
113

LABORATORY 13
Inheritance

Objective

In this week’s lab you learn to create new objects using inheritance. Inheritance
supports both abstraction and code reuse—two valuable programming tech-
niques.

Key Concepts
� Inheritance

� Is-a relationship

� Code reuse

� Abstraction

� Base class

� Derived class

� Derived-class declaration

� Derived-class implementation

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab13.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

13.1 GETTING STARTED



114

A key feature of an object-oriented language is inheritance. Inheritance is the
ability to define new classes using existing classes as a basis. Inheritance sup-
ports both abstraction and code reuse. For example, suppose you were going to
develop classes for different kinds of bicycles. You might develop classes to
represent mountain bicycles and road-racing bicycles. It may pay off to intro-
duce a base class that contains the features common to all types of bicycles and
to then use the base class to create specialized types of bicycles. Furthermore,
this type of hierarchical abstraction of common features helps you understand
the classes. For example, even if you do not know exactly what a hybrid bicy-
cle is, because it is a bicycle, you know it must have two wheels, handlebars,
and pedals.

The relationship between a hybrid bicycle and a generic bicycle is known as an
is-a relationship—a hybrid bicycle is a bicycle. The relationship between a
bicycle and its wheels is a has-a relationship—a bicycle has wheels.

An inheritance hierarchy is often presented pictorially. For example, the inher-
itance hierarchy of the EzWindows shapes is

We see that the base class is WindowObject and that the classes Shape and
Label are derived from WindowObject. Thus a Shape is a WindowObject,
and a Label is a WindowObject.

Designing an inheritance hierarchy is one of the keys to a good object-oriented
design. Developing a flexible hierarchy is quite difficult, but in the long run, it
can pay off by reducing both maintenance costs and future development costs.

� To get a feel for developing a hierarchy of objects based on the is-a
relationship, develop an inheritance hierarchy for telephones. For each

13.2 INHERITANCE

WindowObject

LabelShape

TriangleshapeSquareShapeEllipseshape RectangleShapeCircleShape



The mechanics of inheritance 115

class of telephone in your hierarchy, give the attributes and behaviors of
the class. �

� Open the file rect.h. Examine the RectangleShape class declaration.
Answer the following questions.

— What is the base class for RectangleShape?

13.3 THE MECHANICS OF INHERITANCE

✎



116

— Suppose a user defines a RectangleShape object name R.
Determine all the messages that a client user can send R. That is, what
member functions of R can a client user invoke?

� Show your answers to a laboratory instructor. �
� Open the file rect.cpp.

� Examine the constructor for RectangleShape. What constructors in the
shape inheritance hierarchy are called to instantiate a RectangleShape?

� To verify your answer, open the project file exp1.dsw. For each
constructor in the shape inheritance hierarchy, add an insertion statement
such as

cout << "Constructor XXX called" << endl;

where XXX is the name of the constructor. Hint: Use the IDE’s cut-and-
paste feature to add the insertion statement. Run the program and write
down the order in which the constructors were called. �

� Close the project exp1.dsw.

A useful type of window object is a shadowed rectangle.

Shadowed rectangles have a three-dimensional look. We can create this new
type of window object easily using inheritance.

13.4 SHADOW BOXING

✎

✎



Don’t Get Boxed In 117

We will call this new shape ShadowedRectangleShape. The class Shad-
owedRectangleShape will be derived from RectangleShape. This is say-
ing that a ShadowedRectangleShape is a kind of RectangleShape. For
this exercise, a ShadowedRectangleShape will be identical in all respects to
a RectangleShape except that when a ShadowedRectangleShape is
drawn a black shadow is included. The shadow is offset 0.25 centimeters to the
right and below the main rectangle.

� Create the class declaration for ShadowedRectangleShape in the file
shadowrect.h. You may find it helpful to look at rect.h. If you need
help ask your laboratory instructor.

� Next implement ShadowedRectangleShape. Place the implementation
of ShadowedRectangleShape in the file shadowrect.cpp. Again you
will find it useful to use rect.cpp as a guide. Indeed, besides the
constructors only the Draw() and Erase() member functions need to be
implemented—all the other member functions are inherited.

� Open the project file exp2.dsw. Examine the program exp2.cpp.
Demonstrate that your implementation of ShadowedRectangleshape
works to the laboratory instructor. �

� Close the project exp2.dsw.

Another handy type of window object is a box. As the following picture shows,
a box is like a rectangle with no borders except that its middle is empty.

� Using the existing shape hierarchy and inheritance, it is easy to build a
new box object. Design a simple box class. Your box class should be
derived from Shape. (A box is not a kind of rectangle). In this BoxShape
class, the walls of the box are always 0.3 centimeters thick. Before writing
any code, answer the following questions.

13.5 DON’T GET BOXED IN

✎



118

— What member functions, if any, are specific to BoxShape?

— What data members, if any, are specific to BoxShape?

— Describe how you will draw a BoxShape.

� Show your answers to a laboratory instructor. �

� Open the project file exp3.dsw.

� Open the include file box.h. This file should be empty except for a
comment. In this file, add your class declaration for BoxShape. If you are
unsure how to declare the class, you may find it helpful to examine the
declaration of RectangleShape in rect.h. Save the declaration of
BoxShape in the file box.h.

� Explain your BoxShape class declaration to a laboratory instructor. �

� Open the file box.cpp. Again, this file should be empty except for a
comment. In this file, type in the implementation of the constructors and
member functions for BoxShape. If you are unsure how to implement the
BoxShape’s constructor, you may find it helpful to examine the
constructor for RectangleShape in rect.cpp.

� Save the implementation of BoxShape in the file box.cpp.

� Explain your implementation of BoxShape to a laboratory instructor. �

� Open the file exp3.cpp. This file contains a stub for the function
ApiMain(). (A stub is a function where the body of the function has been
omitted). A stub allows the program to be compiled, but the function does
not do anything when called.

✎

✎

✎



Don’t Get Boxed In 119

� To demonstrate the use of BoxShape, add code to the function
ApiMain() that creates a diagram as shown below:

� Demonstrate your program to a laboratory instructor. �

� You can make BoxShape more flexible if you permit the user of a
BoxShape to specify the thickness of the walls of the box when it is
created. Modify box.h and box.cpp to include this extension.

� Demonstrate that your extension works correctly by modifying exp2.cpp
so the walls of the outer box are 1 centimeter thick, and the walls of the
inner box are 0.5 centimeters thick. The outer box is blue and is 10
centimeters by 6 centimeters. The inner box is red and is 4 centimeters by
3 centimeters. The window your program creates should look something
like the following:

Red wall

Blue wall

✎

Blue wall

Red wall



120

� Demonstrate your program to the laboratory instructor. �
� Close the project exp3.dsw.

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

13.6 FINISHING UP

✎



121

LABORATORY REVIEW
So far so good

Objective

You have covered an enormous amount of material in the previous labs. It’s
now time to step back and double-check your mastery of the skills you need. In
this laboratory, you will use many of the skills covered in previous labs. If dur-
ing any of the following activities, you get stuck or are unsure about how to do
something, consult the laboratory instructor for help. Now is the time to correct
any lingering uncertainties you might have about the C++ topics that have been
covered thus far.

Key Concepts
� Arithmetic and assignment statements

� Conditional execution

� Iteration

� Reading files

� Using objects

 

� Using the procedures in the introductory laboratory handout, create the
working directory \cpplab on the appropriate disk drive and obtain a
copy of self-extracting archive lab08.exe. The copy should be placed in
the cpplab directory. Execute the copy to extract the files necessary for
this laboratory.

� Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

R.1 GETTING STARTED



122

 

� Write a program called poly.cpp that prompts for and extracts four
floating-point values (a, b, c, and x) and then evaluates and displays the
value of the following expression:

� Demonstrate your completed program to your laboratory instructor. �

 

� Write a program called date.cpp that prompts for and extracts three
integer values. We will refer to these values as Month, Day, and Year. As
the names imply, these inputs represent a date. Your program should then
output the date in the traditional written style. For example, if the inputs
are:

12 29 53

your program should output

December 29, 1953

and exit. Your program need not check the validity of the year or day, but it
should check the validity of the month. If the input month is incorrect,
your program should output an error message. For example, if the inputs
are:

15 6 44

your program should output

Bad month: 15

� Demonstrate your completed program to the laboratory instructor. �

 

� Write a program called line.cpp. Function main() calls a function
called line(). Function line() accepts two optional parameters n and
c. The formal parameter n is an integer, and the formal parameter c is a
char. The function line() outputs a line of characters. The line length is
n characters. The character used to form the line is c. If function line()
is called with no parameters, it outputs a line consisting of 10 asterisks. If
function line() is called with a single parameter, it outputs n *’s.

� Demonstrate your completed program. Make sure your demonstration
illustrates the various ways that function line() can be called. �

R.2 SIMPLE ASSIGNMENT

R.3 CONDITIONAL EXECUTION

R.4 SIMPLE ITERATION

ax
2

bx c++

✎

✎

✎



Reading a file 123

 

� The file pairs.dat contains lines that consist of pairs of integers. Write a
program called math.cpp that reads the file. For each pair of extracted
numbers (call the input values v1 and v2), your program should call
sumdiff(). The function sumdiff() accepts the two numbers and
computes the sum (v1 + v2) and difference (v1 - v2). The function passes
these two computed values back to the calling function through two other
parameters. Your function main() should print the two numbers and the
sum and difference. The following line illustrates the output your program
should produce.

v1 = 10; v2 = 5; v1 + v2 = 15; v1 - v2 = 5

Your program should process all the value pairs in the file pairs.dat.

� When you have completed your program and verified that it works
correctly, show your code to a laboratory instructor and demonstrate that it
works. �

 

� Write a program called stripes.cpp. For this program, you will need to
set up a project file to use the EzWindows API. The program
stripes.cpp in its function ApiMain() should prompt the user for the
width and height of the display window to be created. In this display
window (titled Stripes Display), your program should display six
alternating red and blue stripes. The stripes should fill the display window.
The following figures illustrate the behavior of the program.

R.5 READING A FILE

R.6 USING OBJECTS

✎



124

The above input creates the following display window.

� Before attempting to solve this problem, sit down and sketch out on paper
a preliminary design. Your preliminary design should include what objects
you will need to create, where these objects will be created, and how you
will draw the necessary rectangles. Your design sketch should contain
details of how you will compute the coordinates of each rectangle. Discuss
your design with your laboratory instructor before writing any code. �

� After completing your preliminary design, set up a project file to build the
program. As a first step in completing your program, write the code
necessary to prompt the user for the dimensions of the display window and
to create the window. Do not worry about drawing the alternating stripes in
the window at first. Demonstrate that your program creates an
appropriately sized and titled window to your laboratory instructor. �

� Now complete the part of the program that draws the stripes in the
window. If you are having any difficulty remembering how to create a
RectangleShape, consult your textbook. If you are having trouble
figuring out how to tackle the problem or you wish to discuss your
proposed solution, consult the laboratory instructor. When you have
completed the program, show your code to the laboratory instructor and
demonstrate the program. �

✎

✎

✎

Red Stripe

Blue Stripe



Finishing up 125

 

� Copy any files you wish to keep to your own drive.

� Delete the directory \cpplab.

� Hand in your check-off sheet.

R.7 FINISHING UP



APPENDIX A
EzWindows API reference manual

This appendix summarizes the EzWindows API types, classes, and capabilities. 

The EzWindows API defines three enumerated types: color, WindowStatus,
and BitMapStatus.

Enumerated type color provides symbolic names for the possible colors
that can be displayed in a SimpleWindow.

Enumeration type WindowStatus defines the possible states for a Sim-
pleWindow object

where

� WindowClosed indicates an unopened window. Objects cannot be
displayed in a window with this status.

� WindowOpen indicates an opened window. Objects can be displayed in a
window with this status.

� WindowFailure indicates a failure state. Objects cannot be displayed in a
window with this status.

Enumeration type BitMapStatus defines the possible states of a BitMap
object

where

� NoBitMap indicates there is no bitmap to be displayed.

� BitMapOkay indicates there is a bitmap to display and an associated
window.

A.1 ENUMERATED TYPES

enum color { Black, White, Red, Green, Blue, Yellow, 
Cyan, Magenta};

enum WindowStatus {WindowClosed, WindowOpen,
WindowFailure};

enum BitMapStatus {NoBitMap, BitMapOkay, NoWindow};



128

� NoWindow indicates there is no associated window with the bitmap.

Figure E.1 illustrates the EzWindows coordinate system. The origin is the
upper-left corner of the screen. All coordinates are expressed as centimeters

from the origin. The unit of measure for the size of EzWindows objects is also
centimeters.

A.2 COORDINATE SYSTEM

Figure  A.1
The EzWindows 
coordinate system

Y-coordinate:
distance from top
of screen (4 cm)

X-coordinate:
distance from left

edge of screen (4 cm)



Class Position 129

Some EzWindows API functions use a bounding box to specify the size of
an object. For example, the following diagram illustrates the bounding box for
an ellipse.

A bounding box is specified by giving the EzWindows coordinates of the
upper-left and lower-right corners of a rectangle that bounds the shape. 

The class Position allows objects that represent the logical window coordi-
nates of a window object to be defined and manipulated. The class provides
two public constructors that are described below.

Position::Position(float x = 0.0, float y = 0.0)
Creates a Position object that associates the value of x with its x-
coordinate and the value of y with its y-coordinate.

Position::Add(const Position &p) const
Creates a Position object that is a copy of p.

The Position class also provides two public members functions that are
described below.

int Position::GetXDistance() const
Returns the x-coordinate of the position.

int Position::GetYDistance() const
Returns the y-coordinate of the position.

In addition, the + operator is overloaded to use Position objects as oper-
ands.

Position operator+(const Position &a, const Position &b)
Returns a position whose x-coordinate and y-coordinate are respec-
tively the sum of a’s and b’s x-coordinates and a’s and b’s y-coordi-
nates. 

The class SimpleWindow allows objects that represent simple window dis-
plays to be defined and manipulated. The class provides several public con-
structors that are described below.

SimpleWindow::SimpleWindow(const char *WindowTitle
= "Untitled", float Width = 8.0f,

A.3 CLASS POSITION

A.4 CLASS SIMPLEWINDOW

Ellipse bounding box

First coordinate of 
the bounding box Second coordinate 

of the bounding box



130

float Height = 8.0f,
const Position &WindowPosn = Position(3.0f, 3.0f));

Creates a SimpleWindow for displaying graphical objects. Parameter
WindowTitle is a pointer to the character string to be displayed in
the title bar of the window. The default title is "Untitled". Parame-
ter Width is the width of the window in centimeters. The default
width is 8 centimeters. Parameter Height is the height of the window
in centimeters. The default height is 8 centimeters. Parameter Win-
dowPosition is the position of the window. The first coordinate is
the distance in centimeters from the left edge of the screen. The sec-
ond coordinate is the distance in centimeters from the top edge of the
screen. The default position is (3.0, 3.0), which positions the upper-
left corner of the window 3 centimeters from the left edge of the
screen and 3 centimeters from the top edge of the screen.

SimpleWindow::SimpleWindow(const string &WindowTitle,
float Width = 8.0f, float Height = 8.0f,
const Position &WindowPosn = Position(3.0f, 3.0f));

Creates a SimpleWindow for displaying graphical objects. Parameter
WindowTitle is a string to be displayed in the title bar of the win-
dow. Parameter Width is the width of the window in centimeters. The
default width is 8 centimeters. Parameter Height is the height of the
window in centimeters. The default height is 8 centimeters. Parameter
WindowPosn is the position of the window. The first coordinate is the
distance in centimeters from the left edge of the screen. The second
coordinate is the distance in centimeters from the top edge of the
screen. The default position is (3.0, 3.0), which positions the upper-
left corner of the window 3 centimeters from the left edge of the
screen and 3 centimeters from the top edge of the screen.

The SimpleWindow class also provides several public members functions
that are described below.

WindowStatus SimpleWindow::Close();

Closes the window and makes it disappear. The return value is Win-
dowClosed.

void SimpleWindow::Erase(const Position &UpperLeft,
float Width, float Height);

Erases a rectangular region. The upper-left corner of the rectangle is
specified by the Position UpperLeft. A rectangle Width centime-
ters wide and Height centimeters high is erased.

Position SimpleWindow::GetCenter() const;

Gets the location of the center of the window. The function returns a
Position value that represents the logical coordinates of the center
of the window, which are measured in centimeters from the left and
top edges of the window.

float SimpleWindow::GetHeight() const;

Returns the height of the window in centimeters.



Class SimpleWindow 131

WindowStatus SimpleWindow::GetStatus() const;
Returns a WindowStatus value that represents the state of the win-
dow.

float SimpleWindow::GetWidth() const;
Returns the width of the window in centimeters.

float SimpleWindow::GetXPosition() const;
Returns the x-coordinate of the position of the window.

float SimpleWindow::GetYPosition() const;
Returns the y-coordinate of the position of the window.

void SimpleWindow::Message(
const string &Msg = “Message”);

Pops up an alert window with a message. The parameter Msg is the
character string to display in the alert window.

WindowStatus SimpleWindow::Open();
Makes window appear on the display and be enabled for displaying
objects. The function returns a WindowStatus value that represents
the state of the window.

void SimpleWindow::RenderEllipse(
const Position &UpperLeft,
const Position &LowerRight, const color &c,
const bool Border = false);

Draws an ellipse. The bounding box is specified by the parameters
UpperLeft and LowerRight. The ellipse is filled with color c. If
Border is false, draw the ellipse without a border; otherwise, draw it
with a black border.

void SimpleWindow::RenderPolygon(
const vector<Position> &PolyPoints, int NPoints, 
const color &c, const bool Border = false);

Draws a closed polygon. The points of the polygon are held in the
vector PolyPoints. The parameter NPoints is the number of points
in the polygon. The polygon is filled with color c. If Border is false,
draw the polygon without a border; otherwise, draw it with a black
border.

void SimpleWindow::RenderPolygon(
const Position PolyPoints[], int NPoints, 
const color &c, const bool Border = false););

Draws a closed polygon. The points of the polygon are held in the
array PolyPoints. The parameter NPoints is the number of points
in the polygon. The polygon is filled with color c. If Border is false,
draw the polygon without a border; otherwise, draw it with a black
border.

void SimpleWindow::RenderRectangle(
const Position &UpperLeft,
const Position &LowerRight, const color &c,
const bool Border = false);

Draws a rectangle. The bounding box is specified by the coordinates
UpperLeft and LowerRight. The rectangle is filled with color c. If



132

Border is false, draw the rectangle without a border; otherwise, draw
it with a black border.

void SimpleWindow::RenderText(
const Position &UpperLeft,
const Position &LowerRight,
const string &Msg = "Message",
const color &TextColor = Black,
const color &BackGroundColor = White);

Displays a text string in a window. Parameter UpperLeft is the posi-
tion of the upper-left corner of the bounding box for the text message.
Parameter LowerRight is the position of the lower-right corner of the
bounding box for the text message. Parameter Msg is the string to be
displayed in the window. The default message is "Message". Param-
eter TextColor is the color of the text message. The default text
color is black. Parameter BackGroundColor is the background color
for the text. The default background color is white.

void SimpleWindow::RenderText(
const Position &UpperLeft,
const Position &LowerRight,
const char *Msg = "Message",
const color &TextColor = Black,
const color &BackGroundColor = White);

Displays a text string in a window. Parameter UpperLeft is the posi-
tion of the upper-left corner of the bounding box for the text message.
Parameter LowerRight is the position of the lower-right corner of the
bounding box for the text message. Parameter Msg is a pointer to a
character string to be displayed in the window. The default message is
"Message". Parameter TextColor is the color of the text message.
The default text color is black. Parameter BackGroundColor is the
background color for the text. The default background color is white.

void SimpleWindow::SetMouseClickCallback(
MouseClickCallbackFunction f);

Registers a callback for a mouse click. Function f() will be called
when a mouse click occurs in the window. Function f() must be
declared to take a single parameter of type const Position &, and it
must return an int. The return value of f() indicates whether the
event was handled successfully. A value of 1 indicates success, and a
value of 0 indicates that an error occurred.

void SimpleWindow::SetRefreshCallback(
RefreshCallbackFunction f);

Registers a callback for a refresh message. Function f() is called
when the window receives a refresh event. The function f() must be
declared to take no parameters, and it must return an int. The return
value of f() indicates whether the event was handled successfully. A
value of 1 indicates success, and a value of 0 indicates that an error
occurred.



Class WindowObject 133

void SimpleWindow::SetQuitCallback(
QuitCallbackFunction f);

Registers a callback for a quit message. Function f() is called when
the window receives a quit event. The function f() must be declared
to take no parameters, and it must return an int. The return value of
f() indicates whether the event was handled successfully. A value of
1 indicates success, and a value of 0 indicates that an error occurred.

bool SimpleWindow::StartTimer(int Interval);

Starts timer running. Parameter Interval is the number of millisec-
onds between timer events. The return value indicates whether the
timer was successfully started. A return value of true indicates suc-
cess, and a return value of false indicates that the timer could not be
set up.

void SimpleWindow::StopTimer();

Turns off the timer.

void SimpleWindow::SetTimerCallback(
TimerTickCallbackFunction f);

Registers a callback for a timer tick. Function f() will be called when
a timer tick occurs. The function f() must be declared to take no
parameters, and it should return an int. The return value of f() indi-
cates whether the event was handled successfully. A value of 1 indi-
cates success, and a value of 0 indicates that an error occurred. 

Class WindowObject is the base class for class Shape. The class provides one
public constructor.

WindowObject::WindowObject(SimpleWindow &w,
const Position &p);

Creates a WindowObject that is centered at position p in window w.

The WindowObject class also provides several public members functions
that are described below.

Position WindowObject::GetPosition() const;

Returns the position of the window object.

void WindowObject::GetPosition(float &XCoord,
float &YCoord) const;

Returns the position of the window object. The x-coordinate is
returned in XCoord, and the y-coordinate is returned in YCoord.

SimpleWindow& WindowObject::GetWindow() const;

Returns the window containing the WindowObject.

void WindowObject::SetPosition(const Position &p);

Sets the position of the WindowObject to p.

A.5 CLASS WINDOWOBJECT



134

void WindowObject::SetPosition(float XCoord,
float Ycoord);

Sets the coordinates of the WindowObject to Position(XCoord,
YCoord).

Class RaySegment represents rays in the SimpleWindow graphics system.
Class RaySegment is derived from class WindowObject. A ray has a starting
point that is a Position. This data member is inherited from WindowObject.
Figure A.2 shows a RaySegment.

The RaySegment class provides two public constructors that are
described below.

RaySegment::RaySegment(SimpleWindow &w,
const Position &StartPoint, const Position &EndPoint,
const color &c = Black, float Thickness = 0.1f,
bool Arrowhead = false);

Creates a RaySegment object to represent a ray. The ray is contained
in SimpleWindow w. Its starting position is StartPoint, and its
ending position is EndPoint. The ray has color c, which defaults to
black. The ray is Thickness centimeters thick. The default thickness
is 0.1 centimeters. If Arrowhead is true, the ray is drawn with an
arrowhead at its ending point; otherwise, the ray has no arrowhead.
The default is no arrowhead.

RaySegment::RaySegment(SimpleWindow &w, float StartX,
float StartY, float EndX, float EndY,
const color &c = Black, float Thickness = 0.1f,
bool Arrowhead = false);

Creates a RaySegment object to represent a ray. The ray is contained
in SimpleWindow w. Its starting point is Position(StartX,
StartY), and its ending point is Position(EndX, EndY). The ray
has color c, which defaults to black. The ray is Thickness centime-
ters thick. The default thickness is 0.1 centimeters. If Arrowhead is

A.6 CLASS RAYSEGMENT

Figure  A.2
An EzWindows 
RaySegment

StartPoint

EndPoint



Class RaySegment 135

true, the ray is drawn with an arrowhead at its ending point; otherwise,
the ray has no arrowhead. The default is no arrowhead.

The RaySegment class provides several public member functions that are
described below.

void RaySegment::ClearArrowhead();
Sets the ray to be drawn without an arrowhead.

void RaySegment::Draw();
Draws the ray in its associated window.

void RaySegment::Erase();
Erases the ray.

color RaySegment::GetColor() const;
Returns the color of the ray.

Position RaySegment::GetEndPoint() const;
Returns the ending point of the ray.

void RaySegment::GetEndPoint(float &x, float &y) const;
Returns the ending point of the ray in x and y.

float RaySegment::GetLength() const;
Returns the length of the ray in centimeters.

void RaySegment::GetPoints(Position &Start,
Position &End) const;

Returns the starting and ending points of the ray.
Position RaySegment::GetStartPoint() const;

Returns the starting point of the ray.
void RaySegment::GetStartPoint(float &x,
float &y) const;

Returns the starting point of the ray in x and y.
float RaySegment::GetThickness() const;

Returns the thickness of the ray.
bool RaySegment::HasArrow() const;

Returns true if the ray has an arrow; otherwise, it returns false.
void RaySegment::SetArrowhead();

Sets the ray to be drawn with an arrowhead.
void RaySegment::SetColor(const color &c);

Sets the color of the ray to c.
void RaySegment::SetEndPoint(const Position &p);

Sets the ending point of the ray to p.
void RaySegment::SetEndPoint(float x, float y);

Sets the ending point of the ray to Position(x, y).
void RaySegment::SetPoints(const Position &StartPoint,
const Position &EndPoint);

Sets the ray’s starting point to StartPoint and its ending point to
EndPoint.

void RaySegment::SetStartPoint(const Position &p);
Sets the starting point of the ray to p.

void RaySegment::SetStartPoint(float x, float y);
Sets the starting point of the ray to Position(x, y).



136

void RaySegment::SetThickness(float t);

Sets the thickness of the ray to t. The units of thickness is centime-
ters. 

Class Shape is the base class for classes CircleShape, EllipseShape,
RectangleShape, TriangleShape, and SquareShape. The class provides
a public constructor that is described below.

Shape::Shape(SimpleWindow &w, const Position &p,
const color &c = Red);

Creates a Shape object that is centered at position p in window w. The
color of the object is c, which by default is the value Red.

The Shape class provides several public member functions that are
described below.

void Shape::ClearBorder();

Set the shape to not have a border.
virtual void Shape::Draw() = 0;

Member function Draw() is a pure virtual function.
color Shape::GetColor() const;

Returns the color of the object.
bool Shape::HasBorder() const;

Returns true if the shape has a border; otherwise, it returns false.
void Shape::SetBorder();

Sets the shape to have a border.
void Shape::SetColor(const color &c);

Sets the color of the object to c. 

Class EllipseShape is derived publicly from class Shape. An EzWindows
EllipseShape is shown below.

The class EllipseShape has the following public constructor:

A.7 CLASS SHAPE

A.8 CLASS ELLIPSESHAPE

Width

Height

EllipseShape



Class CircleShape 137

EllipseShape::EllipseShape(SimpleWindow &w,
const Position &p, const color &c = Red,
float Width = 1.0f, float Height = 2.0f);

Creates an EllipseShape object to represent an ellipse. The ellipse
is centered at position p in window w. The ellipse has color c, which
by default is the value Red. The ellipse has width Width and height
Height. The default values of parameters Width and Height are 1.0
and 2.0, respectively. Parameters Width and Height are centimeters.

The class EllipseShape also has the following public member func-
tions:

void EllipseShape::Draw();
Draws the ellipse in its associated window.

void EllipseShape::Erase();
Erases the ellipse from its associated window.

float EllipseShape::GetHeight() const;
Returns the height of the object in centimeters.

void EllipseShape::GetSize(float &Width,
float &Height) const;

Returns the width and height of the object in centimeters.
float EllipseShape::GetWidth() const;

Returns the length of the object in centimeters.
void EllipseShape::SetSize(float Width, float Height);

Sets the width of the ellipse to Width and the height of the ellipse to
Height. Parameters Width and Height are centimeters. 

Class CircleShape is derived publicly from class Shape. An EzWindows
CircleShape is shown below.

Class CircleShape has the following public constructor:
CircleShape::CircleShape(SimpleWindow &w,
const Position &p, const color &c = Red,
float Diameter = 1.0f);

Creates a CircleShape object to represent a circle. The circle is cen-
tered at position p in window w. The circle has color c, which by
default is the value Red. The circle has diameter Diameter. The
default value of Diameter is 1.0. Parameter Diameter is centime-
ters.

The class CircleShape also has the following public member functions:
void CircleShape::Draw();

Draws the circle in its associated window.

A.9 CLASS CIRCLESHAPE

Diameter
CircleShape



void CircleShape::Erase();
Erases the circle from its associated window.

float CircleShape::GetDiameter() const;
Returns the diameter of the circle in centimeters.

void CircleShape::SetSize(float Diameter);
Sets the diameter of the circle to Diameter. Parameter Diameter is
centimeters. 

Class RectangleShape is derived publicly from class Shape. An EzWin-
dows RectangleShape is shown below.

Class RectangleShape has the following public constructors:
RectangleShape::RectangleShape(SimpleWindow &w,
const Position &p, const color &c = Red,
float Width = 1.0f, float Height = 2.0f);

Creates a RectangleShape object to represent a rectangle. The rect-
angle is centered at position p in window w. The rectangle has color c,
which by default is the value Red. The width of the rectangle is
Width. The height of the rectangle is Height. The default values of
Width and Height are 1.0 and 2.0, respectively. Parameters Width
and Height are centimeters.

RectangleShape::RectangleShape(SimpleWindow &w,
float XCoord, float YCoord, const color &c = Red,
float Width = 1.0f, float Height = 2.0f);

Creates a RectangleShape object to represent a rectangle. The rect-
angle is centered at Position(XCoord,YCoord) in window w. The
rectangle has color c, which by default is the value Red. The width of
the rectangle is Width. The height of the rectangle is Height. The
default values of Width and Height are 1.0 and 2.0, respectively.
Parameters Width and Height are centimeters.

The class RectangleShape also has the following public member func-
tions:

void RectangleShape::Draw();
Draws the rectangle in its associated window.

void RectangleShape::Erase();
Erases the rectangle from its associated window.

A.10 CLASS RECTANGLESHAPE

Width

Height
RectangleShape



Class TriangleShape 139

float RectangleShape::GetHeight() const;

Returns the height of the rectangle in centimeters.

void RectangleShape::GetSize(float &Width,
float &Height) const;

Returns the width and height of the rectangle in centimeters.

float RectangleShape::GetWidth() const;

Returns the width of the rectangle in centimeters.

void RectangleShape::SetSize(float Width,
float Height);

Sets the width of the rectangle to width and the height of the rectan-
gle to Height. Parameters Width and Height are centimeters. 

Class TriangleShape is derived publicly from class Shape. An EzWindows
TriangleShape is shown below.

Class TriangleShape has the following public constructor:

TriangleShape::TriangleShape(SimpleWindow &w,
const Position &p, const color &c = Red,
float SideLength = 1.0f);

Creates a TriangleShape object to represent an equilateral triangle.
The triangle is centered at position p in window w. The triangle has
color c, which by default is the value Red. The length of a side of the
triangle is SideLength. The default value of SideLength is 1.0.
Parameter SideLength is centimeters.

The class TriangleShape also has the following public member func-
tions:

void TriangleShape::Draw();

Draws the triangle in its associated window.

void TriangleShape::Erase();

Erases the triangle from its associated window. 

float TriangleShape::GetSideLength() const;

Returns the side length of the triangle in centimeters.

A.11 CLASS TRIANGLESHAPE

SideLength

TriangleShape



140

void TriangleShape::SetSize(float SideLength);
Sets the side length of the triangle to SideLength. Parameter Side-
Length is centimeters. 

Class SquareShape is derived publicly from class Shape. An EzWindows
SquareShape is shown below.

Class SquareShape has the following public member functions.
SquareShape::SquareShape(SimpleWindow &Window,
const Position &Center, const color &c = Red,
float Side = 1.0f);

Creates a SquareShape object to represent a square. The square is
centered at position p in window w. The square has color c, which by
default is the value Red. The length of the side of the square is Side-
Length. The default value of SideLength is 1.0. Parameter Side-
Length is centimeters.

The class SquareShape also has the following public member functions:
void SquareShape::Draw();

Draws the square in its associated window.
void SquareShape::Erase();

Erases the square from its associated window.
float SquareShape::GetSideLength() const;

Returns the side length of the square in centimeters.
void SquareShape::SetSize(float SideLength);

Sets the side length of the square to SideLength. Parameter Side-
Length is centimeters. 

A.12 CLASS SQUARESHAPE

SideLength
SquareShape



Class Label 141

Class Label is publicly derived from WindowObject. An EzWindows Label
is shown below.

Class Label has the following public constructors:
Label::Label(SimpleWindow &w, const Position &p,
const string &Text, const color &TextColor = Black,
const color &BackGroundColor = White);

Creates a Label object to represent a text message. The message is
contained in the string object Text. The message is centered at
position p in window w. The color of the message text is TextColor.
The default color of the message text is black. The message has back-
ground color BackGroundColor, which by default is white.

Label::Label(SimpleWindow &w, float XCoord,
float YCoord, const string &Text,
const color &TextColor = Black,
const color &BackGroundColor = White);

Creates a Label object to represent a text message. The message is
contained in the string object Text. The message is centered at
position (XCoord, YCoord) in window w. The color of the message
text is TextColor. The default color of the message text is black. The
message has background color BackGroundColor, which by default
is white.

Label::Label(SimpleWindow &w, const Position &p,
const char *Text, const color &TextColor = Black,
const color &BackGroundColor = White);

Creates a Label object to represent a text message. The char pointer
Text is a pointer to the text message to display. The message is cen-
tered at position p in window w. The color of the message text is Tex-
tColor. The default color of the message text is black. The message
has background color BackGroundColor, which by default is white. 

Label::Label(SimpleWindow &w, float XCoord,
float YCoord, const char *Text,
const color &TextColor = Black,
const color &BackGroundColor = White);

Creates a Label object to represent a text message. The char pointer
Text is a pointer to the text message to display. The message is cen-
tered at position (XCoord, YCoord) in window w. The color of the
message text is TextColor. The default color of the message text is

A.13 CLASS LABEL

Position point of label

Hello EzWindows

Label text



142

black. The message has background color BackGroundColor, which
by default is white. 

The class Label also has the following public member functions:
void Label::Draw();

Draws the label in its associated window.
void Label::Erase();

Erase the label from its associated window.
color Label::GetColor() const;

Returns the background color of the label.
void Label::SetColor(const color &c);

Sets the background color of the label to c. 

Unlike the window shape objects (i.e., RectangleShape, EllipseShape,
CircleShape, etc.), a bitmap is positioned using the upper-left corner of its
bounding box. An EzWindows BitMap is shown below.

Class BitMap has the following public constructors:
BitMap::BitMap();

Creates a BitMap object with BitMapStatus NoBitMap. The object
is not associated with any window.

BitMap::BitMap(SimpleWindow &w);

Creates a BitMap object with BitMapStatus NoBitMap. The object
is associated with window w.

BitMap::BitMap(SimpleWindow *w);

Creates a BitMap object with BitMapStatus NoBitMap. The object
is associated with the window pointed to by w.

The class BitMap also has the following public member functions:
bool BitMap::Draw();

Attempts to display the bitmap object to the associated window. The
BitMapStatus of the object must be BitMapOkay for the display to
be successful. If the bitmap is displayed, the function returns true;
otherwise, the function returns false.

A.14 CLASS BITMAP

BitMap

Position of bitmap

Bounding box



Class RandomInt 143

bool BitMap::Erase();
Overwrites the bitmap on the display by drawing a white rectangle of
the same size. If the bitmap is successfully erased, the function returns
true; otherwise, the function returns false.

bool BitMap::IsInside(const Position &p) const;
Returns true if position p lies within the bitmap; otherwise, the func-
tion returns false.

float BitMap::GetHeight() const;
Returns the height of the bitmap in centimeters.

Position BitMap::GetPosition() const;
Returns the position of the bitmap.

void BitMap::GetSize(float &Width,
float &Height) const;

Returns both the width and height of the bitmap in centimeters.
BitMapStatus BitMap::GetStatus() const;

Returns the current BitMapStatus value associated with the object.
float BitMap::GetWidth() const;

Returns the width of the bitmap in centimeters.
float BitMap::GetXPosition() const;

Returns the distance from the upper-left corner of the bitmap to the
left edge of the associated window. The distance is in centimeters.

float BitMap::GetYPosition() const;
Returns the distance from the upper-left corner of the bitmap to the
top edge of the associated window. The distance is in centimeters.

BitMapStatus BitMap::Load(const string &Filename);
Uses the file whose name is Filename to set the bitmap. If the file
contains a valid bitmap, the status of the object is set to BitMapOkay;
otherwise, the status of the object is set to NoBitMap.

BitMapStatus BitMap::Load(const char *Filename);
Uses the file whose name is pointed to by character string Filename
to set the bitmap. If the file contains a valid bitmap, the status of the
object is set to BitMapOkay; otherwise, the status of the object is set
to NoBitMap.

void BitMap::SetPosition(const Position &p);
Sets the position of the bitmap to p.

void BitMap::SetWindow(SimpleWindow &w);
Associates the bitmap with window w. The BitMapStatus of the bit-
map is set to NoBitMap. 

Class RandomInt provides the ability to produce uniform random numbers in
a specified interval. The class has the following public constructors:

RandomInt::RandomInt(int a = 0, int b = RAND_MAX);
Creates a RandomInt object that generates pseudorandom numbers
in the inclusive interval (a, b). The default interval is (0, RAND_MAX).
The value RAND_MAX is defined in stdlib.h.

A.15 CLASS RANDOMINT



144

RandomInt::RandomInt(int a, int b, unsigned int Seed);
Creates a RandomInt object that generates pseudorandom numbers
in the inclusive interval (a, b). The pseudorandom-number generator
is initialized with the value in Seed.

The class RandomInt also has the following public member functions:
int RandomInt::Draw();

Returns the next pseudorandom number.
unsigned int EzRandomize();

Generates a new seed value for the pseudorandom-number generator.
Returns the new seed.

int RandomInt::GetLow() const;
Returns the low endpoint of the interval.

int RandomInt::GetHigh() const;
Returns the high endpoint of the interval.

void RandomInt::SetInterval(int a, int b);
Sets the inclusive interval for RandomInt object to (a, b).

void RandomInt::SetSeed(unsigned int Seed);
Sets the pseudorandom-number generator seed to Seed. 

long GetMilliseconds()
Returns the value of a timer that is ticking continuously. The resolu-
tion of the timer is milliseconds.

void Terminate()
Sends a terminate message to the EzWindows window manager.

A.16 MISCELLANEOUS FUNCTIONS



145

CHECK-OFF SHEET: LABORATORY 1

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Directory manipulation _____________________

Ran “Hello, World” _____________________

Number fun _____________________

Representation problems _____________________

1.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

1.2 CHECK-OFFS



147

CHECK-OFF SHEET: LABORATORY 2

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

A, b, c solving _____________________

Wrote results _____________________

Ran original lawn _____________________

Ran modified lawn _____________________

2.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

2.2 CHECK-OFFS



149

CHECK-OFF SHEET: LABORATORY 3

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Justified testing _____________________

Restructured nand.cpp _____________________

Understood the debugger _____________________

Prediction _____________________

Zeroed out _____________________

Overlapping rectangles _____________________

3.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

3.2 CHECK-OFFS



151

CHECK-OFF SHEET: LABORATORY 4

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Sum modifications _____________________

For sum _____________________

Counting _____________________

Concentricity _____________________

Counting words _____________________

Fraction 1/8 _____________________

Fraction 1/10 _____________________

Fixed upper.cpp _____________________

4.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

4.2 CHECK-OFFS



153

CHECK-OFF SHEET: LABORATORY 5

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

String comparisons _____________________

String length _____________________

String concatenation _____________________

String concatenation (+) _____________________

Word count _____________________

Word count with check _____________________

5.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

5.2 CHECK-OFFS



155

CHECK-OFF SHEET: LABORATORY 6

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Problem 1 _____________________

Problem 2 _____________________

Problem 3 _____________________

Problem 4 _____________________

Problem 5 _____________________

Problem 6 _____________________

Problem 7 _____________________

Problem 8 _____________________

Problem 9 _____________________

Problem 10 _____________________

6.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

6.2 CHECK-OFFS



157

CHECK-OFF SHEET: LABORATORY 7

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Problem 1 _____________________

Problem 2 _____________________

Problem 3 _____________________

Problem 4 _____________________

Problem 5 _____________________

IsEndOfSentence function _____________________

LineSpace function _____________________

Update function _____________________

Working program _____________________

Modification _____________________

7.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

7.2 CHECK-OFFS



159

CHECK-OFF SHEET: LABORATORY 8

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Ifndef purpose _____________________

Knew members _____________________

Made blue _____________________

No inspectors _____________________

Called constructor _____________________

No mutators _____________________

Double or nothing _____________________

Made members _____________________

Line segment _____________________

8.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

8.2 CHECK-OFFS



161

CHECK-OFF SHEET: LABORATORY 9

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Rationality _____________________

Made GCD _____________________

Reduce code _____________________

Reduce locations _____________________

Ran reduce _____________________

Operator overloading _____________________

9.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

9.2 CHECK-OFFS



163

CHECK-OFF SHEET: LABORATORY 10

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Bitmap discussion _____________________

Bitmap modification _____________________

Flipping implementation _____________________

Timer event discussion _____________________

Timer event modification _____________________

Eyes discussion _____________________

Eyes implementation _____________________

10.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

10.2 CHECK-OFFS



165

CHECK-OFF SHEET: LABORATORY 11

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Modified element listing _____________________

Minimum _____________________

Labeled minimum _____________________

Summing _____________________

Re-deja vu _____________________

Reversing _____________________

Exhaustive searching _____________________

Binary searching _____________________

Modified binary searching _____________________

11.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

11.2 CHECK-OFFS



167

CHECK-OFF SHEET: LABORATORY 12

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Indexing ______________

Bad At ______________

Duplication ______________

Display functions ______________

Insertion operators ______________

Mean ______________

Resizing ______________

Iterators ______________

Mergesort ______________

Measuring performance ______________

12.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

12.2 CHECK-OFFS



169

CHECK-OFF SHEET: LABORATORY 13

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Telephone hierarchy _____________________

RectangleShape declaration _____________________

RectangleShape constructor_____________________

Shadow demonstration _____________________

BoxShape design _____________________

BoxShape class declaration _____________________

BoxShape implementation _____________________

BoxShape demonstration _____________________

Flexible demonstration _____________________

13.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

13.2 CHECK-OFFS



171

CHECK-OFF SHEET: LABORATORY 14

As you complete various portions of the laboratory, you will be instructed to
ask a laboratory instructor to initial your progression on this sign-off sheet. If
you need help, please ask a classmate or laboratory instructor for assistance.
Hand in this sheet at the end of the laboratory session.

Poly _____________________

Date _____________________

Line _____________________

Summer _____________________

Stripes design _____________________

Stripes part 1 _____________________

Stripes part 2 _____________________

R.1 IDENTIFICATION

Name:
E-mail:

Name:
E-mail:

Section:

R.2 CHECK-OFFS


