
Exercises
To derive the maximum benefit from these exercises, work through them sequentially. This is especially true for  
new users who need time and practice to become accustomed to Mathematica syntax and the idiosyncrasies of 
the Mathematica interface. Solutions to the Exercises marked with an asterisk will be found in the Solutions 
section. An important reminder for PC users: Any reference to the Command key should be replaced with the 
Control  key on a PC. 

Part I. The Mathematica Notebook

‡ Section 1. Cell structure: Input/Output

0. Pull down the Help menu, choose Tutorial and work through it.

Open a new Mathematica Notebook and do the following.

1. Reduce the fraction 546/1001 to lowest terms by typing

546/1001

and pressing [Enter]. This is referred to as executing the entry.

2.* Simplify the square root of 19,220 by entering and executing

Sqrt[19220]

Then obtain the integer factorization of 19220 by entering and executing

FactorInteger[19220]

The output means that 19220 = 22 * 5 * 312

3. * Obtain the integral of the expression e3 x cosH2 xL sinH4 xL. You may enter it into the Integrate function as 
follows

Integrate[  Exp[3x] Cos[2x] Sin[4x],  x ]

4. Pull down the Format menu. Choose Style Sheet/Natural Color. Experiment with some of the other styles. 
Note. This Manual was written using the TutorialBook style. 

5. Restore the Style to the original TutorialBook style. Save it with the name "MyFirstMathematicaNB".
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‡ Section 2. Mixing Text and Mathematics

1. Open a new Mathematica Notebook. Pull down the Format menu, choose Style/Text (Command-7 on a 
Macintosh, Control-7 on a PC) and type your name. Press the return key and type the date. Press the down arrow, 
then Command-7, and type Mixing Text and Mathematics. Note that this appears in a new text cell. Now press 
the down arrow,/Command-7 combination one more time, and type the following sentence:

This Notebook contains examples of text cells like these and input/output cells like the following.

2, Press the down arrow to get an Input cell and define the variable y as a function of x by typing y = Sin[x] and 
pressing [enter]. Sin[x] appears as the output.

3. Before continuing, use the mouse to select the third text line at the top of the worksheet,  "Mixing Text and 
....". Then pop down the menu of paragraph and text styles on the left side of the Context bar and choose the 
paragraph style named Title.  

4. Go back down the Notebook and click the mouse in the white area below the last entry and define z as the 
derivative of y with respect to x by entering and executing z = D[y,x]

5. When the new output cell appears there will be a line across the page and the paragraph style should be Input. 
Press Command-7 to change it into a text cell and type the following:

z is the derivative of y. Both z and y are plotted below. Which one is which? How can you tell? 

6. Press the down arrow to get an input cell and graph y and z as functions of x by executing the entry

Plot[ {y,z}, {x,0,6} ]

Note that both curves are black.

7. Click the mouse after {x,0,6} and type a comma followed by

PlotStyle -> {RGBColor[1,0,0],RGBColor[0,0,1]}

Press [enter] to execute the Plot function again. The y-curve is red and the z-curve is blue.

8. Click in the white space below the graph if necessary, press Command-7 and type in your answers to the 
questions asked above.

9. Save this Notebook with the title "My2ndNotebook".

10. Quit Mathematica.

11. Open the Notebook you just saved by double clicking on its icon.

12. Pull down the Kernel menu and choose Delete All Output.

13. Pull down the Kernel menu again and choose Evaluation/Evaluate Notebook. This puts the information in 
the Notebook back into the Mathematica kernel.
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14. With the mouse, click in the white region below the last cell and define the variable Y as an antiderivative of 
z with the following entry Y = Integrate(z,x) .

15. Press the down arrow and Command-7. Then type the following:  

Well, that wasn't hard. Now I now how to enter text and  mathematics in Mathematica. 

16.* Save your Notebook (Command-S) then print it.

Part II. Calculations and Calculus with Mathematica

‡ Section 1. Getting Started: Mathematica as a Calculator

The following exercises provide practice using Mathematica to make simple calculations like the ones in the  
manual. Compare the output to what you can get from your calculator. 

0. Pull down the Help menu, choose Help Browser... , Then select Tour/Mathematica as a Calculator and 
read the examples. Open a new Mathematica worksheet and to the following. 

1. Enter the following list of square roots. 

 {è!!!!!!24 ,  è!!!!!!!!864 ,  è!!!!!!!!555  }

Enter and execute N[%] . Now execute N[%%, 5].  Now execute Sum[ %%%[[k]], {k,3}].  

Read the Help page for Sum and comment on what Mathematica did to get the last output. 

2. Execute the following entry 

x = 4/(1+Sqrt[2]) + Exp[3] - Log[4]

Execute N[%]. Now execute x and note that x is not a free variable. This illustrates the fact that equations assign 
values in Mathematica. 

3. Enter x/(x+x^2) (x is defined in 2). Then enter Simplify[%]. Compare the output to the output for 1/(1+x). 
Which is simpler? 

4. Execute the following entry: 

y = (1 + Sqrt[3])/(1 - Sqrt[3])

Enter Simplify[y] and then Expand[y]. Comment on what Mathematica did to get the two outputs. Now enter 
FullSimplify[y]. Comments? (Remember what "rationalize the denominator"  means from high school algebra.) 

5. Use Mathematica to simplify x Hx^2-1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx-1 , where x is the expression entered in problem 2.

6. Use the Table function to make the following lists.

a. { 2, 4, 6, 8, 10, 12 }

b. { 20, 40, 60, ... , 260 }

c.  The 30 prime numbers starting with 11 and ending with 139. Hint. Use Prime[n] whose output is the nth 
prime number. Name the list P.
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a. { 2, 4, 6, 8, 10, 12 }

b. { 20, 40, 60, ... , 260 }

c.  The 30 prime numbers starting with 11 and ending with 139. Hint. Use Prime[n] whose output is the nth 
prime number. Name the list P.

7.* Add the numbers in the sequence P found in 6 c. Hint. Execute Sum[ P[[k]], {k,30}] .

 8. Multiply the numbers in the list P (6 c). (Use Product.) Then execute IntegerDigits[%] and Length[%] to 
count the number of digits in the product. 

9. Make the list C of the cubes of the integers 2, 5, 6, 9, 12, 44. Hint: Enter the integers in a list named L, Then 
enter C = L^3. Add the numbers in the list of cubes and then display the prime factorization of the sum. What do 
you notice about the prime factorization? (Hint. The integer 87990 is called "square free".) 

10.* Obtain the prime factorization of the product of the integers in the list C of cubes described in  Exercise 9. 

11. Use the Factor function to factor the following polynomial expressions.  (Note. Begin by entering x = . to 
free the x variable.)

a. x3 - x2 + x - 1   

b. x7 - x6 + x5– ... - 1     Hint. Enter this as P = -Sum[ (-x)^k, {k,0,7}] then execute Factor[P].

12.* Use Solve to obtain the zeros of the polynomials in Exercise 11. 

13.* Add the zeros of the polynomial in 11 a and the zeros of the polynomial in 11 b. Hint. For example, if P is 
the polynomial in 11b, enter Z = Solve[ P==0, x] and then Sum[ x/.Z[[k]], {k,3}]

14. Multiply the zeros of the polynomial in 11 a and the zeros of the polynomial in 11 b. 

‡ Section 2. Symbolics: Equations and Assignments

Solving equations is the bread and butter of mathematics. Mathematica does it in a natural way. It is always a  
good idea to assign a name to the equation and the solution. 

0. Pull down the Help menu, choose Help Browser... , Go to Built-in Functions/Algebraic Computation/Equa-
tion Solving and read each of the help pages that appear.

Open a new Maple worksheet and do the following. 

1. Make the following entries, x = y - z;  y = 3;  z = 4;  Then enter x and explain the output. When you are done 
enter Clear[x,y,z]. Why?

2. Enter the equation  x3 - x2 + x - 1== 0 with the name eqn. Solve the equation and name the solutions solns 
with the entry solns = Solve[ eqn, x] . 

a.   Check the third solution with the entry eqn/.solns[[3]].  

b.   Check all three solutions with the entry Table[ eqn/.solns[[k]], {k,3} ].  
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3. Use NSolve to obtain an approximate real solutions to the equation x3 - 0.9 x2 + x - 1 = 0. Name the solutions 
soln. Hint. Name the polynomial P and enter soln = NSolve[ P==0, x]. Check the second approximate solution 
using P/.soln[[2]].

4.* Plot the expression x3 - x2 + 0.005 x + cosHxL - 0.7 with the entries y = x^3 - x^2 + 0.05 x + Cos[x] - 0.7 and 

Plot[ y, {x,-2,2} ]

Then enter FindRoot[ y==0, {x,0} ] to see which zero FindRoot finds.

Using the graph as a guide, obtain an approximation to the largest positive zero using FindRoot.

5. Find the first three positive solutions to the equation  cos(x) = x tan(x).  Hint. Define the function y = cos(x) -  
x tan(x) with the entry y = Cos[x] - x Tan[x]. (Put a space between x and Tan[x].) Plot y using appropriate 
domain and range settings, then use FindRoot .

6. Graph the function  y = cosHx2 L - sinH2 xL over the interval from x = 0 to x = 2. Name the Plot Gy. Find the 
derivative function and call it yp using yp = D[y,x]. Find the root of yp near x = 1.5.  Name it xmin. Use the 
following entry to plot the graph of y and the low point. 

Show[ Gy, ListPlot[ {{x,y}/.xmin}, PlotStyle->PointSize[0.02] ] ]

Start everything with Clear[x,y].

7.* Find the area of the region between the graph of y in Exercise 6 and the x-axis. Hint: Numerically integrate 
the absolute value of y from x = 0 to x = 2 via the entry  NIntegrate[ Abs[y], {x,0,2} ] . 

‡ Section 3. Functions as Transformations

Functions play a key role in many applications of mathematics. Mathematica makes functions in a natural way. 
The Table function can be used to make tables of data. Use MatrixForm to display the data in an array. 

0. Pull down the Help menu, choose Help Browser... , Choose The Mathematica Book/A Practical Introduc-
tion to Mathematica/Functions and Programs. Read the Help pages listed in the last column.

Open a new Maple worksheet and do the following 

1. Define the function f HxL = cosHxL - x tanHxL  Then use the entry  f ' [x] to obtain the derivative formula. 

2. Continuing 1. Plot f over the interval x = -1 to x = 1 using Plot[ f[x], {x,-1,1} ]. Then find the area of the region 
below the graph of f and above the x axis. Hint. This will require the values b where f(b) = 0. Find the positive 
value using b = FindRoot[ f[x]==0, {x,0,1} ][[1,2]]. 

Hint. By symmetry, the negative zero is at x = -b . Check this is true by computing f H-bL.
3. Continuing 2. Plot the graph of the function f from -1 to 1 and the tangent line segment to the graph at the 
point x =  0.5, y = f(0.5) over the interval x = 0 to x = 1. Hint. Define the tangent line function using T[x_]  := 
f[0.5] + f'[0.5]((x - 0.5).  Then execute 

Show[ Plot[ f[x], {x,-1,1}], Plot[ T[x], {x,0,1}] ]

Now jazz up the plot by making the curve red and the tangent line blue. (Just edit the Show entry.)
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4. Continuing 3. Find the length of the curve plotted in Exercise 2. Hint. Do the integration numerically using 

NIntegrate[ Sqrt[1 + f'[x]^2], {x,-1,1} ]

5.* An animation. The tangent line plot in Exercise 3 can be animated as follows. First clear T and a with Clear[-
T,a] and define the function T(a,x) whose value at (a,x) is the formula for the tangent line to the graph of f at  
(a,f(a)):  T[a_,x_] := f[a] + f'[a](x - a). Then load the Animation package and apply Animate as shown below.
<<Graphics`Animation`
Animate[ Show[ Plot[ f[x], {x,-1,1}, PlotStyle->RGBColor[1,0,0]], 
               Plot[ T[a,x], {x,a-0.5,a+0.5}, PlotStyle->RGBColor[0,0,1]], 
               PlotRange->{{-1,1},{-2,2}} 
             ], {a,-1,1} ]

Mathematica will make 24 plots over the specified range of a values. Once this is done, collapse the 24 output 
cells into one by double clicking on the single blue bracket that encloses them all. Then select the collapsed 
bracket (it will have a down arrow indicating that there are cells collapsed inside), pull down the Cell menu, and 
choose Animate Selected Graphics. This should show the plots in sequence. Animation controls will appear at 
the bottom left of the Notebook window.

Read the Help page for animated graphics. Type 1.9.11 into the search field. 

6. Solving a differential equation. First enter Clear[x,y]. The DSolve function solves differential equations. The 
syntax is  

DSolve[ DE, y[x], x ] 

where DE is a differential equation for y(t) (or the name of one). Define a simple first order  differential equation 
as follows 

DE = y'[x] + x y[x] == x

Obtain the general solution to DE using the DSolve function as above. Then obtain the solution satisfying y(0) = 
0 using 

soln = DSolve( {DE, y[0]==0}, y[x], x  )

7.* Plot the solution in Exercise 6 using  Plot[ y[x]/.soln, {x,-2,2} ]

8.* Use Table and MatrixForm to make a display of the values of the second solution in Exercise 6 at x = 0, 
0.2, 0.4, ... , 1.0. Use

Table[ y[x]/.soln, {x,0,1,0.2}]//MatrixForm

Now make an array displaying the values x and y(x) with the following entry 

Table[ {x,y[x]}/.soln[[1]], {x,0,1,0.2}]//MatrixForm
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Part III. First Order Ordinary Differential  Equations

‡ Section 1. Entering, Solving, Plotting

Unevaluated derivatives are used to enter a differential equation, DSolve solves it. The Table function can 
generate and plot families of solutions satisfying specified initial conditions. 

0. Pull down the Help menu, choose Help Browser... ,Go to Built-in Functions/Algebraic Computation/Equa-
tion Solving and read the help page for DSolve.

Open a new Mathematica worksheet and do the following 

1. Enter the differential equation y' + y = sin(t). Name it DE. Obtain the  general solution and the solution satisfy-
ing y(0) = 0. 

2. Continuing 1. Plot the solutions to DE satisfying this initial conditions y(0) = -2, -1, 0, 1, 2. Do it by first 
creating a list of solutions, then plotting them as shown below.
       solns = Table[ DSolve[ {DE, y[0]==y0}, y[t], t], {y0,-2,2}]
      Plot[ Evaluate[Table[y[t]/.solns[[k]], {k,5}]], {t,0,12}]

3. Obtain the general solution to the equation y ' = tÅÅÅÅÅÅÅÅÅÅÅÅÅÅcosHyL by entering the equation with the name DE and using 
DSolve.

4. Continuing 3. Obtain the solution to DE satisfying y(0) = 1. Call it soln. Note that there are two solution 
formulas. Plot both solutions over the interval [-0.2,0.2]. Are they the same? Can you tell from the solution 
formulas that they are the same? Hint. To make the first plot use the entry 
       Plot[ y[t]/.soln[[1]], {t,-0.2,0.2} ]

5. Obtain the general solution to the equation  

y ' HtL = y2 +1ÅÅÅÅÅÅÅÅÅÅÅÅÅt2 +1

Call is soln. Plot the solutions corresponding to C[1] = -2, -1, 0, 1, 2. Hint. Experiment with the horizontal plot 
range until you get nice picture displaying all 5 curves near t =  0. Use the option Framed->True. 

Hint. Mathematica will not permit substitution for C[1]. Get around that by using the following initial plot entry.
      Plot[ Evaluate[Table[ y[t]/.soln/.C[1]->c, {c,-2,2}]], {t,-1,1} ]

6. Continuing 5. Obtain the solution to DE satisfying y(1) = 1. Plot it over a reasonable interval  containing t = 1. 
Use Table and MatrixForm to generate an array of solution values for t = 0 , 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 
and 2.0. Hint. See Exercise 8 in Part II, Section 3.

7.* Enter the differential equation y' + y = cos(t) with the name DE. Obtain the general solution. 

a.   Plot some solutions starting at points evenly spaced on the y axis.   

b.  Use plot some solutions starting at points evenly spaced on the t axis.  

c.   Plot solutions starting at points evenly spaced around the unit circle in the style of the two plots on page 35 of 
the manual. That is, one picture runs time forward, another runs time backward.
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a.   Plot some solutions starting at points evenly spaced on the y axis.   

b.  Use plot some solutions starting at points evenly spaced on the t axis.  

c.   Plot solutions starting at points evenly spaced around the unit circle in the style of the two plots on page 35 of 
the manual. That is, one picture runs time forward, another runs time backward.

Hint. Use Table to generate a list of solutions, then plot them. See the example below.

DE = y'[t] + y[t] == Cos[t];
solna = Table[ DSolve[{DE,y[0]==y0},y[t],t], {y0,-2,2}];
Show[ ListPlot[ Table[{0,k},{k,-2,2}], PlotStyle->PointSize[0.02]],
      Plot[ Evaluate[Table[y[t]/.solna[[k]],{k,5}]],  {t,0,12}]]

2 4 6 8 10 12

-2

-1

1

2

8. Look before you leap. Consider the following differential equation y ' HtL = yÅÅÅÅÅÅÅÅÅt-1    

a.   What is the formula for the function f  such that this equation is equivalent to  y ' HtL = f Ht, yL   
b.   Based upon the statement of the Unique Solution Theorem at what points do you expect that solutions will 
fail to exist and/or fail to be unique?   

c.   Plot the solutions described in  parts a, b, and c of Exercise 7 except replace the unit circle with the circle of 
radius 0.5.

9. Obtain an informative picture of the family of solutions to  y ' HtL = yÅÅÅÅÅÅÅÅÅÅÅt2 -t  over the interval t > 1. 

‡ Section 2. Working with Solutions: Modeling

Getting the solution formula is only the beginning of the story in most applications. Mathematical  modeling 
requires solution manipulation. The exercises in this section are similar to the examples in the  manual. 

0. Pull down the Help menu, choose Help Browser... Choose Built-in Functions/Graphics and Sound/2D 
Plots. Read the information about the Plot, ListPlot, and ParametricPlot functions. 

Open a new Mathematica notebook and do the following.

1.  Joe's savings account contains $12,000 dollars. He does not know the interest rate (compounded continuously) 
but after 60 days he checks and discovers that he has $12,130.    
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a.  What is his annual interest rate?  

b. How much money will be in the account one year from the day he has $12,130?   

c. Plot the graph of P(t) including the points corresponding to 60 days and 60 days + 1 year. 

Hint. First solve the exponential model initial value problem P' = r P, P(0) = 12000 with variable r and  then 
substitute the data for t = 60/365 to determine the value of r. If you call the solution "soln" the substitution and r 
calculation can be made as follows. 

DE = P'[t] == r P[t]
soln = DSolve[ {DE, P[0]==12000}, P, t]

Define g to be the function that solves the equation.

g = soln[[1,1,2]];
g[t]

Find the r value (numeric).

Solve[g[60/365]==12130, r]//N

Give that value to the r variable and calculate g(1+60/365)) as follows.

r = %[[1,1,2]]
g[1+60/365]

 The graph should show the solution curve (and the two points).  Don't forget to clear the g and r variables if you 
want to use them again.

2. Continuing 1. In Exercise 1 you discovered that Joe's savings account has an annual interest rate of  6.555 
percent (approximately). Suppose that on the 60th day Joe also has a credit card debt of $560 at a 9% annual 
interest rate. Starting on that date he decides to pay off the credit card debt continuously from  his savings 
account at the annual rate of $400 per year.    

a.  How many days later will the credit card debt be paid off?   

b. At the time the credit card debt is paid off, how much money will Joe have in his savings account? 

3.* The following problem is adapted from Ledder, Chapter 1, Section 1.  Suppose you borrow $12,000 to buy a 
car. The loan is to be paid in 60 equal monthly installments at an  interest rate of 5% per year.  

 a.  Assume the payments are actually made continuously at whatever rate is needed to pay off the loan in  60 
months. Determine the continuous rate per month that would be required.   

b.  Compare the answer to part a to the answer if 60 equal monthly payments are made at a constant  annual 
interest rate of 5% applied to the outstanding balance. In other words, the first payment, due one month after the 
loan is made, would be 

12000 Ie 0.05ÅÅÅÅÅÅÅÅÅÅÅÅ12 - 1M + P@1D
     where P[1] is the amount that is put towards reducing the principal (the %12,000) in the first month. The 
second payment is
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H12000 - P@1DL Ie 0.05ÅÅÅÅÅÅÅÅÅÅÅÅ12 - 1M + P@2D
    where P[2] is the amount that is put towards reducing the principal in the second month. The nth payment is H12000 - ⁄k=1

n-1 P@kDL Ie 0.05ÅÅÅÅÅÅÅÅÅÅÅÅ12 - 1M + P@nD
Hint for b. The second payment is supposed to equal to the first. Therefore, the following equation must  be 
satisfied. 

eqn = 12000(Exp[0.05/12]-1)+P[1] == (12000-P[1])*(Exp[0.05/12]-1) + P[2]

50.1043 + P@1D ã 0.00417536 H12000 - P@1DL + P@2D
This determines P[2] in terms of P[1].

Solve[ eqn, P[2] ]//Simplify88P@2D Ø 0. + 1.00418 P@1D<<
Create an iterated function that calculates P[3], P[4], ... , P[60] in terms of P[1], then find P[1] using the fact that ⁄k=1

60 P@kD= 12000

Solution. The anwer to part a is $226.04 per month. The answer to part b is $226.51 per month or about $30 more 
over the five years of the loan. See the Solutions.

4. Continuing 3. Consult with a banker and/or the internet to determine the amount a bank would charge  per 
month for a 5% loan of $12000 over 60 months. 

5. The following problem is adapted from Ledder, Chapter 1, Section 1. There is a power failure in your house at 
1:00 P.M on a winter afternoon and your heating system stops  working. The temperature in your house is 68 
degrees F when the power goes out. At 10:00 P.M. the  temperature in the house is down to 57 degrees F. 
Assume that the outside temperature is 10 degrees F.   

a.    Estimate the temperature in your house at 7:00 A.M. the next morning. Should you worry about your  water 
pipes freezing?   

b.   Suppose the power goes on at 8:00 A.M. providing heat flow into the house that would increase the  tempera-
ture at the rate of 10 degrees per hour if there were no heat loss. At what time will the  temperature in the house 
be 68 degrees F again assuming the outside temperature stays at 10 degrees F  throughout the day?  

c.   What is the answer to the question in part b if the heating system provides heat sinusoidally with a period of 3 
hours and a maximum temperature increase of 10 degrees: HHtL = 10 - 10 cosH 2 p tÅÅÅÅÅÅÅÅÅÅ3 L ?
6. Verify that there is only one value of k that satisfies the equation on page 41 of the manual. 

Hint. Plot, as functons of k, the constant function 50 and the expression h(2).

‡ Section 3. Slope Fields

The PlotVectorField function plots vector fields. Normalize the vectors to obtain direction fields (or slope 
fields). It must be loaded from the Graphics package.
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<<Graphics`PlotField`

Open a Mathematica notebook and do the following.

1. Consider the first order differential equation Ht + 1L y ' HtL = 1 - yHtL  taken from Example1 in Section 2.3 of 
Ledder. 

a.   Use DSolve to obtain the general solution and also the solution satisfying y(0) = 0. Plot the second  solution 
using in the window -2 ≤ t ≤ 2, -2 ≤ y ≤ 2 and compare the picture to the solution curve shown in Figure 2.3.4 in  
Ledder and reproduced below. 

-2 -1.5 -1 -0.5 0.5 1 1.5 2
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b.   Comment on the existence and uniqueness of solutions using the statement of the Unique Solution  Theorem. 
Your comments should be based upon the properties of the function  f (t,y) where  y' = f (t,y). 

2.* Use PlotVectorField and to make a nice-looking slope field for the autonomous equation y' = sin(y). (Use 
the  window -6 ≤ t ≤ 6, -6 ≤ y ≤ 6).    

a.   Put some solution curves into the plot using DSolve and Table. Comment  on the relationship between one 
curve and the next.   

b.   Obtain the general solution formula.

c.   Use DSolve to obtain the solution satisfying the initial condition y(0) = 1. What is the value of this  solution 
when t = 1? Get the exact value and an approximation.  

d.   Comment on the long-term behavior of solutions to this differential equation. 

3. Repeat Exercise 3 using the differential equation y ' HtL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅsinHyHtLL  . Use the same plot window.  Note that the 
symbolic solutions are much simpler than the ones in Exercise 3. Explain why. 
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‡ Section 4. Approximate Solutions

Iterated functions and user defined procedures are featured in this set of exercises. 0. 

Pull down the Help menu, choose Help Browser... . Then  choose The Mathematica Book/Principals of 
Mathematica/Modularity  and the Naming of Things. Read the pages explaining Modules and local variables. 

Open a new Mathematica notebook and do the following. 

1. Create the modular function called Euler defined on in Part 3, Section 4 of the manual. Test it on the differen-
tial equation y' = cos(t) y with the initial condition y(0) = 1 (as in the manual). 

2. Use Euler to obtain a tabular display of Euler approximations to the initial value problem (IVP) 

y ' HtL = 8 e-t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3+yHtL , yH0L = 1

for t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. (I.e. h = 0.2). Plot these points and the line segments connecting them  along with 
the actual solution. Name the plot P1. Note. You will have to create the solution using DSolve. 

3.  (Continuing 2) Make a similar plot named P2, displaying the solution and the approximation for h = 0.1.  

a.   Use the Show function to display plots P1 and P2 together. Comment on the error displayed in the picture.   

b.    If you have the Ledder text, compare the plot displayed in part b to the one displayed in Figure 2.5.7.  

4.  (Continuing 3) Use your calculator to check that the Error has been cut in half (approximately) when going 
from h = 0.2 to h = 0.1.

5. Create the modular function called ModEuler and test it on  y' = cos(t) y with the initial condition y(0) = 1 (as  
in the manual). 

6. Repeat 2 - 5 using ModEuler in place of Euler. Comment on the graphs and the reduction of error in  the 
Matrix. Hint. Use Copy and Paste, then make minor changes in the code. 

7.* Modify the ModEuler procedure to make a modular function that implements the classical Runge-Kutta  
algorithm (see Ledder, Section 2.6). Test in by applying it to the problems described in Exercises 2 - 6.  (Copy 
and Paste). Is the error cut in half in problem 4?

Part IV. Linear Differential Equations

‡ Section 1. Linear Oscillators

The harmonic oscillator is the fundamental model for the analysis of oscillating systems. Phase plane  trajectories 
are constructed. PlotVectorField draws direction fields. 
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1. Obtain the solution to the following initial value problem. Call it soln.  

y'' + 4y = 0  , y(0) = 2 , y'(0) = -3

From the form of the solution decide if the system is undamped, underdamped, critically damped, or  over-
damped. What is the period of the oscillations? 

2, (Continuing 1) Plot the solution to the IVP in Exercise 1. Then create a plot showing the cosine term, the  sine 
term and their sum (the solution curve). Make the solution red, the cosine blue, and the sine green.  Hint. The 
cosine term is the solution using the initial conditions y(0) = 2, y'(0) = 0.

 a.  What IVP does the sine term solve?   

 b.  Determine the amplitude of the oscillations by solving y'(t) = 0 and substituting the time value into the  
solution. Compare the answer to the amplitude calculated using the standard formula for converting the  solution 
into amplitude/phase angle form.   

 c.  Assuming this is the model of a mass spring system, determine the speed of the mass as it passes  through 
equilibrium.   

 d.  Convert the solution into the function g. Use g to plot the phase plane trajectory. What  type of curve is this 
trajectory?   

 e.  Add to the trajectory the points corresponding to t = 0, 0.25, 0.5, 0.75, ... , 2.0. 

2.* Consider now the following damped system. Obtain the solution. 

y'' + y' + 4y = 0  , y(0) = 2 , y'(0) = -3 

From the form of the solution decide if the system is underdamped, critically damped, or overdamped.    

a.   What is the pseudo-period of the oscillations?   

b.   What is the time constant?   

c.   Based upon your answer to part b estimate the time interval required for the oscillations to disappear  from 
view.   

d.   Plot the solution curve over the interval you named in part c.   

e.   Add to the curve in part d the curves defined by A e-tê2and   -A e-tê2where  A = "##############4 + 16ÅÅÅÅÅÅÅ15   .   Make them 
blue. What is the significance of these curves? Where did the formula for A come from?   

f.    Convert the solution into the function g. Use g to plot the phase plane trajectory.    

g.    Add to the trajectory the points corresponding to t = 0, 0.25, 0.5, 0.75, ... , 2.0. 

Section 2. State Space

The forced oscillator is modeled with a non-autonomous equation. Solution trajectories are best viewed in state 
space. 
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1. Consider the driven IVP 

y'' + 4y = cos(1.8 t)  , y(0) = 2 , y'(0) = -3 

Obtain the solution, call it soln and convert it into a function g.   

a.    Plot the solution curve over the interval  0 ≤ t ≤ 120. What you witness in the plot is the phenomenon  called 
"beats". The output pulsates like this when the driver frequency is very close to the natural  frequency of the 
system.   

b.    Obtain the phase plane trajectory for this system. Use the same time interval.   

c.    Obtain the state space trajectory for this system. Use the same time interval. 

2.* Damp the system slightly by changing the IVP to the following

y'' + 0.1y' + 4y = cos(1.8 t)  , y(0) = 2 , y'(0) = -3

Obtain the solution, call it soln and convert it into a function h.     

a.    Based upon the solution formula determine the time constant for the beats. That is, how long will it take 
(approximately) for the beats to disappear from the solution curve as it settles down to its  steady-state mode?   

b.    Plot the solution curve to verify your answer to part a.    

c.    Use h to obtain the phase plane and state space trajectories for this system. 

3. Use PlotVectorField to obtain the direction field and a plot of the solution trajectory in Exercise 1 of Section 
1 in Part IV. (The direction field can be drawn in phase space because the equation is  autonomous.) 

4.* Obtain a numeric solution for the IVP in Exercise 2. Sketch the time series for position and the time series for 
velocity. Then plot the phase plane trajectory and the  state space trajectory. 

Section 3. Two Dimensional Systems

A two dimensional system defines a two dimensional vector field and a vector flow. The NDSolve  function 
outputs approximate solutions. Linear systems can be solved using standard  methods by reduction to one second 
order equation or by matrix methods (featured in the next section).

 Load the PlotField package.

<<Graphics`PlotField`

 1. Obtain the phase portrait for the linear system 

x' = -x  + 2 y 

y' = 4 x + y    

Note. The phase portrait is a sketch of some solution curves and the direction field when the system is autono-
mous. Compare the picture you get to Figure 6.3.1 in Ledder (reproduced below). 
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Hint. Make the vector field using PlotVectorField. Use Table to generate lists of solutions satisfying initial 
conditions specified along the x and the y axes.

2. Continuing 1. Use DSolve to obtain the general solution to the system in Exercise 1. Call the solution  soln. 

3. Add the two nullclines to the phase portrait in Exercise 1. (What is the stationary point?)  Hint. Go back and 
name the plot  PP.  Make the nullclines using ImplicitPlot (both can be  drawn at the same time). Call the 
nullcline plot NP and then use Show( PP, NP ); 

4.* The model 

x' = x (1 - y - x/a) 

y' = y (1 - x - y/b)

 is used to study competing species. See Ledder, Section 5.5, Exercise 11. Use PlotVectorField and DSolve to 
do the  following.   

a.   Draw the direction field when 1/a = 1.9 and 1/b = 1.5. Use the window 0 ≤  x ≤ 1, 0 ≤ y ≤ 1.   

b.   Find the stationary point and add the nullclines to the direction field. Discuss the solutions based upon the 
picture you see.   

c.   Add solution curves corresponding to the following set of initial conditions (a circle of points around  the 
stationary point)   xH0L = 0.3 + 0.2 cosHk p ê6L , yH0L = 0.5 + 0.2 sinHk p ê 6L , k = 1, 2, ... , 12

5. Use PlotVectorField to obtain the phase portrait for the system

 x' = x - 2 y - 1

y' = x - y - 2 

Add the stationary point and nullclines. Find the solution formulas using DSolve. Display the solutions in simpli-
fied form. 

This is a linear system with periodic solutions (closed curves). Use the solution formulas to determine the period 
of the trajectories.
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Section 4. Matrix Methods

Matrix and vector manipulation exercises provide practice via  eigenvalue and eigenvector calculations. The 
matrix exponential is a key tool for solving constant  coefficient linear systems of differential equations.

 0. Pull down the Help menu, choose Help Browser... . Choose The Mathematica Book/Advanced Mathemat-
ics in Mathematica/Linear Algebra. Read the help pages.

Use Mathematica to do the following. 

1. Enter the matrix 
ikjjjjjjj 1 2 3

4 5 6
7 8 9

y{zzzzzzz with the name A.

a.    Find the determinant and the characteristic polynomial of A.   

b.   Enter the vector v = {2,3,5}. Calculate the vector w = Av using the entry w = A.v. 

c.   Calculate the dot product of v and w using v.w. The product will be a scalar. Verify that the entry w.v yields 
the same scalar.  

2.* Define the matrix B having the columns {0,1,-1}, {1,1,0}, {-1,0,1}. Hint. 

B = Transpose[ { {0,1,-1},  {1,1,0}, {-1,0,1} } ]

a.   Find the characteristic polynomial of B and factor it.   

b.   Find B's eigenvalues with Eigenvalues[B]. Name them lambda.

c.   Find B's eigenvectors using Eigenvectors[B]. Name them V and define P to be the transpose of V.   

d.   Calculate Inverse[P].B.P. 

3.* Continuing 2. Obtain the solution to v' = Bv satisfying v(0) = {1,2,3}}.   

a.    Do if first using DSolve applied to the system of linear differential equations defined by v' = Bv with  the 
appropriate initial conditions.   

b.   Do it second by making a fundamental matrix solution X(t) defined as the matrix with the eigenvector  solu-
tions in the columns then computing    

v(t) = X(t) XH0L-1 vH0L
c.   Do it third by using the Matrix Exponential, Mexp. Once you have it, the solution is  

 v(t) = Mexp v(0)  

Section 5. The Laplace Transform

The Laplace transform and the inverse Laplace  transform are used to solve linear differential equations and 
systems. Piecewise defined functions are defined using the unit step function. Dirac delta functions in the driver 
can be handled via Laplace transforms. 

Use Mathematica to do the following problems. 
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1. Obtain the Laplace transform of the following functions. 

t cosH3 tL , e-t sinH2 tL , UnitStepHt - pL Ht + cosHtLL , sinHtL + DiracDeltaHt - 3 pL
2. Obtain the inverse Laplace transform of the following functions. 

sÅÅÅÅÅÅÅÅÅÅÅÅs2 -4 , s e-2 s
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2 -4 , 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2 +4 s-5 , 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2 +4 s-4 , e-3 s

ÅÅÅÅÅÅÅÅÅÅÅs4

3. Consider the following initial value problem    

y'' + y' + 9 y = UnitStep(t - 2 p )  ,  y(0) = 0 , y'(0) = 1

a.    Obtain the solution using DSolve. Plot it for 0 ≤ t ≤ 40  and explain the behavior of the solution curve.  

b.   Obtain the solution using the method of Laplace transforms. How does the solution formula compare to the  
formula obtained in part a? 

4. Consider the following initial value problem 

y'' + y' + 9 y = UnitStep(t - 2 p ) - UnitStep(t - 5 p )  ,  y(0) = 0 , y'(0) = 1  

 a.   Obtain the solution using dsolve. Plot it for 0 ≤ t ≤ 40  and explain the behavior of the solution curve.  

b.   Obtain the solution using the method of Laplace transforms. How does the solution formula compare to the  
formula obtained in part a? 

5.* Consider the following initial value problem 

y'' + y' + 9 y = UnitStep(t - 2 p ) - UnitStep(t - 5 p ) + 2 DiracDelta(t - 9 p )  ,  y(0) = 0 , y'(0) = 1

a. Obtain the solution using DSolve. Plot it for 0 ≤ t ≤ 40  and explain the behavior of the solution curve.  

b.   Obtain the solution using the method of Laplace transforms. How does the solution formula compare to the  
formula obtained in part a? 

6.* Use the the solution to 5 a to make a function, g. Use g to plot the phase plane trajectory  and as well as the 
state space trajectory for the system. 

7.* Continuing 6. Plot an animation of the phase space trajectory. 
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