosition(const Position &p)
Sets the position of the bitmap to p.
Position BitMap::GetPosition() const
Returns the position of the center of the bitmap.

Important! The bitmap class is not positioned by specifying its center. Rather, a
bitmap is positioned by specifying the coordinate of the upper-left corner. See

Figure 10.1.
Figure 10.1
Specifying the
position of a
bitmap. Coordinate of bitmap

Let’s examine a program that creates a window and displays a bitmap.
= Open the project bitwin.dsw.

The program creates a window that looks like the following:

Bitmaps 87

In the project window, double-click on the bitwin. cpp file.

Examine the code. Try to answer the following questions. Experiment
with the code to answer any questions that seem difficult to answer.

— Why does the BitMap constructor take a SimpleWindow as a
parameter?

— Why call the assert() function to check to make sure that the
BitMap is okay?

— What happens if the position of the BitMap is not set before it is
drawn?

— Is it possible to remove the image from the window without closing
the window? Why might that be useful?

Discuss your conclusions with a laboratory instructor. ¢

To solidify the previous concepts, modify the program in the following
manner:

— Change the program to load the bitmap hazard.bmp.

— Change the program so that the image is right justified in the window
(i.e., the right edge of the image is against the right edge of the
window).

— Change the program to reposition the image after it has been drawn.
Reposition the image so that it is left justified in the window. What
happens if the original image isn’t erased before setting a new
position and redrawing?

Demonstrate your modified program to a laboratory instructor. ¢/

Close the bitwin.dsw project.

88

(08 MOUSE EVENTS

One of the most powerful tools used to manipulate applications in windows is
the mouse. The mouse provides a mode of interaction that is easy to use, is
easy to understand, and frees the user from having to remember obscure com-
mand names. EzWindows provides a simple facility for using the mouse.
Instead of declaring a mouse object, EzZWindows allows the user to specify a
function to call when a mouse click occurs inside an EzWindow. The Sim-
pT1eWindow declaration of the member function for registering a callback for a
mouse event is

void SetMouseClickCalTlback(MouseCallback f);
where MouseCallback is the typedef
typedef int (*MouseCallback) (const Position &);

When the mouse is clicked, the callback function is called with the coordinate
of the mouse pointer as a parameter. The callback function can use the coordi-
nate to determine if the mouse is pointing at some object on the screen.

Let’s examine a program that demonstrates the use of mouse callbacks.
= Open the project mouse. dsw.

= In the project window, double-click on the mouse. cpp file.

= Examine the code. Try to answer the following questions:

— One of three cards is displayed when the mouse is clicked on the back
of the card. The three possibilities are the jack, queen, and king.
Which face card will appear when you click the mouse on the back of
the card?

— How does the BitMapWindow know which function to call when a
mouse event occurs?

— Run the program. Click on the card and see what happens. Exit the
program. Run the program again. Click in the window, but not on the

Timer Events 89

card. What happens? Figure out why. If you need help, ask your
laboratory instructor.

Modify the program so that on successive mouse events, a different card
appears. The actions performed with each mouse event should proceed as
follows. Start with the card back showing. Then

1. The jack appears.

2. The queen appears.

3. The king appears.

4. The card back appears.

5. Repeat steps 1 through 4.

The following diagram illustrates the sequence in which the cards should
appear.

Successive mouse clicks

Hint: You do not need to write additional functions to solve this problem.
You can insert SetMouseClickCallback calls in existing functions to
change the function that will next get called when the mouse is clicked.
Think about using this approach to control which card to display next.

Demonstrate the modifications to a laboratory instructor. ¢

Close the Mouse . dsw project.

(Y TIMER EVENTS

EzWindows provides a facility for performing actions at a predetermined time
or interval. By setting the amount of time that must elapse before a specified
action occurs and specifying its callback function, a timer event is setup. A
timer event is a dispatch message from the window that invokes a callback
function when a specified amount of time has elapsed. Timer events are useful
for features such as animation and game timers.

90

Let’s examine a program that has timer events. The following program displays
eyes in random locations within the window. When a timer event occurs, the
picture is erased, a new location is chosen, and the picture is redrawn.

= Open the project tictoc.dsw.

= Run the program. Get a feel for what the program does.

=« Terminate the program and return to the IDE.

=« In the project window, double-click on the timer. cpp file.
= Examine the code. Try to answer the following questions:

— Where is the timer callback set?

— How much time elapses between each timer event?

— Why is member function StopTimer() called in the ApiEnd()
function? What happens if member function StopTimer() isn’t
called?

Bringing it all together 91

— What units of time specify the elapsed time between timer events?

= Experiment with the code to discover the answers to the above questions.
« Discuss your answers with the laboratory instructor. ¢
= Make the following modifications to the program:

— Change the amount of time elapsed between timer events to five
seconds.

— Change the amount of time elapsed between timer events so that the
picture of the eyes is difficult to follow.

« Demonstrate your modifications above to a laboratory instructor. ¢

» Close the tictoc.dsw project.

(X BRINGING IT ALL TOGETHER

Now let’s do an exercise that uses all the skills you used in the previous exer-
cises.

The following program displays an EzZWindow with a pair of eyes and a set of
directional buttons. When a button is pressed, the eyes look in the direction
indicated by the picture on the button.

= Open the project eyes.dsw.

= Run the program. When you are comfortable with what it does, terminate
the program and return to the IDE.

= In the project window, double-click on the eyes. cpp file.
= Examine the code. Try to answer the following questions:

— The buttons are displayed via a set of BitMap objects. In the
ApiMain() function, why is the SetWindow() member function
called for each BitMap?

— In which function is the mouse callback setup?

— What function draws the initial picture of the eyes?

— What function draws the buttons?

» Discuss your answers to the preceding questions with your laboratory
instructor. ¢/

= Complete the implementation of the program so that when a button is
pressed the eyes only temporarily look in the designated direction.

= Write the code to complete function LookStraight(). It should change
the direction in which the eyes are looking to straight ahead.

» Modify function PressButton() so that function LookStraight()
gets called after LookTime seconds have elapsed.

« Demonstrate your modified program to a laboratory instructor. ¢/

= Close the eyes.dsw project.

[(OVA FINISHING UP

» Copy any files you wish to keep to your own drive.
= Delete the directory \cppTab.
»« Hand in your check-off sheet.

