Part IV. Linear Differential Equations

Section 4. Matrix Methods

In this section, you will learn enough about vectors and matrices in Mathematica to use them to obtain vector
solutions to linear systems of the form

xX'=ax+by

y=cx+dy

where x and y are functions of 7 and a, b, ¢, d are constants. Three dimensional systems will also be considered.
Vectors and matrices arise naturally by replacing scalar equations with one vector equation v' = Av, where v is a
vector valued function having the unknown functions as its components and A is a square matrix.

Warning: It is assumed that the reader knows what eigenvectors and eigenvalues are
and understands the role they play in formulating solutions to systems of
differential equations. (See Ledder, Chapter 6.) Our principal goal is to
demonstrate how to handle vectors, matrices, eigenvectors, etc. so that
Mathematica can be applied successfully to the analysis of such systems.

Matrices and Vectors

A vector in Mathematica is represented as a list.
u={1,2,3}
v {a,b,c}
{1, 2, 3}
{a, b, c}

The dot product is obtained as u.v (put a period between u and v).

u.v

a+2b+3c

A matrix is a list of lists. Each list is a row.

A = {{1,2,3},{4,5,6},{7,8,9}}
({1, 2, 3}, {4, 5,6}, {7, 8,9}}

The function MatrixForm will display A as a matrix.

MatrixForm[A]

1 2 3
4 5 6
7 8 9

The MatrixForm function displays a one-dimensional list (i.e. a vector) as a column. The next entry shows an
alternate way to apply the MatrixForm function.
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u//MatrixForm
1
2
3

The matrix A and the vector v are multiplied in this order using A.v. Mathematica interprets v as column vector
and outputs the product as a vector (i.e. a list).

A.v
{a+2b+3c,4a+5b+6c, 7Ta+8b+9c}

v.A//MatrixForm

a+4b+7c
2a+5b+8c
3a+6b+9c

Matrix A and vector v can also be multiplied in the opposite order using v.A. Now Mathematica interprets v as a
row and still outputs the product as a vector.

Vv.A

{a+4b+7c,2a+5b+8c, 3a+6b+9c}

The MatrixForm function displays this product as a column also.

v.A//MatrixForm
a+d4b+7c
2a+5b+8c
3a+6b+9c

The Table function can be used to make matrices.

= Table[ 1/(m+n"2), {m,1,3}, {n,0,2} ]

B
11 1 1 1 1 1 1
Hu s sbh iz 5o {5 70 51}

The determinant of B is obtained with the entry

Det[B]
MatrixForm[B]
Det[B]

1

NI
NI
N o ok

=

1260
Since B's determinant is not zero, it has an inverse. It can be found using

Inverse[B]
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Binverse = Inverse[B]
B.Binverse

{{12—5, -27, 21}, {-20, 96, -84}, {375, -105, 105}}

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

Be careful because the entry 1/B or BA(-1) will output the matrix whose entries are the reciprocals of the entries
in B.

1/B

{{1, 2, 5}, {2, 3,6}, {3,4,7}}
To find B's characteristic polynomial, as a function of ¢, enter

CharacteristicPolynomial[B,t]

CharacteristicPolynomial[B,t]

1 139t 31 t?

3
1260 840 ' 21 ¢

The Euclidean length of a vector v can be found using Norm[v].

v
Norm|[v]

{a, b, c}

\/Abs[a}2 +Abs[b]? + Abs[c]?

The absolute value function is applied to the components a, b, ¢ because they might be complex. If a, b, c are
known to be real numbers, then the Euclidean norm of v can also be found as follows.

Sqgrt([v.v]

va? +b? +c?

The entry Norm[v,oo] calculates what is called the "infinity" or "max" norm of v. This is the maximum of the
absolute values of the entries.

u
Norm[u, ]

{1, 2, 3}
3

Note. The infinity symbol can be entered using the symbol palette. Typing the word "infinity" will not work.

The entry B[[i,j]] outputs the i,j entry of matrix B. The entry v[[k]] is the kth component of the vector v.
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{B[[2,2]], v[I[2]1}

The jth column of matrix B is obtained using Take[B,All,{j,j}]. The entry Take[B,{i,i}] outputs its ith row. They
appear as lists.

Take[B,All,{3,3}]
Take[B,{1,1}]

1 1 1
Hsh {gh {71
1 1
Hu 50 51
Augmenting and stacking (not needed later, but kind of neat anyway)

If you would like to stack the matrix B with the row vector {x,y,z}, on the bottom, do it like this.

Bstacked = Insert[B,{x,y,z},4]
{1 30 s {3 5+ 2} (50 3+ 5} e ve 7))

MatrixForm[Bstacked]

1

N \||»—- o'\|»—- u1|»—-

Mowlk e
K -l>|»—' wl»—' Nl»—'

If you would like to then put {a,b,c,d} into the right column of Bstacked, first transpose Bstacked.
Transpose[Bstacked]
1 1 1 1 1 1 1 1
{{11 27 3 x}r {?l 3 Y}r {gl e T Z}}
Then insert {a,b,c,d} along the bottom.

Insert[%,{a,b,c,d}, 4]

({15 55l {5050 3/ (5 ¢+ 32}, (a b, c, )}

And then transpose again.
Bstackedaugmented = Transpose[%]

({1 3+ 5ral {3+ 57 500 {50 57 5 c)s (% v, 2, 1)
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%$//MatrixForm

1 1
1 > = a
1 1 1
2 3 % b
1 1 1
3 7 7 €
X y z d

Finally, if you need to calculate the determinant of the 3 x 3 submatrix of Bstackedaugmented that is obtained by
deleting its first row and first column, do it like this.

Bstackedaugmented[[{2,3,4},{2,3,4}1];

%$//MatrixForm

%%//Det

11

3 ¢ b

11

T 7 C

y =z d

d _by+cy4_bz_cz
168 7 6 4 3

Eigenvectors and Eigenvalues

The matrix A, defined below, is square. It has eigenvectors and eigenvalues. Let's find them.

A = {{3,2,1},{0,-1,-1},{2,1,1}};

%//MatrixForm
3 2 1
0 -1 -1
2 1 1

First find A's characteristic polynomial.

cp = CharacteristicPolynomial[A,t]

—2+2t+3¢t2-¢3

Then obtain the eigenvalues as its roots. Call the output lambda.

Solve[cp==0,t]

[{t>-1}, {t-2-2}, {£-52+2}]}

And use it to make a list of eigenvalues called lambda.
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lambda = Table[t/.%[[§11,{j,1,3}]

[-1,2-+2,2+/2}

Now use the NullSpace function to obtain bases for the three eigenspaces. Recall that the kth eigenspace is the
null space of the matrix

A - lambda[[k]]*Identity
where "Identity" is the 3 x 3 identity matrix. This is obtained in Mathematica with the entry
IdentityMatrix[3].

v = Table[ NullSpace[ A - lambda[[k]]*IdentityMatrix[3] ],
{k,1,3} 1

3-24/2 1 ~3-2+/2 1
—3+\/§,—3+\/§,l}}'{{_ 3+4/2 ’_3+\/5’l}H

The output for NullSpace is a list containing a basis for the null space, in list form. If further computations are
required it would probably be wise to convert the eigenvalues and eigenvectors to floating point form.

{t{-1, 2, 03}, {{-

N[lambda, 3]
N[v,3]

{-1.00, 0.586, 3.41}
({{-1.00, 2.00, 0}}, {{0.1082, -0.631, 1.00}}, {{1.320, -0.2265, 1.00}}}

Mathematica's direct method

Mathematica has functions that will output eigenvectors and eigenvalues directly. To obtain A's eigenvalues
apply the Eigenvalues function.

Eigenvalues[A]

{2++2, -1,2-+/2}

The output is a list of A's eigenvalues. The function called Eigenvectors will output a list with each eigenvector
appearing in list form. Observe that the eigenvectors appear in simplified form and in the order corresponding to
the appearance of the output for Eigenvalue.
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Eigenvectors[A]

(33 (2v2) 55 (2432), 1),
(-1, 2, 0}, {-%+% (2_\/5),-%+%(2-\/5), 1}}

Eigenvector solutions to v' = Av, the 2 x 2 case
Let's begin by solving a simple 2 x 2 system

x'=x+2y

y'=x -y
using eigenvectors. This is equivalent to v' = A v where v=< x, y > and
1 2
A= ( 1 -1 ) ‘

Start with the eigenvectors and eigenvalues of A.

A = {{112}1{11‘1}}7
%//MatrixForm

lambda = Eigenvalues[A]
v = Eigenvectors[A]

[ 3)
(-3, 3]
(1-93, 1), (1043, 1))

Let vl and v2 be the eigenvector solutions. They are straight line trajectories. Recall that vk is defined using the
formula

vk = M1 E

where E} is an eigenvector for the eigenvalue A.

vl Exp[lambda[[1]]*t]*Vv[[1]]
v2 = Exp[lambda[[2]]*t]*V[[2]]

{(1_\/3) e V3t ef\/_?;t}
{(1 N \/E) e\Et, e\Et}
Now that we have v1 and v2, the easiest way to obtain solutions to the IVP
v'=Av, v(0) =v0
is to use the formula
v(t) = X(t) X(0)™' v(0)

where X(t) is the fundamental matrix having v1 and v2 as its columns. See Ledder, Section A.5.

Math_P4S4.nb  Page 107



X = Transpose[{vl,v2}]

{{(1-V3)er, (1ev3) e, {e P, )]
For example, the following entries define the vector v as the solutionto v'=A v, v(0)=<1,1>, then show
the trajectory and the initial point. The formula for the solution is suppressed because it is a mess.

v = X.Inverse[X/.t->0].{1,1};

Pt = ListPlot[{{1,1}}, PlotStyle->PointSize[0.03]];
Traj = ParametricPlot[ v, {t,-1,1}, PlotStyle->RGBColor[0,1,0] 1];
SolnTraj = Show[ Pt, Traj, PlotRange->{{-2,4},{-2,4}}, AspectRatio->1/1 ]

4

-2
Here is the solution vector, simplified.

Simplify[v];
%$//MatrixForm

%ef\/?t <l—\/§+<l+\/§)e2\/§t)
%_GM§t<1+ezv€t)

And here is a picture of the solution trajectory and two eigenvector trajectories, one blue, one red.

Math_P4S4.nb  Page 108



Show[ ParametricPlot[ vl1, {t,-5,1}, PlotStyle->RGBColor[0,0,1] 1,
ParametricPlot[ v2, {t,-5,1}, PlotStyle->RGBColor[1,0,0] 1],
SolnTraj, PlotRange->{{-2,4},{-2,4}}, AspectRatio->1/1]

4 -

21
The matrix exponential
The function called MatrixExp, when applied to square matrix A as
MatrixExp[t*A]

outputs the matrix X(t)X(0)~! that was found above using the eigenvector solutions. We compute it below,
applied the 2 x 2 matrix A defined above.

Mexp = MatrixExp[t*A];
Simplify[%]//MatrixForm

LeVit (3434 (3++/3) V)

e V3t (—1+e2 V3 c)

V3
ew’3t(2,\1/%ezv3t> %e,\/ft <3+\/§_ <_3+\/§) (EZ\/_?;t)
Compare the matrix Mexp to X(t)X(0)~!, simplified and in matrix form.
X.Inverse[X/.t->0]//Simplify//MatrixForm
%e’\/?t<3—\/§+<3+\/§)e2\/?t) e (;/13*6\ )
el ) Le V3t (3443 - (-34+/3) 27 ¢)

A 3 dimensional example, approximate solutions

We will now compute three linearly independent eigenvector solutions to v' = A v for the 3 x 3 matrix A defined
several pages ago and redefined below.
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A = {{3,2,1},{0,-1,-1},{2,1,1}};

%//MatrixForm
3 2 1
0 -1 -1
2 1 1

Because this is a small system, exact formulas can be obtained. However we will make our calculations in float-
ing point form. We do this for three reasons.

1. Floating point calculations are easier to make, and are more relevant for real world applications.
2. It will give us some experience with error analysis.

3. If exact solution formulas are required, it is easier to get them directly from the matrix exponential or by
simply applying DSolve.

Here, once more, are A's eigenvalues and eigenvectors, but in approximate decimal form.
lambda = N[Eigenvalues[A]]
EV = N[Eigenvectors[A]]
(3.41421, -1., 0.585786}
{{1.32038, -0.226541, 1.}, {-1., 2., 0.}, {0.108194, -0.630602, 1.}}

The following Table constructs three eigenvector solutions.

v = Table[ Exp[lambda[[k]]*t]*EV[[k]], {k,1,3}]

{{1.32038 e3:41421t g oog5g] 341421t 1, e&4M21t}, (-1. elt, 2. el t, O.G—l.t},
0.585786 t 0.585786 t 0.585786 t
{0.108194 e , —0.630602 e , 1. e 1}

The fundamental matrix with these vectors in its columns is called X.
X = Transpose[V];
%$//MatrixForm

1.32038 e3.4l421t ~1. efl.t 0.108194 eO.585786t

~0.226541 e3-41421t 2. et ~0.630602 0-585786 t
1, @3-41421t 0. el t 1. @0-585786 t

And here is the solution to v' = Av satisfying v(0) = <2,4,1>.

v = X.Inverse[X/.t->0]1.{2,4,1};
Simplify[%]//MatrixForm

e (-1.71429 -0.21367 €'-°%7°* + 3,92796 * 14?21 F)
e " (3.42857 +1.24536 '*7%7°F - 0.673931 e* #1421 ")
0.e ' *-1.97487 783786 4+ 2.97487 e3+41421 ¢

The next entry checks the initial value.
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v/.t->0
(2., 4., 1.}

Error analysis over the interval t =0 tot = 8

The vector function v does not satisfy the differential equation exactly. Let's see how large the error is over the
time interval from O to 8. The error can be analyzed as follows. First calculate the "error vector" v' - A v.

D[v,t] - A.v;

ErrorVector = Simplify[%];

%//MatrixForm
4.44089 ><10716 efl.t - 2.22045 x 10*16 eO.585786t +0. e3.4l421t
_4.44089 x 10716 e l-t 0. 0-585786t _ g 88178 x 10—16 e3-41421 ¢
4.44089 ><10716 efl.t +0. eO.585786t +1.77636 ><]_0*15 e3.4l421t

Then define Error as a function whose value at t is the largest of the absolute errors in the three components of
ErrorVector. This requires the "infinity" norm.

Error = Norm[ErrorVector, ]

Max [Abs[-4.44089 x 10716 @ 1-t . 0. @0-585786t _ g 88178 % 10 16 e3.4l421t1 ,
Abs[4.44089x10 !¢ e 1t - 2.22045x10 6 0585786t g g3-41421t)
Abs[4.44089 ><10*16 efl.t +0. eo.585786t +1.77636 ><10*15 e3.4l421t1]

Now graph Error over the interval from O to 8.

Plot[Error, {t,0,8}, PlotRange->{0,0.002}]

0.002
0.00175
0.0015
0.00125
0.001
0.00075
0.0005
0.00025

This looks very good. Although the error clearly grows exponentially, it less than 0.0015 at ¢ = 8 (years, maybe?).

We say years because at 7 = 8 the approximate solution vector is over 3.6 x 10'? units long. (The length calcula-
tion uses the Euclidean norm.)

Norm[v/.t->8]

3.62102 x 1012

Thus the maximum relative error over this interval could be as small as 4 parts in 10°.
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