Appendix A3. Partial Differential Equations

The wave equation

The following entries show how Maple can be used to plot approximations to solutions of the wave equation on a finite domain: A string of length L with ends clamped at x = 0 and x = L. Let u(x,t) denote the vertical displacement of the string at point x at time t. For small vibrations u satisfies the wave equation

$$u_{t, t} = c^2 u_{x, x}$$

The letter c denotes a positive constant determined by the characteristics of the string. Separation of variables leads to solutions of the following form

$$U_N(x, t) = \sum_{n=1}^{N} \left(A_n \cos \left(\frac{c \, n \, \pi \, t}{L} \right) + B_n \sin \left(\frac{c \, n \, \pi \, t}{L} \right) \right) \sin \left(\frac{n \, \pi \, x}{L} \right), N \text{ a positive integer.}$$

See Ledder, Chapter 8, Section 3.

Set the string into motion

The string is set into motion at t = 0 by giving it an initial shape f(x) and an initial velocity distribution, g(x). Thus the coefficients A_n and B_n should be chosen so that the function

$$U_N(x, 0) = \sum_{n=1}^{N} A_n \sin\left(\frac{n \pi x}{L}\right)$$

approximates f(x) on [0, L] and the function

$$\left(\begin{array}{c} \frac{\partial}{\partial t} U_N(x,t) \end{array}\right) = \sum_{n=1}^{N} \frac{c \, n \, \pi \, B_n}{L} \sin \left(\frac{n \, \pi \, x}{L}\right)$$

approximates g(x). Consequently, A_n is the Fourier sine series coefficient for f(x) and $\frac{c \, n \, \pi \, B_n}{L}$ is the Fourier sine series coefficient for g(x).

The following entries define the functions f and g, calculate A_n and B_n , then create various solution curves. We assume that L=1, c=1 and the string is initially stretched "tent like" over the x axis with the shape f(x) = piecewise(x < 0.5, 0.2 x, 0.2 (1 - x))

Set it into motion with a finger flick at a point one quarter of the way from the left endpoint

$$g(t) = 0.1 \delta(t - 0.25)$$

You may, of course, change these to fit any situation that you would like to explore.

```
> L := 1: c := 1:
  f := x -> piecewise(x<L/2,2/5*x,2/5*(L-x)):
  g := x -> 1/10*Dirac(x - L/4):
```

An :=
$$2/L*int(f(x)*sin(n*Pi*x/L), x=0..L)$$
:
Bn := $L/(c*n*Pi)*2/L*int(g(x)*sin(n*Pi*x/L), x=0..L)$:

The following entry simplifies the formulas for An and Bn, then displays them.

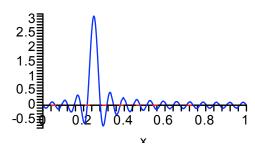
> C := [An,Bn] assuming n::integer: 'An'=C[1], 'Bn'=C[2]; $2\left(-2\sin\left(\frac{1}{2}n\pi\right) + \cos\left(\frac{1}{2}n\pi\right)n\pi\right) + 2\left(\cos\left(\frac{1}{2}n\pi\right)n\pi + 2\sin\left(\frac{1}{2}n\pi\right)\right), Bn = \frac{\sin\left(\frac{1}{4}n\pi\right)}{5n\pi}$

This it the definition of U as a function of N, x, and t.

> U := (N,x,t) -> sum((An*cos(c*n*Pi*t/L)+Bn*sin(c*n*Pi*t/L))*sin(n*Pi*x/L),
n=1..N);

$$U := (N,x,t) \rightarrow \sum_{n=1}^{N} \left(An \cos\left(\frac{c n \pi t}{L}\right) + Bn \sin\left(\frac{c n \pi t}{L}\right) \right) \sin\left(\frac{n \pi x}{L}\right)$$

The first plot checks that the coefficients are correct for the velocity function g. (A check for the shape function f is made when we plot U at t = 0 below).

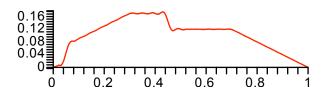


This curve is a typical approximation to a Dirac delta. The area under the curve is approximately 1/10.

The plot of U(20,x,0) shows that the An coefficients are also correct.

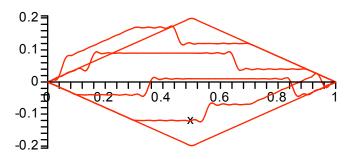
0.2 0.4 0.6 0.8

A snapshot of the waveform at t = 0.2:

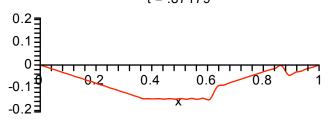


Five snapshots, one every 0.2 seconds:

> plot([U(50,x,0.2*t)\$t=0..5], x=0..L, color=red);



A movie (see the Help page for plots[animate]):



The waveform surface

