
93

LABORATORY 11
Hurray for arrays

Objective

This week in lab you will develop skills in manipulating arrays in C++. An
array is a collection of objects of the same type that are referenced through a
common name. One of the applications you will consider is searching for a
particular value in a list of values.

Key Concepts
� Single-dimension arrays

� Subscripting

� Array manipulation

� Improper indexing pitfalls

� Passing arrays

� Linear search

� Binary search

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab11.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

11.1 GETTING STARTED

94

� Open the program file five.cpp. This program first extracts five values
from a standard input stream to set the elements of an array. The program
then displays the values of the array. Although the program is correct for
its task, the actual implementation can be improved.

� Modify the program so that it extracts and lists eight numbers. Run your
program after it has been modified. (You will need to create a default
workspace).

� Were you required to make an additional modification to get the program
to work? Should this modification have been necessary or should the
original designer/implementer have written the program differently? Is
there an appropriate motto for dealing with arrays and constants? ✔

� Now modify the program so that it displays the minimum value in the list
before displaying the values in the entire list. The following screen capture
demonstrates the desired input/output behavior.

� Demonstrate that your modified program works correctly. ✔

� Modify the program again so that when displaying the values in the list, if
the current element being processed is equal to the minimum value, the

11.2 ARRAY BASICS

✎

✎

Re-deja vu 95

string " minimum" is displayed at the end of the output line. Demonstrate
that your program works correctly. ✔

� Close the current workspace.

One of the most common errors when using arrays is trying to use an invalid
array index. C++ will not stop you from overrunning the end of an array. There-
fore, the programmer must ensure that the array is always defined large enough
to hold the necessary information and never allows an invalid index to be used.

� Open the program file sum.cpp. This program initializes two arrays A and
B and produces a third array C whose values are the sum of A and B.

� Write down the problems you see with the program in the space provided
below.

� In C++, when using a for loop to iterate through an array you usually
want the loop indices to range from 0 to n-1, where n is the size of the
array. This design corresponds to the fact that C++ numbers array indices
from 0 to n-1. Hence, the typical for loop initializes its index object to
zero and repeats the loop as long as the index is less than the size of the
list.

� Correct the errors in the program.

� Step through the program and watch the values of A[0], B[0], and C[0].
(You will need to create a default workspace). What happens as the
program is running through the for loops? These values are not the values
you want to watch. You really want to watch the current values being
considered, which you can do by editing the watches and replacing the 0’s
with i. Step through the program again, but this time watch A[i], B[i],
and C[i]. It is also possible to watch an entire array at one time. Add
watches of A, B, and C and again step through the program. ✔

� Close the current workspace.

� Examine the following function and determine why it will not compile.

11.3 RE-DEJA VU

void f(const int A[]) {
for (int i = 0; i < 10; ++i) {

if (A[i] == 0) {
A[i] = 1;

}

✎

✎

96

� Examine the following function and determine why it will not compile.

� Examine the following function and determine why it will not compile.

}
}

void g(const char A[]) {
cin >> A;

}

void h(int &A[], int &n) {
int InputValue;
for (int n = 0; cin >> InputValue; ++n) {

A[n] = InputValue;
}

}

void f(const int A[]) {

Re-deja vu 97

� Examine the following program and determine its output.

� Open the program file dejavu.cpp.

� Run the program and compare your predicted results to the actual results.
If there are differences, determine why. (You will need to create a default
workspace).

� Show your results to a lab instructor .✔

� Close the current workspace.

#include <iostream>
#include <iomanip>
using namespace std;
const int MaxListSize = 100;
void f(int A[], int n) {

for (int i = 0; i < n; ++i) {
A[i] = -A[i];

}
n = 5;

}
int main() {

int MyList[MaxListSize] =
{ 2, -3, 5, 7, 11, -13, 17, -19, -23, 29};
int ListSize = 10;
cout << "Initial values: ";
for (int i = 0; i < ListSize; ++i) {

cout << setw(4) << MyList[i];
}
cout << '\n' << endl;
f(MyList, ListSize);
cout << " New values: ";
for (int j = 0; j < ListSize; ++j) {

cout << setw(4) << MyList[j];
}
cout << '\n' << endl;
return 0;

}

✎

98

Your next task is to implement a function Reverse() that reverses the list of
values represented by its parameters S and n. In particular, the elements of S
are to be char values. The number of elements to be manipulated is the int
value n. Note S is not a string object.

The easiest way of reversing a list of elements is to use a loop that for each iter-
ation swaps another pair of elements—one element from the left half of the list
and another element from the right half of the list. It is traditional to use two
indexes left and right whose values are the indices into the two sublists.
The loop iterates while the value of left is less than the value of right.

� Open the program file reverse.cpp and create a default workspace.

� Examine the function main(). It extracts a list, displays the list, reverses
the list, displays the reverse list, restores the list using another reversal,
and displays the now restored list. The list extraction and display are
performed using functions that are also defined in reverse.cpp.

� Add the definition of Reverse() to reverse.cpp. Your implementation
should use a function Swap() that you also define.

� Demonstrate that your program works correctly. ✔

� Close the current workspace.

It is often important to search a list of data to determine if a value is present.
You will now examine two methods of searching for a particular value: exhaus-
tive and binary. You will also record how many element comparisons are nec-
essary to complete each search.

11.5.1 Exhaustive searching
� Open the program file exhaust.cpp. This program will first read in the

file search.dat. It will then prompt the user for a value. This value,
called the key, is then compared to each value in the stored list. The
program will display a message indicating whether the key is one of the
list values.

� Run the program on the five suggested key values to complete the first
column of the following table. Also compute the average number of values
searched. (You will need to create a default workspace).

If we have randomly arranged data and a random key value, on average we will
examine half the list to find the key value. If we know instead that the data is
already ordered (sorted), then we can on average do much better.

11.4 REVERSING

11.5 SEARCHING

✎

Searching 99

� Modify the program to use the data file sorted.dat. This file is the same
as search.dat, but the numbers have now been sorted.

� Run the program and complete the second column of the table.

� How has sorting affected the average? Probably not very much, since the
program has not been modified. The difference occurs because of the data
being rearranged. Let’s now modify the program.

� Because the data is sorted, we can stop searching for the key value once
we find a list value that is greater than or equal to the one for which we are
searching. Modify the program to perform the search this way. Your
modification should cause the loop to be exited once the key value is less
than or equal to the current item in the list that is being compared. The
check after the loop may need to be changed depending on how you
modified the loop. If necessary, change it appropriately.

� Run the program again and complete the third column of the table. ✔

� Close the current workspace.

Search
value

Search Technique

Exhaustive
with

unsorted
data

Exhaustive
with sorted

data

Modified
Exhaustive Binary

Modified
Binary

559

4442

2415

297

1173

Average

✎

100

11.5.2 Binary searching
The binary search described here is a more efficient search than the modified
exhaustive search. For example, when you search for a name in a phone book,
you probably don’t start at the beginning and search straight through. You use
the fact that the names are in sorted order to speed up your search.

The binary search is an iterative technique in which each iteration discards half
of the remaining values from further consideration. The search starts with the
middle list element and decides which half of the data to further examine. In
the next iteration, the middle element from the half of the data values that can
possibly contain the key value is computed, and from it the range of possible
positions for the key value is further restricted. The process is repeated until the
search finds the key value or until the search determines there are no more
potential positions to consider.

� Open the file binary.cpp.

� Examine the program to determine how the binary search algorithm is
implemented. In particular, notice that object p is used as an index of the
middle element of the values currently being considered.

� Run the program and complete the fourth column of the table. (You will
need to create a default workspace).

� Is this search better or worse than the exhaustive approach? ✔

� Close the current workspace.

There is also an alternative to choosing a value for p that is sometimes more
effective than always picking the middle element. The alternative supposes that
the values in the list being processed are uniformly distributed over the interval
determined by the leftmost and rightmost elements currently being considered.
We can choose as the value for p the index of the element that is most likely to
contain the key value.

Suppose a thousand values are in the list, and the value range is 1 … 1,000. If
the key value is 4, the expected location is the fourth element. Similarly, if the
list contains 1,000 elements, the value range is 1 … 2,000, and the key value is
1,500, the expected location is the 750th element in the list.

In general, if the current range of values being considered is a … b and if n is
the number of values in that range, then the expected position p of the key
value is

.

� To modify a binary search to use the above formula, take the following
into consideration:

— For the “middle” position p to make sense, key must lie within the
inclusive interval a … b. If key does not, it cannot be in the list. This

✎

p a n 1–()key a–
b a–

-----------------+=

Searching 101

restriction requires two comparisons to be made in each iteration of
the search loop to ensure that key is in the interval.

— The formula for p cannot be evaluated if a and b are the same. Why?

This restriction means that another comparison needs to be made in
each iteration of the search loop to determine whether a and b are the
same. If they are different, the value of p is determined using the
preceding formula.

In the preceding code, because the value of key has already been
previously determined to be in the interval a … b, if the if-test
indicates that a and b are the same, then a and b must both equal key.
Why?

� Open the program file modified.cpp and complete the fifth column of
the table. (You will need to create a default workspace). Is this search an
improvement over the standard binary search? Discuss your results with a
laboratory instructor ✔

int a = List[left];
int b = List[right];
if ((key < a) || (key > b)) {

comparisons += 2;
break;

}
else {

comparisons += 2;
}

if (a == b) {
++comparisons;
spot = left;
break;

}
else {

++comparisons;
}
int n = right - left + 1;
p = left + int((n-1) * float(key-a)/float(b-a));

✎

102

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

11.6 FINISHING UP

