Appendix A3. Partial Differential Equations

The wave equation

The following entries show how *Mathematica* can be used to plot approximations to solutions of the wave equation on a finite domain: A string of length L with ends clamped at x = 0 and x = L. Let u(x,t) denote the vertical displacement of the string at point x at time t. For small vibrations u satisfies the wave equation

$$u_{tt} = c^2 u_{xx}$$

The letter c denotes a positive constant determined by the characteristics of the string. Separation of variables leads to solutions of the following form

$$U_N(x, t) = \sum_{n=1}^{N} (A_n \cos(\frac{c n \pi t}{L}) + B_n \sin(\frac{c n \pi t}{L})) \sin(\frac{n \pi x}{L})$$
, N a positive integer.

See Ledder, Chapter 8, Section 3.

Set the string into motion

The string is set into motion at t = 0 by giving it an initial shape f(x) and an initial velocity distribution, g(x). Thus the coefficients A_n and B_n should be chosen so that the function

$$U_N(x, 0) = \sum_{n=1}^{N} A_n \sin(\frac{n\pi x}{L})$$

approximates f(x) on [0, L] and the function

$$\partial_t \ U_N(x,0) = \sum_{n=1}^N \frac{c \, n \, \pi \, B_n}{L} \, \sin(\frac{n \, \pi \, x}{L})$$

approximates g(x). Consequently, A_n is the Fourier sine series coefficient for f(x) and $\frac{c n \pi B_n}{L}$ is the Fourier sine series coefficient for g(x).

The following entries define the functions f and g, calculate A_n and B_n , then create various solution curves. We assume that L = 1, c = 1 and the string is initially stretched "tent like" over the x axis with the shape

$$f(x) = 0.2 x + (0.2 (1 - x) - 0.2 x)$$
UnitStep $(x - 0.5)$

See the following definitions and plot.

Set the string into motion with a finger flick at a point one quarter of the way from the left endpoint

$$g(x) = 0.1 \operatorname{DirecDelta}(x - 0.25)$$

$$g[x] := 0.1*DiracDelta[x - 0.25]$$

You may, of course, change these to fit any situation that you would like to explore.

The next entries calculate the formulas for the coefficients An and Bn.

An = 2/L*Integrate[f[x]*Sin[n*Pi*x/L], {x,0,L}]
Bn = L/(c*n*Pi)*Integrate[g[x]*Sin[n*Pi*x/L], {x,0,L}]

$$2\left(\frac{0.\cos[1.5708 n]}{n} + \frac{0.\cos[n \pi]}{n} + \frac{0.0405285 \sin[1.5708 n]}{n^2} - \frac{0.0202642 \sin[n \pi]}{n^2}\right)$$

$$\frac{0.031831 \sin[0.785398 n]}{n}$$

This is the definition of the function U as a function on N, x, t:

$$U[N_{-},x_{-},t_{-}] := Sum[(An*Cos[c*n*Pi*t/L] + Bn*Sin[c*n*Pi*t/L])*Sin[n*Pi*x/L], \{n,1,N\}]$$

The first plot checks that the coefficients are correct for the velocity function g. (A check for the shape function f is made when we plot U at t = 0 below).

Plot[
$$\{g[x], Sum[c*n*Pi*Bn/L*Sin[n*Pi*x/L], \{n,1,30\}]\}, \{x,0,L\}, PlotRange->\{-0.5,2\}, PlotLabel->"Initial Velocity"]$$

This curve is a typical approximation to a Dirac delta. The area under the curve is approximately 1/10.

The fjollowing plot of U(20,x,0) shows that the An coefficients are also correct.

Plot[U[20,x,0], {x,0,L}, PlotRange->{0,0.12}, PlotLabel->"Initial Waveform", AspectRatio->1/3]

A snapshot of the waveform at t = 0.2.

Plot[U[50,x,0.2], {x,0,L}, AspectRatio->1/3]

Five snapshots, one every 0.2 seconds:

Plot[Evaluate[Table[U[50,x,t], $\{t,0,1,0.2\}$]], $\{x,0,L\}$]

A movie (see the Help Browser: A Practical Introduction to *Mathematica*/Graphics and Sound/Special Topic: Animated Graphics).

<\{x,0,L\}, PlotRange->
$$\{-0.1,0.1\}$$
], $\{t,0,2,0.05\}$]

The waveform surface

Plot3D[U[50,x,t], {x,0,L}, {t,0,2}, ViewPoint->{1.542, -2.913, 0.764}]

