
Part III. First Order Ordinary Differential Equations

Section 3. Slope Fields: DEplot
A slope field (or direction field) for a first order ordinary differential equation of the form

d

 dt
 y t( ) = f t, y t( )( )

is an array of short line segments, at point ( t,y) the segment has slope f (t, y). Since these are tangent lines to the
solution curves determined by the equation, a slope field can provide a wealth of information about the 
qualitative  behavior of the solutions. 

The tool you need: DEplot

The Maple procedures that create direction fields and geometric (i.e. approximate) solution curves are found in 
the DEtools package. All told, there are 115 procedures in the DEtools package, but only one will be used 
now, DEplot. This procedure is loaded into the kernel with the entry

with(DEtools,DEplot)

> with(DEtools,DEplot);
DEplot[ ]

The syntax to generate a direction field for a first order ordinary differential equation like the one displayed 
above (and named DE) is

DEplot( DE, y(t), t=a..b, y=c..d)

The default plot for the first equation discussed in Section 1 looks like this (plot window -3..3, -3..3).

> DE := diff(y(t),t) = y(t)/(t^2 + 1);
DEplot( DE, y(t), t=-3..3, y=-3..3);

DE := 
d

 dt
 y t( ) = 

y t( )

t 2 + 1

 

If you have the patience to count them, you will see 400 "harpoon" arrows (20 left to right and 20 top to 
bottom).  The number of arrows in these directions is controlled by an entry of the form
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dirgrid=[m,n]

instructing DEplot to draw m arrows in the horizontal direction and n in the vertical direction.

> DEplot( DE, y(t), t=-3..3, y=-3..3, dirgrid=[11,11]);

 

Asking for 11 arrows in each direction forces DEplot to plot arrows centered at points on the t axis and the y 
axes. If you would also prefer to see line segments instead of arrows, add the equation

arrows=line

> DEplot( DE, y(t), t=-3..3, y=-3..3, dirgrid=[11,11], arrows=line);

 

Finally, solution curves can be included in the picture. Just add a set containing lists of initial conditions. It 
must be of the form

{ [y(t1) = y1] , [y(t2)=y2] , ... , [y(tn)=yn] }

See below.

> DEplot( DE, y(t), t=-3..3, y=-3..3, dirgrid=[11,11], arrows=line,
        {[y(0)=k]$k=-3..3}, linecolor=blue);
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The default color for the solution curves is yellow. We recommend changing to blue using the equation

linecolor=blue

as we did above. The equation color=blue  would make the arrows blue.

Compare this picture to the first one displayed in Section 1 (page 33).

Stepsize matters

Direction field information is used to plot the curves, slopes are averaged across the plot window. By default, 
the averaging algorithm is the classical Runge-Kutta fourth order method. See Ledder, Chapter 2, Section 6. 
When plotting solution curves, DEplot takes 20 evenly spaced steps across the plot window. Therefore, when 
t = a..b, each step has length ( b - a)/20. This may be too large a step size to produce a nice smooth curve. The 
next example illustrates this.

> DE2 := diff(y(t),t) = cos(5*t)*y(t);
DEplot( DE2, y(t), t=-3..3, y=-3..3, dirgrid=[11,11], arrows=line,
        {[y(0)=k]$k=-3..3}, linecolor=blue);

DE2 := 
d

 dt
 y t( ) = cos 5 t( ) y t( )
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Since b - a = 6, the step size for this plot is 6/20 = 0.3, which is too big to make a smooth curve. To control the
step size, insert an equation of the form

stepsize=h

The next entry reduces the step size to 0.05. DEplot crosses the plot window in 120 steps producing a nice 
smooth curve.

> DEplot( DE2, y(t), t=-3..3, y=-3..3, dirgrid=[11,11], arrows=line,
        {[y(0)=k]$k=-3..3}, linecolor=blue, stepsize=0.05);

 

Keep your eye on f ( t , y )

In general most points ( t, y) in a direction field will have a locally unique solution curve passing through them. 
"Locally unique" means the only one within a small disc centered at ( t, y).  However, special attention must be 
paid to "bad points" where either f or its y partial derivative is discontinuous. The equation named DE2 in 
Section 1, and DE3 below, has lots of bad points (officially known as "singularities"). 

> DE3 := diff(y(t),t) = y(t)/(t^2 - 1);
DEplot( DE3, y(t), t=-3..3, y=-3..3, dirgrid=[15,15], arrows=line);

DE3 := 
d

 dt
 y t( ) = 

y t( )

t 2 - 1
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There are potential problems for any solution curve as it approaches the lines t = 1 or t = -1. This is not 
surprising, because the function f is not defined at any point on either of these lines; all these points are singular
points for DE3:

f t, y( ) = 
y 2

t 2 - 1

If a step size for solution curves forces DEplot to get too close to a singularity, DEplot may stop the process 
and issue a warning. The next entry produced 7 warnings, one for each of the initial conditions.

• For printing purposes, warnings like these are deleted in the rest of th e section.

> DEplot( DE3, y(t), t=-3..3, y=-3..3, dirgrid=[15,15], arrows=line,
        {[y(0)=k]$k=-3..3}, linecolor=blue, stepsize=0.05);

Warning, plot may be incomplete, the following errors(s) were issued:
   division by zero
Warning, plot may be incomplete, the following errors(s) were issued:
   division by zero
Warning, plot may be incomplete, the following errors(s) were issued:
   division by zero
Warning, plot may be incomplete, the following errors(s) were issued:

   division by zero
Warning, plot may be incomplete, the following errors(s) were issued:
   division by zero
Warning, plot may be incomplete, the following errors(s) were issued:
   division by zero
Warning, plot may be incomplete, the following errors(s) were issued:
   division by zero
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We actually got lucky with the stepsize in this DEplot (compare it to the plot at the top of page 37 in Section 
1). To see why, examine the output when the stepsize is increased only slightly to 0.06.

> DEplot( DE3, y(t), t=-3..3, y=-3..3, dirgrid=[15,15], arrows=line,
        {[y(0)=k]$k=-3..3}, linecolor=blue, stepsize=0.06);

 

This time no singularities are directly encountered, and the ploting algorithm simply stepped over the line t = 1 
and continued on. The input requested solutions satisfying initial conditions starting at t = 0. DEplot delivered 
them, but also plotted extraneous solution curves that are not actually connected to the ones that were 
requested.

Using a more sophisticated plotting algorithm might help. The next entry is just like the last one except for two
things.

  1. The stepsize is set back to 0.05.

  2. The equation

method=rkf45

  has been added, telling DEplot to plot points using the more advanced Runge-Kutta-Fehlberg 4-5 algorithm 
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(Ledder, page 114). This algorithm varies the step size according to the difficulties it encounters in the field.

> DEplot( DE3, y(t), t=-3..3, y=-3..3, dirgrid=[15,15], arrows=line,
        {[y(0)=k]$k=-3..3}, linecolor=blue, stepsize=0.05,
        method=rkf45);

 

The output shows that the rkf45 algorithm also steps over the line t = 1, 

Bottom line : Maintain a skeptical attitude towards approximate solution curves as they pass near 
singularities  in the direction field .

Go with the flow

Having issued a fair warning, the last two examples in this section illustrate how to get a decent global view of 
solution behaviour, starting with our friend DE3. 

> init1 := [y(-3)=k/2]$k=-5..5:  #Initial points on the line t = -3
init2 := [y(0)=k/2]$k=-4..4:   #Initial points on the line t = 0
init3 := [y(3)=k]$k=-3..3:     #Initial points on the line t = 3
DEplot( DE3, y(t), t=-3..3, y=-3..3, dirgrid=[15,15], arrows=line,
       {init1,init2,init3}, linecolor=blue, stepsize=0.05,
        method=rkf45);
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And concluding with the last equation in Section 1.

> DE4 := diff(y(t),t) = t/y(t);

DE4 := 
d

 dt
 y t( ) = 

t

y t( )

Solutions are first plotted using the default fixed step size Runge-Kutta algorighm.

> inits := { [y(0)=k]$k=1..3, [y(0)=-k]$k=1..3,
           [y(k)=0.1]$k=-3..3, [y(k)=-0.1]$k=-3..3 }:
DEplot( DE4, y(t), t=-3..3, y=-3..3, dirgrid=[15,15], arrows=line,
        inits, linecolor=blue, stepsize=0.05);

 

The extraneous vertical lines appear because the default algorithm has jumped over the singularities.

Question: Where are the singularities in this field?
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The second plot includes method = rkf45 requesting the more sophisticated Runge-Kutta-Felhberg algorithm. 
The following picture shows that the algorithm has stopped short of the singularities. If you run the worksheet
you will also see that DEplot issues several warnings about the singularities.

> DEplot( DE4, y(t), t=-3..3, y=-3..3, dirgrid=[15,15], arrows=line,
        inits, linecolor=blue, stepsize=0.05, method=rkf45);
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