Appendix A3. Partial Differential Equations

The wave equation

The following entries show how Maple can be used to plot approximations to solutions of the wave equation
on a finite domain: A string of length L with ends clamped at x =0 and x = L. Let u(x,f) denote the vertical
displacement of the string at point x at time ¢ For small vibrations u satisfies the wave equation

The letter ¢ denotes a positive constant determined by the characteristics of the string. Separation of variables
leads to solutions of the following form
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See Ledder, Chapter 8, Section 3.

Set the string into motion

The string is set into motion at #= 0 by giving it an initial shape f(x) and an initial velocity distribution, g(x).
Thus the coefficients A4,, and B,, should be chosen so that the function
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approximates f(x) on [0, L ] and the function
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approximates g(x). Consequently, 4, is the Fourier sine series coefficient for f(x) and

sine series coefficient for g(x).
The following entries define the functions fand g, calculate 4, and B,,, then create various solution curves. We
assume that L = 1, ¢ =1 and the string is initially stretched "tent like" over the x axis with the shape

fix) = piecewise(x < 0.5, 0.2 x, 0.2 (1 - x))

Set it into motion with a finger flick at a point one quarter of the way from the left endpoint
g(®) =0.10(z-0.25)

Y ou may, of course, change these to fit any situation that you would like to explore.

>L :=1: ¢ := 1:
f := x -> piecewise(x<L/2,2/5*x,2/5*(L-x)):
g := x -> 1/10*Dirac(x - L/4):



An := 2/L*int(f(x)*sin(n*Pi*x/L), x=0..L):
Bn := L/(c*n*Pi)*2/L*int(g(x)*sin(n*Pi*x/L), x=0..L):

The following entry simplifies the formulas for An and Bn, then displays them.

> C := [An,Bn] assuming n::integer: 'An'=C[1l], 'Bn'=C[2];
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This it the definition of U as a function of N, x, and ¢

>U := (N,x,t) -> sum((An*cos(c*n*Pi*t/L)+Bn*sin(c*n*Pi*t/L))*sin(n*Pi*x/L),

n=1..N);
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The first plot checks that the coefficients are correct for the velocily function g. (A check for the shape
function f* is made when we plot U at ¢ =0 below).

> plot( [g(x), sum(c*n*Pi*Bn/L*sin(n*Pi*x/L), n=1..30)], x=0..L,
color=[red,blue], title="Initial Velocity");
Initial Velocity
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This curve is a typical approximation to a Dirac delta. The area under the curve is approximately 1/10.
The plot of U(20,x,0) shows that the An coefficients are also correct.

> plot( U(20,x,0), x=0..L, 0..0.25, ytickmarks=3,
title="Initial Waveform");
Initial Waveform
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A snapshot of the waveform at #=0.2:
> plot( U(50,%,0.2), x=0..L, color=red);
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Five snapshots, one every 0.2 seconds:
> plot( [U(50,x,0.2*t)$t=0..5], x=0..L, color=red);
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A movie (see the Help page for plots[animate]):

> plots[animate] ( plot, [ U(50,x,t), x=0..L ], t=0..2, frames=40);
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The waveform surface

> plot3d( U(50,%x,t), x=0..L, t=0..2, axes=boxed, orientation=[-60,70],
lightmodel=1light2 );




