
Part IV. Linear Differential Equations

Section 2. State Space

The motion of an unforced linear oscillator

a y'' + b y' + c y = 0 (a, b, c constant)

is completely determined by its initial position and velocity, time does not matter because the system is autono-
mous. The rate of change of position:

y' = v

and velocity:

v' = (-c y - b v)/a

only depend upon position and velocity. Because of this phase plane trajectories for the unforced oscillator
cannot overlap. See Ledder, Chapter 5, Theorem 5.3.1.

In this section we continue to analyze second order linear equations, autonomous and forced. Exact solutions will
be obtained, then numeric solutions using NDSolve. The phase plane plays an important role in the analysis and
state space is introduced to help understand solutions to the forced equation.

Autonomous equations

Families of solution curves for a second order equation can be studied using the phi function. This is a function
defined using the formula for the solution to the generic initial conditions y(0) = y0 and y'(0) = v0. The solution
formula is made into the function phi of the parameters y0 and v0, and time t:

y = j(y0, v0, t)

This formula gives position at time t. The partial derivative of j with respect to t provides the velocity formula:

v = t jHy0, v0, tL
Example. Obtain the phi function for the following damped, unforced mass spring system

y'' + 0.2 y' + y = 0

 and use it to plot time series for y and v and trajectories in the phase plane

We will first generate the solution formula for the generic initial conditions. Note that we have asked for the y[t]
solution.

Math_P4S2.nb Page 81

DE1 = y''[t] + 0.2y'[t] + y[t] == 0;
soln1 = DSolve[{DE1, y[0]==y0, y'[0]==v0}, y[t], t]88y@tD Ø ‰-0.1 t H1. y0 Cos@0.994987 tD +

1.00504 v0 Sin@0.994987 tD + 0.100504 y0 Sin@0.994987 tDL<<
The output cell for soln1 contains the formula for the phi function. It can be defined using the following entry.
We call is phi1 because we will be defining other phi functions later in this section.

phi1[y0_,v0_,t0_] := Evaluate[y[t]/.soln1]

For example, the solution satisfying y(0) = 3 and y'(0) = -2 is given by j (3,-2, t)

phi1[3,-2,t]
Plot[phi1[3,-2,t], {t,0,10}]8‰-0.1 t H3. Cos@0.994987 tD - 1.70856 Sin@0.994987 tDL<

2 4 6 8 10

-2

-1

1

2

3

Noting that the system is underdamped with time constant 10 seconds, in about 40 seconds any solution that can
graphed with reasonable scale factors will disappear from view. The first plot below is a family of three time
series for position, using the initial conditions

y(0) = 3, v(0) = -3, 0, 3 .

Note the use Evaluate on the Table function.

Plot[Evaluate[Table[phi1[3,v,t],{v,-3,3,3}]], {t,0,40},
 PlotStyle->RGBColor[1,0,0], AspectRatio->1/4, PlotLabel->"Position"]

10 20 30 40

-3
-2
-1

1
2
3
4

Position

Here are the corresponding velocity curves.

Recall that the partial derivative of phi with respect to t is obtained in Mathematica with D[phi[y0,t0,t] , t] .

Math_P4S2.nb Page 82

Plot[Evaluate[Table[D[phi1[3,v,t],t],{v,-3,3,3}]], {t,0,40},
 PlotStyle->RGBColor[0,0,1], AspectRatio->1/4, PlotLabel->"Velocity"
]

10 20 30 40

-3
-2
-1

1
2
3

Velocity

The phase plane trajectories are drawn next, in green. (Green? Sure, red + blue = green.) The three initial points
have also been plotted.

inits = ListPlot[Table[{3,k},{k,-3,3,3}], PlotStyle->PointSize[0.03]];
Show[inits,
 ParametricPlot[
 Evaluate[Table[{phi1[3,v,t],D[phi1[3,v,t],t]},{v,-3,3,3}]],
 {t,0,40}, PlotStyle->RGBColor[0,1,0]],
 PlotRange->{{-5,5},{-4,4}}, AspectRatio->4/5]

-4 -2 2 4

-4

-3

-2

-1

1

2

3

4

The trajectories get close, but they do not intersect.

Force it: A non-autonomous equation

Now force the system periodically with the cosine function.

y'' + 0.2 y' + y = cos(t)

The equation is no longer autonomous and, as we shall see below, the phase plane trajectories overlap.

Math_P4S2.nb Page 83

DE2 = y''[t] + 0.2y'[t] + y[t] == Cos[t];
soln2 = DSolve[{DE2, y[0]==y0, y'[0]==v0}, y[t], t]//FullSimplify88y@tD Ø ‰-0.1 t HHH-6.27647 µ 10-16 + 4.33334 µ 10-33 ÂL +H0. + 0. ÂL v0 + H1. + 1.40174 µ 10-17 ÂL y0L Cos@0.994987 tD +HH-5.02519 - 7.14864 µ 10-18 ÂL + H1.00504 + 3.49569 µ 10-20 ÂL v0 +H0.100504 - 6.93889 µ 10-19 ÂL y0L Sin@0.994987 tD +

‰0.1 t HH6.66134 µ 10-16 + 8.88178 µ 10-16 ÂL Cos@1. tD +H5. - 2.22045 µ 10-16 ÂL Sin@1. tDLL<<
The solution formula is quite complicated. Applying FullSimplify helped a little bit. It appears that Mathematica
is using an algorithm that uses the complex roots of the characteristic equation.

The new phi function.

phi2[y0_,v0_,t] := Evaluate[y[t]/.soln2]

The time series for y with the same initial conditions:

y(0) = 3, v(0) = -3, 0, 3 .

Plot[Evaluate[Table[phi2[3,v,t],{v,-3,3,3}]], {t,0,40},
 PlotStyle->RGBColor[1,0,0], AspectRatio->1/4, PlotLabel->"Position"]

10 20 30 40

-4
-2

2
4

Position

The velocity curves:

Plot[Evaluate[Table[D[phi2[3,v,t],t],{v,-3,3,3}]], {t,0,40},
 PlotStyle->RGBColor[0,0,1], AspectRatio->1/4, PlotLabel->"Velocity"
]

10 20 30 40

-4
-2

2
4

Velocity

And the phase plane trajectories, all tangled up.

Math_P4S2.nb Page 84

inits = ListPlot[Table[{3,k},{k,-3,3,3}], PlotStyle->PointSize[0.03]];
Show[inits,
 ParametricPlot[
 Evaluate[Table[{phi2[3,v,t],D[phi2[3,v,t],t]},{v,-3,3,3}]],
 {t,0,40}, PlotStyle->RGBColor[0,1,0]],
 PlotRange->{{-5,5},{-5,5}}, AspectRatioØ1/1]

-4 -2 2 4

-4

-2

2

4

Even one phase plane trajectory gets tangled as it winds around overlapping itself. The trajectory for y(0) = 3,
v(0) = -3 is shown below.

Math_P4S2.nb Page 85

inits = ListPlot[{{3,-3}}, PlotStyle->PointSize[0.02]];
Show[inits,
 ParametricPlot[
 Evaluate[{phi2[3,-3,t],D[phi2[3,-3,t],t]}],
 {t,0,40}, PlotStyle->RGBColor[0,1,0]],
 PlotRange->{{-5,5},{-5,5}}, AspectRatioØ1/1]

-4 -2 2 4

-4

-2

2

4

Overlapping phase plane trajectories reflect the fact that solutions are no longer uniquely determined by position
and velocity. Time must also be taken into account to determine the future of the system. Geometrically this is
accomplished by pulling the trajectory to 3 dimensional y,v,t space where time is used as the third coordinate.
This is called state space and the parametrized curve is called a state space trajectory.

State space trajectories: The ParametricPlot3D function

The state space trajectory for a second order differential equation is the parametrized curve

y = y(t), v = y'(t), t = t

plotted in y,v,t space. Three dimensional trajectories are plotted in Mathematica using the ParametricPlot3D
procedure. The syntax for a 3 dimensional curve is essentially the same as for the 3 dimensional curves we have
been plotting with one exception:

The color specification for the curve must be included as the fourth entry in the coordinate list.

The last phase plane trajectory corresponds to the initial state

y0 = 3, v0 = -3, t0 = 0 .

The state space trajectory is plotted below.

Note the application of Evaluate to the coordinate function.

Math_P4S2.nb Page 86

ParametricPlot3D[
 Evaluate[{phi2[3,-3,t],D[phi2[3,-3,t],t],t,RGBColor[0,1,0]}],
 {t,0,40}, AspectRatio->5/4]

-5 -2.5 0 2.5
-2.5 02.5

5

0

10

20

30

40
-2.5 02.5

5

As the default, ParametricPlot3d plots 70 points and choses to display the curve from the viewpoint of the spheri-
cal coordinate angles theta = 67.5, phi = 284.7 (degrees). (Recall that in spherical coordinates, theta is the angle
from the positive x axis, and phi is the angle from the positive z axis.) This can be determined by selecting the
plot and choosing Input/3D ViewPoint Selector... . The view of the plot box also shows labels on the three axes.

The next entry adds the setting PlotPoints-> 100 to get a smoother curve.

Math_P4S2.nb Page 87

ParametricPlot3D[
 Evaluate[{phi2[3,-3,t],D[phi2[3,-3,t],t],t,RGBColor[0,1,0]}],
 {t,0,40}, AspectRatio->5/4, PlotPointsØ100]

-2.5 0 2.5 5
-4-2

0 2 4

0

10

20

30

40-4
-2 0 2 4

Numerical solutions: NDSolve

The NDSolve function can be used to create phase plane pictures. If the equation is autonomous, tangent vectors
can also be displayed using PlotVectorField. The display of several trajectories in the vector field is called a
"flow".

The following entry shows how to create the vector field, F, associated with the differential equation named D1.

DE1

y@tD + 0.2 y£@tD + y££@tD ã 0

Note that it begins with two substitutions, the a solve, then another substitution.

DE1/.{y'[t]->v,y[t]->y};
Solve[%, {y''[t]}];
F = {v,y''[t]}/.%[[1]]8v, -0.2 v - 1. y<

And here is the plot of the vector field F.

<<Graphics`PlotField`

Math_P4S2.nb Page 88

vf1 = PlotVectorField[F, {y,-5,5}, {v,-4,4}, Axes->True,
 AspectRatio->5/4]

-4 -2 2 4

-4

-2

2

4

The next picture displays the vector field with several trajectories created with its phi function.

Show[
 ParametricPlot[
 Evaluate[Table[{phi[3,v,t],D[phi[3,v,t],t]},{v,-3,3,3}]], {t,0,40} ,
 PlotStyle->{RGBColor[0,1,0]}],
 vf1, PlotRange->{{-5,5},{-4,4}}, AspectRatio->5/4]

-4 -2 2 4

-4

-3

-2

-1

1

2

3

4

Here is the same picture created using NDSolve. The trajectories are plotted using the interpolation functions
generated by NDSolve.

Math_P4S2.nb Page 89

nsolns = Evaluate[Table[
 NDSolve[{DE1,y[0]==3,y'[0]==v0}, y, {t,0,40}], {v0,-3,3,3}]];
Show[
 ParametricPlot[
 Evaluate[Table[{y[t],y'[t]}/.nsolns[[k]],{k,3}]], {t,0,40} ,
 PlotStyle->{RGBColor[0,1,0]}],
 vf1, PlotRange->{{-5,5},{-4,4}}, AspectRatio->5/4]

-4 -2 2 4

-4

-3

-2

-1

1

2

3

4

The following plot shows the state space trajectories for the same solutions.

Math_P4S2.nb Page 90

ParametricPlot3D[
 Evaluate[Table[{y[t],y'[t],t,RGBColor[0,1,0]}/.nsolns[[k,1]],{k,3}]],
 {t,0,40} , PlotPoints->200, AspectRatio->5/3]

-2 -1 0 1 2

-2-10
1 2

0

10

20

30

40

The state space trajectories for the family of forced (tangled) trajectories for DE2 are shown next. They are
plotted as above, using the numerical solutions. These curves do not intersect in state space.

Math_P4S2.nb Page 91

nsolns2 = Evaluate[Table[
 NDSolve[{DE2,y[0]==3,y'[0]==v0}, y, {t,0,40}], {v0,-3,3,3}]];
ParametricPlot3D[
 Evaluate[Table[{y[t],y'[t],t,RGBColor[0,1,0]}/.nsolns2[[k,1]],{k,3}]],
 {t,0,40} , PlotPoints->200, AspectRatio->5/3]

-5-2.5 0 2.5 5

-5-2.5
02.5

5

0

10

20

30

40-5
-2.5 02.5

5

Numerical output

Finally, the following input shows how to get a nice display of numerical solution values. We use DE2 with the
initial conditions y(0) = 3 and y'(0) = -3.

nsoln = NDSolve[{DE2, y[0]==3, y'[0]==-3}, y, {t,0,5}]88y Ø InterpolatingFunction@880., 5.<<, <>D<<
Join[{{t,y[t],y'[t]}},
 Evaluate[Table[{t,y[t],y'[t]},{t,0,5,0.5}]]/.nsoln[[1]]
]//MatrixFormi

k

jjj

t y@tD y£@tD
0 3. -3.
0.5 1.39187 -3.30319
1. -0.187791 -2.91812
1.5 -1.45094 -2.08228
2. -2.24065 -1.06843
2.5 -2.52896 -0.109156
3. -2.38395 0.648519
3.5 -1.92326 1.15176
4. -1.27159 1.41968
4.5 -0.534044 1.5046
5. 0.210605 1.45408

y

{

zzz
Math_P4S2.nb Page 92

