
103

LABORATORY 12
Vectoring in on vectors

Objective
C++ imposes significant restrictions on the use of arrays—a function return
type cannot be an array; an array cannot be passed by value; an array cannot be
the target of an assignment; the size of the array must be a compile-time con-
stant; and an array cannot be resized. The restrictions on arrays forced the
developers of many software applications to use alternative list representations
that were often nonportable. The cost of using nonportable representations
could be quite high because developers had to create and support multiple ver-
sions of their software. This expense can now be avoided by using the con-
tainer classes of the Standard Template Library (STL). For many programming
situations, the appropriate container class to use is the vector class. There-
fore, we explore the vector class in lab this week.

� Vectors

� Subscript and at()

� Resizing

� Passing vectors

� Iterators

� Sorting

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab12.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

12.1 GETTING STARTED

104

The container classes of the STL are a set of generic list representations that
allow programmers to specify which types of elements their particular lists are
to hold. The vector class template is the most widely used representation.
The principal member functions of the vector class are given in Table 12.1.

We start off by having you manipulate a vector using the indexing members—
the subscript operator [] and the at() function.

� Open the program file basics.cpp. The program in this file defines,
initializes, and displays a vector A. (For your information, the elements of
the vector are set to the first fifteen values in the Fibonacci sequence).
Create a default workspace and execute the program to see a sample run.

� Add three assignment statements to the program after the setup of A. The
assignment statements should use the subscript operator to make the first,
second, and fourth elements of A equal to 100. (Remember the first
element has index 0). The subscript operator when applied to a vector
returns a reference, thus making the result assignable. Run the program to
verify that your assignments are correct.

� Modify the display of A so rather than using the vector subscript operator
to access an element, the code uses the vector at() member function. Run
the program to verify that your modifications are correct.

� Like the subscript operator, the at() member function returns a reference
rather than a simple value. Therefore, its result can be the target of an
assignment as in the following statement.

A.at(9) = 12;

� Add three assignment statements to the program that set the last three
elements of A to 200. The assignments should occur immediately before
the loop that displays the elements. ✔

� You may wonder why the vector class provides two mechanisms for
indexing the elements of a list. The at() function is supposed to check
that the index is proper (i.e., it is in the interval 0 … size() – 1). If the
index is valid, at() returns a reference to the desired list element;
otherwise at() is supposed to throw an exception. Some compilers have
not implemented at() as it is defined in the standard. Test whether your
compiler follows the standard for member function at(). Add the
following assignment statement to the program.

A.at(-1) = 1954;

� Run your modified program. Does your program throw an exception for
the invalid subscript? ✔

� Close the current workspace.

12.2 VECTOR BASICS

✎

✎

Vector basics 105

Table 12.1
Some member functions of the
class template vector

vector::vector()
The default constructor creates a vector of 0 length.

vector::vector(const T &V)
The copy constructor creates a vector that is a duplicate of vector V.

vector::vector(size_type n, const T &val = T())
Explicit constructor creates a vector of length n with each element initial-
ized to val.

size_type size() const
Returns the numbers of elements in the vector.

iterator insert(iterator pos, const T &val = T())
Inserts a copy of val at position pos of the vector and returns the posi-
tion of the copy into the vector.

iterator erase(iterator pos)
Removes the element of the vector at position pos.

void pop_back()
Removes the last element of the vector.

void push_back(const T &val)

Inserts a copy of val after the last element of the vector.
void resize(size_type s, T val = T())

Let n be the current number of elements in the vector. If s > n, then the
number of elements is increased to s with the new elements added after
the existing elements and the initial value of the new elements being val.
If s < n, then the number of elements is decreased to s by erasing elements
from the end of the vector. If s equals n, then no action is taken.

void vector::clear()
Removes all elements from the vector.

reference at(int i)
If i is a valid index, it returns the ith element; otherwise an exception is
thrown.

const_reference at(int i)
If i is a valid index, it returns the ith element; otherwise an exception is
thrown. The element that is returned cannot be modified.

iterator begin()
Returns an iterator pointing to the first element of the vector.

const_iterator begin()
Returns an iterator pointing to the first element of the vector. Elements
dereferenced by this iterator cannot be modified.

iterator end()
Returns an iterator pointing to a sentinel immediately beyond the last ele-
ment.

const_iterator end()
Returns an iterator pointing to a sentinel immediately beyond the last ele-
ment. Elements dereferenced by this iterator cannot be modified.

106

� Open the file numbers.cpp. The program in this file extracts values from
the standard input stream to set the elements of a vector. This short
program demonstrates in part the ability of the vector container class to
resize itself.

� Create a default workspace and run the program on the following data set.

6 21 54 6 30 54

� Now run the program on the following data set.

6 9 82 11 28 85 11 29 91

Unlike the program contained in five.cpp of the previous lab, we do not need
to modify constants and recompile numbers.cpp to correctly handle a differ-
ent-sized list. The vector class, with its use of dynamic data structures, can
handle different-sized lists automatically.

� Modify the program so that immediately after a new value is added to the
list, the program displays the current size of the list.

� Modify the program so that two duplicates of A are made. The duplicates
should be named B and C. Duplicate B should be built at the same time as A
is being built. Duplicate C should be built after all of the inputs have been
extracted. Duplicate C should be built without a loop.

� Modify the program so duplicates B and C are also displayed. ✔

� Close the current workspace.

� Open the file functions.cpp and create a default workspace. This file
defines a vector of strings S and a vector of integers N.

� Your first task is to write functions, DisplayStrings() and
DisplayInts(), that display to a desired stream respectively lists of type
vector<string> and vector<int>. The functions take two
parameters. For both functions, the first parameter is a reference to an
ostream. For one function, the second parameter is a constant reference
parameter of type vector<string>; for the other function, the second
parameter is a constant reference parameter of type vector<int>.

The prototypes of the functions are:

The functions should perform the following actions.

Step 1. Display the left bracket and whitespace
Step 2. For each vector element do
Step 2.1 Display the element in an appropriate manner

12.3 SOME SIMPLE FUNCTIONS

void DisplayStrings(ostream &sout,
const vector<string> &A);

void DisplayInts(ostream &sout,
const vector<int> &A);

✎

Some simple functions 107

Step 2.2 Display whitespace
Step 3. Display the right bracket

A sample run of the program follows.

� Show the laboratory instructor your implementation of the two vector
display functions and a sample run. ✔

� Using functions to display objects is not the norm in C++. Instead
programmers normally use the insertion operator. With your display
functions as a basis, implement overloading of the insertion operator for
vector<string> and vector<int> objects. (Remember these insertion
operators need to perform a reference return of their stream parameter).
The prototypes for these operators are:

� Uncomment the vector insertions and show the laboratory instructor your
implementation of the two insertion operators and a sample run. ✔

� The mean of a list of values is their average. Develop a function mean()
that first asserts that its constant vector<int> reference parameter A has
at least one element. The function next sums the values in A. The function
then returns that sum divided by the number of elements in A. Add your
definition to the program file.

� Uncomment the invocation of mean() in function main(). Show your
results to the laboratory instructor. ✔

The vector member function resize() gives you the ability to add or remove
elements from the end of the list. Function resize() has a required parameter
that indicates the new size of the list. The function also has an optional param-
eter that specifies the initial value of any new elements that are created by
resizing the list. If the optional parameter is not specified, the new elements are
initialized using the default constructor for the base type of the vector. (For
fundamental base types, 0 is used).

� Immediately after the definitions and assignments to S and N in
functions.cpp, perform separate resize() invocations to implement
the following list manipulations. After each manipulation, display the
modified list using your insertion operators.

ostream& operator<<(ostream &sout,
const vector<string> &A);

ostream& operator<<(ostream &sout,
const vector<int> &A);

✎

✎

✎

108

� Resize list S to 9 elements. The new elements should have the value
"Darby".

� Resize list N to 20 elements. Do not provide a second parameter.

� Resize list N to 10 elements.

� Resize list N to 15 elements using the value 8 as the initial value of new
elements.

� Resize list S to 0 elements. Use "buffer" as the value of the second
parameter.

� Show the laboratory instructor your resizing code and a sample run. ✔

� Close the current workspace.

The STL library provides an alternative method to reference the elements of a
vector. The alternative method uses iterators, where an iterator is conceptually
a pointer to an element in the list. There are three basic operations on iterators.

� increment operator ++: updates the iterator to point to the next element in
the list. If there is no next element, the iterator points to a sentinel.

� decrement operator --: updates the iterator to point to the previous element
in the list.

� dereferencing operator *: produces a reference to the element to which the
iterator points.

The vector member functions begin() and end() described in Table 12.1
return iterators when they are invoked. There is an iterator type for each type of
vector. For example, the iterator type associated with a vector<int> con-
tainer is vector<int>::iterator and the iterator type associated with a
vector<string> container is vector<string>::iterator.

� Open the file iterator.cpp and create a default workspace.

� Because the type names vector<int>::iterator and
vector<string>::iterator are unwieldy, programmers often add
typedef statements to their program that allow simpler type names to be
used. For example, the following statements allow us to use
string_iterator for vector<string>::iterator and
int_iterator for vector<int>::iterator.

Add typedef statements prior to function main() to create simpler
iterator type names.

� Define four iterators in the program file. The iterators should be defined
after A and B have been displayed.

— An iterator P that points to the first element of A.

12.4 ITERATORS

typedef vector<int>::iterator int_iterator;
typedef vector<string>::iterator string_iterator;

✎

Sorting 109

— An iterator Q that points to the trailing sentinel for A.

— An iterator R that points to the first element of B.

— An iterator S that points to the trailing sentinel for B.

� Modify the element that iterator P points to by using the dereferencing
operator *. The element’s new value is 29.

� Modify the element that iterator R points to by using the dereferencing
operator *. The element’s new value is "merlin".

� After these modifications, add statements that cause iterators P and R to be
incremented and iterators Q and S to be decremented.

� After the previous modifications, add statements to the program file that
modify the element to which iterator P points. The element’s new value is
31. Similarly, modify the element to which iterator Q points so that it has
the value 85. Also modify the elements to which iterators R and S point.
The new element values are respectively "snooky" and "hennepin".

� If necessary, add insertion statements that display lists A and B after these
changes have been made. Are the values the ones that you expect? If not,
examine your code and the definitions of the operators.

� The most common use of iterators is in loops. For example, the following
code segment displays the elements of A one per line.

Add a code segment using iterators that determines the string that occurs
first lexicographically (i.e., determine the string that has the minimum
string value). The code segment should display the value of that string
after processing all of the loop elements.

� Show your program file along with a run of the program to your laboratory
instructor. ✔

� Close the current workspace.

One of the better sorting methods is MergeSort(). This recursive sort divides
a list of n elements into two sublists of size n/2. The sublists are sorted by
recursive calls to MergeSort(). After the two sublists are sorted, they are
merged together to produce a single sorted list of size n. The function Merge-

string_iterator s = B.begin();
while (s != B.end()) {

cout << *s << endl;
++s;

}

12.5 SORTING

✎

110

Sort() from mergesort.cpp is an implementation of this brief description.

Thus it is repeated calls to function Merge() by MergeSort() that actually
put the elements into sorted order. Function Merge() takes four parameters.
The first parameter is the vector A that contains the two sorted sublists to be
merged. The next three parameters are indices left, mid, and right. The left
sorted sublist consists of the elements A[left] … A[mid]; the right sorted
sublist consists of the elements A[mid+1] … A[right].

� Open mergesort.cpp and create a default workspace. Finish the
implementation of this sorting method by completing the implementation
of function Merge(). For code simplicity, our implementation of the
function first puts the merging of the A sublists into a list B. List B is then
copied to the appropriate elements of list A. Our implementation is based
on the following algorithm.

Step 1. Create temporary vector B for merging the sorted sublists.
Step 2. Set up and initialize indices into the A sublists and the list B.
Step 3. Repeatedly perform the following while both sublists of A have

uncopied elements to consider.
Step 3.1 If the current element in the right sublist is smaller than the

current element in the left sublist, copy the element from
the right sublist to the next available position in B. Update
the indices of the right sublist and the B list to index the
successive elements.

Step 3.2 If instead the current element in the left sublist is smaller
than the current element in the right sublist, copy the ele-
ment from the left sublist to the next available position in B.
Update the indices of the left sublist and the B list to index
the successive elements.

Step 4. If the left sublist has uncopied elements, copy them to B.
Step 5. If instead the right sublist has uncopied elements, copy them to

B.
Step 6. Copy B to A.

� Show the laboratory instructor your program and a sample run. ✔

In the previous lab we measured the quality of a searching method by deter-
mining the number of element comparisons it made. In evaluating the quality
of a sorting method, it is standard to use the number of element comparisons
and the number of element assignments made by the method. Generally these

void MergeSort(vector<int> &A, int left, int right) {
int size = right - left + 1;
int mid = (left + right)/2;
if (size > 2) {

MergeSort(A, left, mid);
MergeSort(A, mid + 1, right);

}
if (size > 1) {
 Merge(A, left, mid, right);
 }

}

✎

Finishing up 111

two actions are the most time-consuming operations a sorting method per-
forms.

� Define two global integer objects comps and moves at the beginning of
mergesort.cpp. Initialize both objects to 0. Object comps will keep
track of the number of element comparisons made during the sort; object
moves will keep track of the number of element assignments made during
the sort.

� To have comps and moves appropriately maintained by the program, you
must make some additions to function Merge(). There is one element
comparison and one element move made per iteration of the first while
loop. Therefore, add the following statements to the beginning of the while
loop body.

� The remaining Merge() code does not make any element comparisons.
However, the other three loops perform an element assignment for each of
their iterations. Therefore, add an increment of moves to the bodies of
those loops.

� Add statements to display the final values of comps and moves.

� Run your program four times. The first time have the program sort the first
2 elements of N. The second time have the program sort the first 4
elements of N. The third time have the program sort the first 8 elements of
N. The last time have the program sort all 16 elements of N. To perform
these different actions, you will need to modify the invocation of
MergeSort() in function main(). Record the number of comparisons
and element assignments in the following table.

� Show your laboratory instructor your results. Speculate on the pattern that
is developing for the values of comps and moves. ✔

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

++comps;
++moves;

elements comps moves

2

4

8

16

12.6 FINISHING UP

✎

