
Try
'Convert input values to numeric variables
intQuantity = CInt(txtQuantity.Text)
decPrice = CDec(txtPrice.Text)

'Calculate values for sale
decExtendedPrice = intQuantity * decPrice
decDiscount = decExtendedPrice * mdecDISCOUNT_RA
decDiscountedPrice = decExtendedPrice � decDisco

'Format and display answers for sale
lblExtendedPrice.Text = FormatCurrency(decExtend
lblDiscount.Text = FormatNumber(decDiscount)
lblDiscountedPrice.Text = FormatCurrency(decDisc

'Handle exceptions
Catch MyErr As InvalidCastException

C H A P T E R

1
Introduction to Visual
Basic .NET

at the completion of this chapter, you will be able to . . .

1. Describe the process of visual program design and development.

2. Explain the term object-oriented programming.

3. Explain the concepts of classes, objects, properties, methods, and
events.

4. List and describe the three steps for writing a Visual Basic project.

5. Describe the various files that make up a Visual Basic project.

6. Identify the elements in the Visual Studio environment.

7. Define design time, run time, and break time.

8. Write, run, save, print, and modify your first Visual Basic project.

9. Identify syntax errors, run-time errors, and logic errors.

10. Look up Visual Basic topics in Help.

2 V I S U A L B A S I C Introduction to Visual Basic .NET

Writing Windows Applications with Visual Basic

Using this text, you will learn to write computer programs that run in the
Microsoft Windows environment. Your projects will look and act like standard
Windows programs. You will use the tools in Visual Basic .NET (VB) and Win-
dows Forms to create windows with familiar elements such as labels, text
boxes, buttons, radio buttons, check boxes, list boxes, menus, and scroll bars.
Figure 1.1 shows some sample Windows user interfaces.

Beginning in Chapter 10, you will create programs using Web Forms. You
can run Web Forms applications in a browser, such as Internet Explorer, on the
Internet, or on a company intranet. Figure 1.2 shows a Web Form application.

F i g u r e 1 . 1

Graphical user interfaces for
application programs designed
with Visual Basic .NET and
Windows Forms.

Text boxes

Buttons

Check box

Labels

Labels

Group box

Picture box

Radio buttons

Group box

List box

Menu bar

Dropdown list

Button

C H A P T E R 1 3

The Windows Graphical User Interface

Microsoft Windows uses a graphical user interface, or GUI (pronounced
“gooey”). The Windows GUI defines how the various elements look and func-
tion. As a Visual Basic programmer, you have available a toolbox of these
elements. You will create new windows, called forms. Then you will use the
toolbox to add the various elements, called controls. The projects that you
will write follow a relatively new type of programming, called object-oriented
programming.

Programming Languages: Procedural, Event Driven, and
Object Oriented

There are literally hundreds of programming languages. Each was developed to
solve a particular type of problem. Most traditional languages, such as BASIC,
C, COBOL, FORTRAN, PL/I, and Pascal, are considered procedural lan-
guages. That is, the program specifies the exact sequence of all operations. Pro-
gram logic determines the next instruction to execute in response to conditions
and user requests.

The newer programming languages, such as C��, Visual Basic .NET, and
Java, use a different approach: object-oriented programming (OOP).
Earlier versions of Visual Basic had many (but not all) elements of an object-
oriented language. For that reason, Microsoft referred to Visual Basic 6.0 as an
event-driven programming language, rather than an object-oriented language.
But with the release of Visual Studio .NET, which includes Visual Basic .NET,
VB is finally a true object-oriented language.

In the OOP model, programs are no longer procedural: They do not follow
a sequential logic. You, as the programmer, do not take control and determine
the sequence of execution. Instead, the user can press keys and click various

F i g u r e 1 . 2

A Web Forms application
created with Visual Basic
.NET, running in a browser.

4 V I S U A L B A S I C Introduction to Visual Basic .NET

buttons and boxes in a window. Each user action can cause an event to occur,
which triggers a Basic procedure that you have written. For example, the user
clicks on a button labeled Calculate. The clicking causes the button’s Click
event to occur, and the program automatically jumps to a procedure you have
written to do the calculation.

The Object Model

In Visual Basic you will work with objects, which have properties, methods,
and events. Each object is based on a class.

Objects
Think of an object as a thing, or a noun. Examples of objects are forms and
controls. Forms are the windows and dialog boxes you place on the screen;
controls are the components you place inside a form, such as text boxes, but-
tons, and list boxes.

Properties
Properties tell something about an object, such as its name, color, size, loca-
tion, or how it will behave. You can think of properties as adjectives that de-
scribe objects.

When you refer to a property, you first name the object, add a period, and
then name the property. For example, refer to the Text property of a form called
Form1 as Form1.Text (pronounced “form1 dot text”).

Methods
Actions associated with objects are called methods. Methods are the verbs of
object-oriented programming. Some typical methods are Move, Hide, Show,
and Clear.

You refer to methods as Object.Method (“object dot method”). For exam-
ple, a Show method can apply to different objects. Form1.Show shows the form
object called Form1; btnExit.Show shows the button object called btnExit.

Events
You can write procedures that execute when a particular event occurs. An event
occurs when the user takes an action, such as clicking a button, pressing a key,
scrolling, or closing a window. Events can also be triggered by actions of other
objects, such as repainting a form or a timer reaching a preset point.

Classes
A class is a template or blueprint used to create a new object. Classes contain
the definition of all available properties, methods, and events.

Each time that you create a new object, it must be based on a class. For ex-
ample, you may decide to place three buttons on your form. Each button is based
on the Button class and is considered one object, called an instance of the class.
Each button (or instance) has its own set of properties, methods, and events. One
button may be labeled “OK,” one “Cancel,” and one “Exit.” When the user
clicks the OK button, that button’s Click event occurs; if the user clicks on the
Exit button, that button’s Click event occurs. And, of course, you have written
different program instructions for each of the button’s Click events.

C H A P T E R 1 5

An Analogy
If the concepts of classes, objects, properties, methods, and events are still a
little unclear, maybe an analogy will help. Consider an Automobile class.
When we say automobile, we are not referring to a particular auto, but we know
that an automobile has a make and model, a color, an engine, and a number of
doors. These elements are the properties of the Automobile class.

Each individual car is an object, or an instance of the Automobile class.
Each Automobile object has its own settings for the available properties. For
example, each object has a Color property, such as MyCar.Color � Blue and
YourCar.Color � Red.

The methods, or actions, of the Automobile class might be Start,
SpeedUp, SlowDown, and Stop. To refer to the methods of a specific object of
the class, use MyCar.Start and YourCar.Stop.

The events of an Automobile class could be Arrive or Crash. In a VB pro-
gram, you write procedures that specify the actions you want to take when a
particular event occurs for an object. For example, you might write a procedure
for the YourCar_Crash event. Note that you use an underscore between the ob-
ject name and event, rather than a period.

Note: Chapter 6 presents object-oriented programming in greater depth.

Microsoft’s Visual Studio .NET

The latest version of Microsoft’s Visual Studio, called Visual Studio .NET, in-
cludes Visual Basic, Visual C��, the new language, C# (“C sharp”), and the
.NET Framework. Visual Studio .NET, sometimes referred to as Version 7, is a
major revision of the previous version. In fact, Visual Basic was completely
rewritten from Version 6 to Version 7.

The .NET Framework
The programming languages in Visual Studio .NET run in the new .NET Frame-
work. The Framework provides for easier development of Web-based and
Windows-based applications, allows objects from different languages to operate
together, and standardizes how the languages refer to data and objects. Several
third-party vendors have announced versions of other languages to run in the
.NET Framework, including .NET versions of FORTRAN, COBOL, and Java.

The .NET languages all compile to (are translated to) a common machine
language, called Microsoft Intermediate Language (MSIL). The MSIL code,
called managed code, runs in the Common Language Runtime (CLR), which is
part of the .NET Framework.

Visual Basic .NET
Microsoft Visual Basic .NET comes with Visual Studio .NET. You also can pur-
chase a Standard Edition of VB .NET by itself (without the other languages but
with the .NET Framework). Visual Studio .NET is available in an Academic
Edition, a Professional Edition, an Enterprise Developer Edition, and
an Enterprise Architect Edition. Anyone planning to do professional appli-
cation development that includes the advanced features of database manage-
ment should use the Professional Edition or one of the Enterprise editions. You
can find a matrix showing the features of each edition in Help.

This text is based on Visual Basic .NET, the current version. You cannot
run the projects in this text in any earlier version of VB.

Writing Visual Basic Projects

When you write a Visual Basic application, you follow a three-step process for
planning the project and then repeat the process for creating the project.

The Three-Step Process

The three steps for planning a Visual Basic application involve setting up the
user interface, defining the properties, and then creating the code.

Planning
1. Design the user interface. When you plan the user interface, you draw

a sketch of the screens the user will see when running your project. On
your sketch, show the forms and all the controls that you plan to use. In-
dicate the names that you plan to give the form and each of the objects
on the form. Refer to Figure 1.1 for examples of user interfaces.

Before you proceed with any more steps, consult with your user
and make sure that you both agree on the look and feel of the project.

2. Plan the properties. For each object, write down the properties that you
plan to set or change during the design of the form.

3. Plan the Basic code. In this step you plan the procedures that will ex-
ecute when your project runs. You will determine which events require
action to be taken and then make a step-by-step plan for those actions.

Later, when you actually write the Visual Basic code, you must follow the
language syntax rules. But during the planning stage, you will write out the
actions using pseudocode, which is an English expression or comment that
describes the action. For example, you must plan for the event that occurs
when the user clicks on the Exit button. The pseudocode for the event could be
Terminate the project.

Programming
After you have completed the planning steps and have approval from your user,
you are ready to begin the actual construction of the project. Use the same
three-step process that you used for planning.

1. Define the user interface. When you define the user interface, you create
the forms and controls that you designed in the planning stage. Think of
this step as defining the objects you will use in your application.

2. Set the properties. When you set the properties of the objects, you give
each object a name and define such attributes as the contents of a label,
the size of the text, and the words that appear on top of a button and in the
form’s title bar. You might think of this step as describing each object.

3. Write the Basic code. You will use Basic programming statements (called
Basic code) to carry out the actions needed by your program. You will be
surprised and pleased by how few statements you need to create a pow-
erful Windows program. You can think of this third step as defining the
actions of your program.

6 V I S U A L B A S I C Introduction to Visual Basic .NET

C H A P T E R 1 7

Visual Basic Application Files

A Visual Basic application, called a solution, can consist of one or more
projects. Since all of the solutions in this text have only one project, you can
think of one solution � one project. Each project can contain one or more form
files. In Chapters 1 through 6, all projects have only one form, so you can think
of one project � one form. Starting in Chapter 7, your projects will contain
multiple forms and additional files. The HelloWorld application that you will
create later in this chapter creates these files:

HelloWorld.sln The solution file. A text file that holds infor-
mation about the solution and the projects it
contains. This is the primary file for the solution,
the one that you open to work on or run your
project.

HelloWorld.suo Solution user options file. Stores information
about the selected options, so that all custom-
izations can be restored each time you open the
solution.

frmHello.vb A .vb file. Holds the definition of a form, its
controls, and code procedures. This is a text file
that you can open in any editor. Warning: You
should not modify this file unless you are using
the editor in the Visual Studio environment.

frmHello.resx A resource file for the form. This text file defines
all resources used by the form, including strings
of text, numbers, and any graphics.

HelloWorld.vbproj A project file. A text file that describes the
project and lists the files that are included in the
project.

HelloWorld.vbproj.user The project user option file. This text file holds
project option settings, so that the next time you
open the project, all selected options will be
restored.

After you run your project, you will find several more files created by the
system. The only file that you will open directly is the .sln, or solution file.

• A Solution can contain multiple
projects (all ours have only one). A
Project can contain multiple forms
(ours have only one form in Chap-
ters 1–6). Forms, classes, and code
files have an extension of .vb.

The Visual Studio Environment

The Visual Studio environment is where you create and test your projects. A
development environment, such as Visual Studio, is called an integrated de-
velopment environment (IDE). The IDE consists of various tools, including
a form designer, which allows you to visually create a form; an editor, for enter-
ing and modifying program code; a compiler, for translating the Visual Basic
statements into the intermediate machine code; a debugger, to help locate and
correct program errors; an object browser, to view the available classes, objects,
properties, methods, and events; and a Help facility.

In earlier versions of Visual Studio, each language had its own IDE. For ex-
ample, to create a VB project you would use the VB IDE, and to create a C��
project you would use the C�� IDE. But in Visual Studio .NET, you use the
one IDE to create projects in any of the .NET languages.

The IDE Start Page

When you open the Visual Studio IDE, you see its Start Page (Figure 1.3). Re-
cent projects appear on the list, which enable you to open an existing project,
or you can select New Project to begin a new project.

8 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 3

The Visual Studio IDE Start Page.

• Terminology changes:

� VB IDE becomes the Visual Stu-
dio (VS) IDE.

� Project Explorer becomes the So-
lution Explorer.

� Document window has tabs to
display various contents:

■ Form window becomes the
Form Designer.

■ Code window becomes the Ed-
itor window or the VS editor.

■ Note that the tabbed display is
the default but can be turned
off in Tools / Options / General /
Tabbed Documents.

The New Project Dialog

You will create your first Visual Basic projects based on Windows Forms. In the
New Project dialog (Figure 1.4) select Visual Basic Projects in the Pro-
ject Types box and Windows Application in the Templates box. You also
give the project a name and a path on this dialog box.

C H A P T E R 1 9

F i g u r e 1 . 4

Begin a new VB .NET project
using Windows Forms.

• The IDE automatically creates a
new folder for each project. Do not
create your own, or you will have a
folder within a folder.

The IDE Main Window

Figure 1.5 shows the Visual Studio environment’s main window and its various
child windows. Note that each window can be moved, resized, opened, closed,
and customized. Some windows have tabs that allow you to display different
contents. Your screen may not look exactly like Figure 1.5; in all likelihood you
will want to customize the placement of the various windows.

The IDE main window holds the Visual Studio menu bar and the toolbars.

The Toolbars

You can use the buttons on the toolbars as shortcuts for frequently used oper-
ations. Each button represents a command that can also be selected from a
menu. Figure 1.6a shows the toolbar buttons on the Standard toolbar, which
displays in the main window of the IDE; Figure 1.6b shows the Layout toolbar,
which displays in the Form Designer; and Figure 1.6c shows the Text Editor
toolbar, which appears when the Editor window is displayed.

10 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 5

The Visual Studio environment. Each window can be moved, resized, closed, or customized.

C
H

A
P

T
E

R

1
11

F
i

g
u

r
e

1

.
6

The Visual Studio toolbars contain buttons that are shortcuts for m
enu com

m
ands. You can display or hide each of the

toolbars: a.the Standard toolbar; b.the Layout toolbar; and c.the Text E
ditor toolbar.

New Project

Add New Item

Open File

Save File

Save All

Cut

Copy

Paste

Undo

Redo

Navigate Backward

Navigate Forward

Solution Configurations

Start

Find in Files

Text to Find

Solution Explorer

Properties window

Toolbox

Class View (Drop down for other windows)

Add or Remove Buttons

Align to Grid

Align Lefts
Align Centers
Align Rights

Bring to Front
Send to Back

Add or Remove Buttons

Center Horizontally
Center Vertically

Align Tops
Align Middles
Align Bottoms

Make Same Width
Size to Grid

Make Same Height
Make Same Size

Make Horizontal Spacing Equal
Increase Horizontal Spacing

Decrease Horizontal Spacing
Remove Horizontal Spacing

Make Vertical Spacing Equal
Increase Vertical Spacing

Decrease Vertical Spacing
Remove Vertical Spacing

Display Object Member List
Display Parameter Info

Display Quick Info
Display Word Completion

Decrease Indent
Increase Indent

Comment Block
Uncomment Block

Toggle Bookmark
Move to Next Bookmark

Move to Previous Bookmark
Clear All Bookmarks

Add or Remove Buttons

12 V I S U A L B A S I C Introduction to Visual Basic .NET

The Document Window

The largest window in the center of the screen is the Document window. No-
tice the tabs across the top of the window, which allow you to switch between
open documents. The items that display in the Document window include the
Form Designer, the Code Editor, the Object Browser, and the pages of Help that
you request.

You can switch from one tab to another, or close any of the documents us-
ing its Close button.

The Form Designer

The Form Designer is where you design a form that makes up your user in-
terface. In Figure 1.5, the Form Designer for Form1 is currently displaying.
You can drag the form’s borders to change the size of the form.

When you begin a new Visual Basic Windows project, a new form is added
to the project with the default name Form1. When you save the file, you should
give it a new name.

The Solution Explorer Window

The Solution Explorer window holds the filenames for the files included in
your project and a list of the classes it references. The window’s title bar holds
the name of your solution (.sln) file, which is WindowsApplication1 by default
until you save it with a new name.

The Properties Window

You use the Properties window to set the properties for the objects in your
project. See “Set Properties” later in this chapter for instructions on changing
properties.

The Toolbox

The toolbox holds the tools you use to place controls on a form. You may have
more or different tools in your toolbox, depending on the edition of Visual Basic
you are using (Professional or Enterprise). Figure 1.7 shows the toolbox.

• The toolbox autohides by default.
Click the push-pin icon to pin it
open.

TIP
Use Ctrl � Tab to cycle through the
open documents in the Documents
window. ■

C H A P T E R 1 13

Help

Visual Studio has an extensive Help feature that is greatly expanded for .NET.
Help includes the Microsoft Developer Network library (MSDN), which con-
tains reference materials for Visual Basic, C��, C#, and Visual Studio; several
books; technical articles; and the Microsoft Knowledge Base, a database of fre-
quently asked questions and their answers.

Help includes the entire reference manual, as well as many coding exam-
ples. See the topic “Visual Studio Help” later in this chapter for help on Help.

When you select Contents, Index, or Search from the Help menu, the
requested item appears as another tabbed window on top of the Solution Ex-
plorer window. It’s a good idea to set the Filtered By entry to Visual Basic
and Related. Once you select a topic, the corresponding Help page appears
in the main Document window.

F i g u r e 1 . 7

The toolbox for Visual Studio
Windows Forms. Your toolbox
may have more or fewer tools,
depending on the edition you
are using.

Tools for Windows Forms

Scroll to see more controls

14 V I S U A L B A S I C Introduction to Visual Basic .NET

In Figure 1.8, notice the tabs across the bottom of the Solution Explorer
window and on the top of the Document window. The window for the Solution
Explorer now shows the Help Index and the tabs allow you to switch between
the Help Index, Help Contents, the Class View, and the Solution Explorer.
Use the tabs on the Document window to switch back to the Form Designer
(Form1.vb [Design]*), the Code Editor (Form1.vb*), or the Help topic
(Introduction t...s Label Control).

Design Time, Run Time, and Break Time

Visual Basic has three distinct modes. While you are designing the user inter-
face and writing code, you are in design time. When you are testing and run-
ning your project, you are in run time. If you get a run-time error or pause
project execution, you are in break time. The window title bar in Figure 1.5
indicates that the project is currently in design time.

Writing Your First Visual Basic Project

For your first VB project, you will create a form with three controls (see Figure
1.9). This simple project will display the message “Hello World” in a label
when the user clicks the Push Me button and will terminate when the user
clicks the Exit button.

F i g u r e 1 . 8

The Help Index displays on a tab in the Solution Explorer window and the Help text appears on a tab in the Document
window.

Form Designer Code EditorHelp Topic

Search
Index

Contents
Class View

Solution Explorer

Set Up Your Workspace

Before you can begin a project, you must run the Visual Studio IDE. You also
may need to customize your workspace.

Run Visual Studio
These instructions assume that Visual Studio .NET is installed in the default
location. If you are running in a classroom or lab, the program may be installed
in an alternate location, such as directly on the desktop.

STEP 1: Click on the Windows Start button and move the mouse pointer to
Programs.

STEP 2: Locate Microsoft Visual Studio .NET.
STEP 3: In the submenu that pops up, select Microsoft Visual Studio

.NET.
Visual Studio will start and display the Start Page (refer to Figure 1.3).
Note: The VS IDE can be customized to not show the Start Page.

Start a New Project
STEP 1: Click on the New Project button. The New Project dialog box opens.

(Refer to Figure 1.4.) Make sure that Visual Basic Projects is se-
lected for Project Types and Windows Application is selected for
Templates.

STEP 2: For Location, browse to select the path for your new project. Note: In
this exercise we will use a diskette in the A: drive. You may use a path
on the hard drive or network, if you prefer.

Do not create a new folder for your project; the VS IDE automati-
cally creates a new folder for each new solution. If you create a folder
yourself, you will have a folder within a folder.

C H A P T E R 1 15

F i g u r e 1 . 9

The Hello World form. The
“Hello World” message will
appear in the label when the
user clicks on the Push Me
button.

STEP 3: Enter “HelloWorld” (without the quotes) for the name of the new pro-
ject (Figure 1.10) and click on the OK button. The new project opens
(Figure 1.11). Note: Your screen may look significantly different from
the figure since the environment can be customized.

16 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 1 1

Begin a new project.

F i g u r e 1 . 1 0

Select the path and enter the
name for the new project.

C H A P T E R 1 17

Set Up Your Environment
In this section you will customize the environment. For more information on
customizing windows, floating and docking windows, and altering the location
and contents of the various windows, see Appendix C.

STEP 1: Reset the IDE’s default layout by choosing Tools / Options /
Environment / General / Reset Window Layout; click OK on
both dialogs.

The Server Explorer and toolbox are both set to AutoHide in the
same location. You don’t need the Server Explorer, but you do need the
toolbox.

STEP 2: Point to the icon for the Server Explorer at the top of the hidden win-
dow’s title bar (Figure 1.12). The Server Explorer will open.

F i g u r e 1 . 1 2

The title bar of the hidden
window for the Server Explorer
and the toolbox. Point to the
correct icon to display the
desired window.

Server Explorer Icon

Toolbox Icon

18 V I S U A L B A S I C Introduction to Visual Basic .NET

STEP 3: Point to the icon for the toolbox at the bottom of the window’s title bar.
The Toolbox window opens. Notice the push-pin icon at the top of the
window (Figure 1.13); clicking this icon makes the window remain on
the screen rather than AutoHide.

STEP 4: Click the AutoHide push-pin icon for the Toolbox window. The toolbox
will remain open and tabs appear at the bottom of the window for the
toolbox and the Server Explorer.

STEP 5: Click on the tab for the Server Explorer to make its window appear. Then
click on the window’s Close button to permanently close the window.

Note: You can reopen the Server Explorer from the View menu, if
you wish.

STEP 6: In the lower-right corner of the screen, click on the tab for Dynamic
Help to bring its tabbed window to the top (Figure 1.14). Then click
the window’s Close button to close the Dynamic Help window. Later
you can experiment with Dynamic Help turned on, but the feature
slows the environment significantly.

F i g u r e 1 . 1 3

The Toolbox window.Push-pin icon

Server Explorer icon

Toolbox icon

• The AutoHide behavior of the tool-
box can be confusing. Use the
push-pin icon at the top of the tool-
box to fix it on the screen.

C H A P T E R 1 19

Plan the Project

The first step in planning is to design the user interface. Figure 1.15 shows a
sketch of the form that includes a label and two buttons. You will refer to the
sketch as you create the project.

The next two steps, planning the properties and the code, have already
been done for this first sample project. You will be given the values in the steps
that follow.

F i g u r e 1 . 1 4

Click on the Close button to
close the Dynamic Help
window.

Click to close

F i g u r e 1 . 1 5

A sketch of the Hello World
form for planning.

Push Me

Exit

lblMessage

btnPush

btnExit

• The PrintForm method is no longer
supported.

Define the User Interface

Set Up the Form
Notice that the new form in the Document window has all the standard Win-
dows features, such as a title bar, maximize and minimize buttons, and a close
button. The grid of dots on the form is there to help you align the controls; the
grid does not appear when you run the program.

STEP 1: Resize the form in the Document window: Drag the handle in the
lower-right corner down and to the right (see Figure 1.16).

20 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 1 6

Make the form larger by dragging its lower-right handle diagonally. The handles disappear as you drag the corner
of the form.

Drag handle to enlarge form

C H A P T E R 1 21

Place Controls on the Form
You are going to place three controls on the form’s design: a Label and two
Buttons.
STEP 1: Point to the Label tool in the toolbox and click. Then move the pointer

over the form. Notice that the pointer becomes a crosshair with a big A,
and the Label tool looks as if it has been pressed, indicating it is the
active tool (Figure 1.17).

F i g u r e 1 . 1 7

When you click on the Label tool in the toolbox, the tool’s button is activated and the mouse pointer becomes a crosshair.

Label tool
is activated

Crosshair pointer

STEP 2: Point to a spot where you want one corner of the label, press the mouse
button, and drag the pointer to the opposite corner (Figure 1.18). When
you release the mouse button, the label and its default contents
(Label1) will appear (Figure 1.19).

The label has eight small square handles, indicating that the con-
trol is currently selected. While a control is selected, you can delete it,
resize it, or move it. Refer to Table 1.1 for instructions for selecting,
deleting, resizing, and moving controls. Click outside of a control to
deselect it.

22 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 1 8

Drag the mouse pointer
diagonally to draw the label
on the form.

F i g u r e 1 . 1 9

The newly created label has
eight small handles,
indicating that it is selected.
Notice that the contents of the
label are set to Label1 by
default.

C H A P T E R 1 23

STEP 3: Draw a button on the form: Click on the Button tool in the toolbox,
position the crosshair pointer for one corner of the button, and drag to
the diagonally opposite corner (Figure 1.20). The new button should
have selection handles.

Selecting, Deleting, Resizing, and Moving Controls on a Form T a b l e 1 . 1

Select a control Click on the control.

Delete a control Select the control and then press the Delete key on the keyboard.

Move a control Select the control, point inside the control (not on a handle), press
the mouse button, and drag it to a new location.

Resize a control Make sure the control is selected; then point to one of the handles,
press the mouse button, and drag the handle. Drag a side handle to
change the width, a bottom or top handle to change the height, or a
corner handle to resize in two directions.

F i g u r e 1 . 2 0

Select the Button tool and
drag diagonally to create a
new Button control.

24 V I S U A L B A S I C Introduction to Visual Basic .NET

STEP 4: Create another button using this alternative method: Point to the But-
ton tool in the toolbox and double-click. A new button of the default
size will appear on top of the last-drawn control (Figure 1.21).

STEP 5: Keep the new button selected, point anywhere inside the button (not on
a handle), and drag the button below your first button (Figure 1.22). As
you drag the control, you see only its outline; when you release the
mouse button, the control is actually moved to its new location.

STEP 6: Select each control and move and resize the controls as necessary.
Make the two buttons the same size and line them up.

F i g u r e 1 . 2 1

Place a new button on the form
by double-clicking the Button
tool in the toolbox. The new
button appears on top of the
previously selected control.

• Double-clicking a toolbox tool
places the new default-sized con-
trol on top of the last-drawn control
rather than in the center of the
form. If no control is selected, the
new control appears at the top-left
of the form.

TIP
If no control is selected when you
double-click a tool, the new control
is added to the upper-left corner of
the form. ■

F i g u r e 1 . 2 2

Drag the new button (Button2)
below Button1. An outline of
the control shows the new
location for the control.

STEP 7: Point to one of the controls and click the right mouse button to display
a context menu. On the context menu, select Lock Controls (Fig-
ure 1.23). Locking prevents you from accidentally moving the controls.
When your controls are locked, a selected control has no handles.

Note: You can unlock the controls at any time if you wish to redesign
the form. Just click again on Lock Controls on the context menu to
deselect it.

At this point you have designed the user interface and are ready to set the
properties.

C H A P T E R 1 25

F i g u r e 1 . 2 3

After the controls are placed
into the desired location, lock
them in place by selecting
Lock Controls from the
context menu.

26 V I S U A L B A S I C Introduction to Visual Basic .NET

Set Properties

Set the Name and Text Properties for the Label

STEP 1: Click on the label you placed on the form; a shaded outline appears
around the control. Next click on the title bar of the Properties window
to make it the active window (Figure 1.24).

Notice that the Object box at the top of the Properties window is
showing Label1 (the name of the object) and System.Windows.
Forms.Label as the class of the object. The actual class is Label;
System.Windows.Forms is called the namespace, or the hierarchy
used to locate the class.

F i g u r e 1 . 2 4

The currently selected control is shown in the Properties window.

Properties window

Namespace and class
of selected object

Object box

Settings box

Name of selected object

C H A P T E R 1 27

STEP 2: Select the Name property. You may have to scroll up; Name is located
near the top of the list. Click on (Name) and notice that the Settings box
shows Label1, the default name of the label (Figure 1.25).

STEP 3: Type “lblMessage” (without the quotation marks). See Figure 1.26.
After you change the name of the control, you can see the new name in
the Object box’s drop-down list.

F i g u r e 1 . 2 5

The Properties window. Click
on the Name property to
change the value in the
Settings box.

Settings box

TIP
If the Properties window is not visi-
ble, you can press the F4 key to
show it. ■

F i g u r e 1 . 2 6

Type “lblMessage” into the
Settings box for the Name
property.

The new name appears
in the Settings box

STEP 4: Click on the Text property to select it. Scroll the list if necessary. Fol-
lowing the Name property, all properties are in alphabetic order.

The Text property of a control determines what will be displayed
on the form. Because nothing should display when the program begins,
you must delete the value of the Text property (as described in the next
two steps).

STEP 5: Double-click on Label1 in the Settings box; the entry should appear
selected (highlighted). See Figure 1.27.

STEP 6: Press the Delete key to delete the value of the Text property. Then
press Enter and notice that the label on the form now appears empty
(Figure 1.28). Changes do not appear until you press Enter or move to
another property or control.

As an alternate technique, you can double-click on the property
name, which automatically selects the entry in the Settings box. Then
you can press the Delete key or just begin typing to change the entry.

28 V I S U A L B A S I C Introduction to Visual Basic .NET

• The Caption property of a form,
label, and button changes to the
Text property.

F i g u r e 1 . 2 7

Double-click in the Settings
box to select the entry.

Value of Settings
box is selected

TIP
Don’t confuse the Name property
with the Text property. You use the
Name property to refer to the con-
trol in your Basic code. The Text
property tells what the user will see
on the form. Visual Basic sets both
of these properties to the same
value by default, and it is easy to
confuse them. ■

Set the Name and Text Properties for the First Button

STEP 1: Click on the first button (Button1) to select it and then look at the
Properties window. The Object box should show the name (Button1)
and class (System.Windows.Forms.Button) of the button. See Fig-
ure 1.29.

C H A P T E R 1 29

F i g u r e 1 . 2 8

Delete the value for the Text property from the Settings box; the label on the form also appears empty.

Label is empty

Text deleted from
 the Settings box

F i g u r e 1 . 2 9

Change the Text property for
the first button.

Object box

Enter a new
Text property

30 V I S U A L B A S I C Introduction to Visual Basic .NET

Problem? If you should double-click and code appears in the Doc-
ument window, simply click on the Form1.vb [Design] tab at the top
of the window.

STEP 2: Change the Name property of the button to “btnPush” (without the
quotation marks).

Although the project would work fine without this step, we prefer to
give this button a meaningful name, rather than use Button1, its de-
fault name. The guidelines for naming controls appear later in this
chapter in the section “Naming Rules and Conventions for Objects.”

STEP 3: Change the Text property to “Push Me” (without the quotation marks).
This step changes the words that appear on top of the button.

Set the Name and Text Properties for the Second Button

STEP 1: Select Button2 and change its Name property to “btnExit”.
STEP 2: Change the Text property to “Exit”.

Change Properties of the Form

STEP 1: Click anywhere on the form, except on a control. The Properties win-
dow Object box should now show the form as the selected object
(Form1 as the object’s name and System.Windows.Forms.Form as its
class).

STEP 2: Change the Text property to “Hello World by Your Name” (again, no
quotation marks).

The Text property of a form determines the text to appear in the title
bar. Your screen should now look like Figure 1.30.

F i g u r e 1 . 3 0

Change the form’s Text
property to set the text that
appears in the form’s title bar.

The form’s Text property appears in the title bar

TIP
Always set the Name property of
controls before writing code. ■

C H A P T E R 1 31

STEP 3: Click on the StartPosition property and notice the arrow on the prop-
erty setting, indicating a drop-down list. Drop down the list and select
CenterScreen. This will make your form appear in the center of the
screen when the program runs.

STEP 4: Change the form’s Name property to “frmHello”. This step changes the
name of the form’s class, but not the name of the form’s file, which is
still Form1.

STEP 5: In the Solution Explorer, right-click on Form1.vb and choose Rename
from the shortcut menu. Change the file name to “frmHello.vb”, mak-
ing sure to retain the .vb extension. Press Enter when finished. Now
the form’s class and its file should both be renamed (Figure 1.31).

Set the Project’s Startup Object
Whenever you change the name of the form, you must take one more step so
that VB knows which form to run when the project begins. Each project has a
Startup Object—the object with which to begin execution. By default, the
Startup Object is Form1. If you change the name of the form, you must set the
project’s Startup Object property to the new name of the form.

F i g u r e 1 . 3 1

Change the name of the form
class and the name of the
form’s file.

File name

Name of the form class

• The IDE does not have a Form Lay-
out window. Use the StartPosition
property of the form.

• Changing the name of the form does
not change the name of the form’s
file. Rename the file using the So-
lution Explorer to keep the project
pointing to the correct filename.

• When you change the name of the
startup form, VB does not automat-
ically change the project’s Startup
Object. You must open the Project
Properties dialog box and change it
manually.

32 V I S U A L B A S I C Introduction to Visual Basic .NET

STEP 1: In the Solution Explorer, click on HelloWorld to select the project.
Then you can either select Project / Properties or right-click on
the project name in the Solution Explorer and select Properties from
the shortcut menu. In the Project Properties dialog box, drop down
the list for Startup object and select frmHello (Figure 1.32).

If you ever receive an error message when you attempt to run a proj-
ect telling you that it can’t find Form1, you know that you have forgot-
ten this step.

Write Code

Visual Basic Events
While your project is running, the user can do many things, such as move the
mouse around; click on either button; move, resize, or close your form’s window;
or jump to another application. Each action by the user causes an event to occur
in your Visual Basic project. Some events (like clicking on a button) you care
about, and some events (like moving the mouse and resizing the window) you do
not care about. If you write Basic code for a particular event, then Visual Basic
will respond to the event and automatically execute your procedure. VB ignores
events for which no procedures are written.

Visual Basic Event Procedures
You write code in Visual Basic in procedures. For now, each of your proce-
dures will be a sub procedure, which begins with the words Private Sub
and ends with End Sub. (Later you will also learn about other types of proce-
dures.) Note that many programmers refer to sub procedures as subprograms or

F i g u r e 1 . 3 2

In the project’s Property
Pages dialog box, drop down
the list for Startup object
and select the name of your
form.

C H A P T E R 1 33

subroutines. Subprogram is acceptable; subroutine is not, because Basic actu-
ally has a different statement for a subroutine, which is not the same as a sub
procedure.

Visual Basic automatically names your event procedures. The name
consists of the object name, an underscore (_), and the name of the event. For
example, the Click event for your button called btnPush will be btnPush_Click.
For the sample project you are writing, you will have a btnPush_Click proce-
dure and a btnExit_Click procedure.

Visual Basic Code Statements

This first project requires two Visual Basic statements: the remark and the as-
signment statement. You will also execute a method of an object.

The Remark Statement
Remark statements, sometimes called comments, are used for project docu-
mentation only. They are not considered “executable” and have no effect when
the project runs. The purpose of remarks is to make the project more readable
and understandable by the people who read it.

Good programming practices dictate that programmers include remarks to
clarify their projects. Every sub procedure should begin with a remark that de-
scribes the purpose of the sub. Every project should have remarks that explain
the purpose of the program and provide identifying information such as the
name of the programmer and the date the program was written and/or modified.
In addition, it is a good idea to place remarks within the logic of a project, es-
pecially if the purpose of any statements might be unclear. When you try to
read someone else’s code, or your own after a period of time, you will appreci-
ate the generous use of remarks.

Visual Basic remarks begin with an apostrophe. Most of the time your re-
marks will be on a separate line that starts with an apostrophe. You can also
add an apostrophe and a remark to the right end of a line of code.

The Remark Statement—Examples

The Assignment Statement
The assignment statement assigns a value to a property or variable (you learn
about variables in Chapter 3). Assignment statements operate from right to left;
that is, the value appearing on the right side of the equal sign is assigned to the
property named on the left of the equal sign. It is often helpful to read the equal
sign as “is replaced by.” For example, the assignment statement in the exam-
ple would read “lblMessage.Text is replaced by Hello World.”

'This project was written by Jonathon Edwards
'Exit the project
lblMessage.Text = ''Hello World'' 'Assign the message to the Text property

E
xam

ples

34 V I S U A L B A S I C Introduction to Visual Basic .NET

The Assignment Statement—General Form

The value named on the right side of the equal sign is assigned to (or placed
into) the property named on the left.

The Assignment Statement—Examples

Notice that when the value to assign is some actual text (called a literal), it is
enclosed in quotation marks. This convention allows you to type any combina-
tion of alpha and numeric characters. If the value is numeric, do not enclose it
in quotation marks. And do not place quotation marks around the terms True
and False, which Visual Basic recognizes as special key terms.

Ending a Program by Executing a Method
To execute a method of an object, you write:

Object.Method()

Notice that methods always have parentheses. Although this might seem like a
bother, it’s helpful to distinguish between properties and methods: Methods al-
ways have parentheses; properties don’t.

Examples

btnHello.Hide()
lblMessage.Show()

To execute a method of the current object (the form itself), you use the Me key-
word for the object. And the method that terminates execution is the Close.

Me.Close()

In most cases, you will include Me.Close() in the sub procedure for an Exit
button or an Exit menu choice.

Code the Event Procedures for Hello World

Code the Click Event for the Push Me Button
STEP 1: Double-click on the Push Me button. The Visual Studio editor opens

with the first and last lines of your sub procedure already in place, with
the insertion point indented inside the sub procedure (Figure 1.33).
For now, you can ignore the extra lines of code that appear above your
sub procedure.

Object.Property = value
General
Form

lblTitle.Text = ''A Snazzy Program''
lblAddress.Text = ''1234 South North Street''
lblMessage.AutoSize = True
intNumber = 12

E
xam

ples

• All method names require
parentheses.

• All references to the Code window
are changed to the Editor window
or just editor.

C H A P T E R 1 35

STEP 2: Type this remark statement:

'Display the Hello World message

Notice that the editor automatically displays remarks in green (un-
less you or someone else has changed the color with the Environment
option).

Follow good coding conventions and indent all lines between
Private Sub and End Sub. The smart editor attempts to help you fol-
low this convention. Also, always leave a blank line after the remarks
at the top of a sub procedure.

STEP 3: Press Enter twice and then type this assignment statement:

lblMessage.Text = ''Hello World''

Note: When you type the period after lblMessage, an IntelliSense
list pops up showing the properties and methods available for a Label
control. Although you can type the entire word Text, you can allow In-
telliSense to help you. As soon as you type the T, the list automatically
scrolls to the first word that begins with T. Type the next letter, e, and
the property Text appears highlighted. You can press the spacebar to
select the word and continue typing the rest of the statement.

F i g u r e 1 . 3 3

The Editor window, showing
the first and last lines of the
btnPush_Click sub procedure.

The Class list The Method list

TIP
Allow the editor and IntelliSense to
help you. If the IntelliSense list does
not pop up, you likely misspelled the
name of the control. Don’t worry
about capitalization when you type
the name of an object; if the name
matches a defined object, the editor
fixes the capitalization. ■

36 V I S U A L B A S I C Introduction to Visual Basic .NET

This assignment statement assigns the literal “Hello World” to the
Text property of the control called lblMessage. Compare your screen to
Figure 1.34.

STEP 4: Return to the form (Figure 1.30) by clicking on the frmHello.vb
[Design] tab on the Document window (Figure 1.34).

Code the Click Event for the Exit Button

STEP 1: Double-click on the Exit button to open the editor for the
btnExit_Click event.

STEP 2: Type this remark:

'Exit the project

STEP 3: Press Enter twice and type this Basic statement:

Me.Close()

F i g u r e 1 . 3 4

Type the remark and
assignment statement for the
btnPush_Click event sub
procedure.

Form Designer tab Editor tab

Remark statement

Assignment statement

TIP
Accept an entry from the Intelli-
Sense pop-up list by typing the punc-
tuation that follows the entry or by
pressing the Enter key. You can also
scroll the list and select the entry
with your mouse. ■

STEP 4: Make sure your code looks like the code shown in Figure 1.35.

Run the Project

After you have finished writing the code, you are ready to run the project. Use
one of these three methods:

1. Open the Debug menu and choose Start.
2. Press the Start button on the toolbar.
3. Press F5, the shortcut key for the Start command.

Start the Project Running

STEP 1: Choose one of the three methods previously listed to start your project
running.

Problems? See “Finding and Fixing Errors” later in this chapter.
You must correct any errors and restart the program.

C H A P T E R 1 37

F i g u r e 1 . 3 5

Type the code for the
btnExit_Click event procedure.

TIP
If your form disappears during run
time, click its button on the task bar. ■

38 V I S U A L B A S I C Introduction to Visual Basic .NET

If all went well, the Visual Studio title bar now indicates that you
are in run time, and the grid dots have disappeared from your form
(Figure 1.36). (The grid dots help you align the controls; you may turn
them off if you prefer.)

Click the Push Me Button

STEP 1: Click the Push Me button. Your “Hello World” message appears in the
label (Figure 1.37).

Click the Exit Button

STEP 1: Click the Exit button. Your project terminates, and you return to design
time.

F i g u r e 1 . 3 6

When you run the project, the
form’s grid dots disappear.

F i g u r e 1 . 3 7

Click on the Push Me button
and “Hello World” appears in
the label.

C H A P T E R 1 39

Save Your Work

Of course, you must always save your work often. Except for a very small proj-
ect like this one, you will usually save your work as you go along.

Save the Files

STEP 1: Open the Visual Studio File menu and choose Save All. This option
saves the current form, project, and solution files. You already selected
the path for the files when you first created the project.

Close the Project

STEP 1: Open the File menu and choose Close. If you haven’t saved since
your last change, you will be prompted to save.

After your project closes, you should again see the Visual Studio Start Page.
This time you may see your project on the list.
Note: If the Start Page does not appear, display it with Help/Show Start Page.

Open the Project

Now is the time to test your save operation by opening the project from disk.
You can choose one of three ways to open a saved project:

• If your project appears on the Start Page, you can open it by clicking on its
name.

• Click on the Open Project button on the Start Page and browse to find your
.sln file.

• Select Open Solution from the Visual Studio File menu and browse to
find your .sln file.

Open the Project File

STEP 1: Open your project by choosing one of the previously listed methods.
Remember that the file to open is the .sln file.

40 V I S U A L B A S I C Introduction to Visual Basic .NET

STEP 2: If you do not see your form on the screen, check the Solution Explorer
window—it should say HelloWorld for both the solution and the
project. Select the icon for your form: frmHello.vb. You can double-
click the icon or single-click and click on the View Designer button at
the top of the Solution Explorer (Figure 1.38); your form will appear in
the Form Designer. Notice that you can also click on the View Code
button to display your form’s code in the Editor window.

Modify the Project

Now it’s time to make some changes to the project. We’ll change the size of the
“Hello World” message, display the message in two different languages, and
display the programmer name (that’s you) on the form.

Change the Size and Alignment of the Message

STEP 1: Right-click one of the form’s controls to display the context menu. If
your controls are currently locked, select Lock Controls to unlock
the controls so that you can make changes.

STEP 2: Click on the label on your form, which will make selection handles ap-
pear. (If you see a dark border instead of selection handles, you must
unlock the controls, as described in Step 1.)

STEP 3: Widen the label on both ends by dragging the handles wider. (Drag the
right end farther right and the left end farther left.)

• Locked controls now have a dark
border instead of selection handles.
If no control is selected, the form
has the dark border that indicates
the controls are locked.

F i g u r e 1 . 3 8

To display the form layout,
select the form name and click
on the View Designer button,
or double-click on the form
name. Click on the View Code
button to display the code in
the editor.

Select form

View Code button

View Designer button

C H A P T E R 1 41

STEP 4: With the label still selected, scroll to the Font property. The Font prop-
erty is actually a Font object that has a number of properties. To see the
Font properties, click on the small plus sign on the left (Figure 1.39); the
Font properties will appear showing the current values (Figure 1.40).

You can change any of the Font properties in the Properties window,
such as setting the Font’s Size, Bold, or Italic properties. You can also
display the Font dialog box and make changes there.

To display the Font dialog box, click on the button with an ellipsis
on top, which appears in the Settings box. The button is called the
Properties button (sometimes the Builder button); the ellipsis indicates
that clicking on the button will display a dialog box with choices.

• The Font property changes to show
the individual properties o the Font
object.

F i g u r e 1 . 3 9

Click on the Font’s plus sign to
view the properties of the Font
object.

Click to expand
the Font list

F i g u r e 1 . 4 0

You can change the individual
properties of the Font object.

Font properties

Properties button

Settings box

STEP 5: Click on the Properties button to display the Font dialog box (Figure
1.41). Select 12 point if it is available. (If it isn’t available, choose an-
other number larger than the current setting.) Click OK to close the
Font dialog box.

STEP 6: Select the TextAlign property. The Properties button that appears with
the down-pointing arrow indicates a drop-down list of choices. Drop
down the list (Figure 1.42) and choose the center box; the alignment
property changes to MiddleCenter.

42 V I S U A L B A S I C Introduction to Visual Basic .NET

• The Alignment property becomes
TextAlign.

F i g u r e 1 . 4 1

Choose 12 point from the
Font dialog box.

Select 12 point

F i g u r e 1 . 4 2

Select the center box for the
TextAlign property.

Add a New Label for Your Name

STEP 1: Click on the Label tool in the toolbox and create a new label along
the bottom edge of your form (Figure 1.43). (You can resize the form if
necessary.)

STEP 2: Change the label’s Text property to “by Your Name”. (Use your name
and omit the quotation marks.) Note: You do not need to name this
label because it will never be referred to in the code.

Change the Location and Text of the Push Me Button
Because we plan to display the message in one of two languages, we’ll change
the text on the Push Me button to “English” and move the button to allow for a
second button.

STEP 1: Select the Push Me button and change its Text property to English.

C H A P T E R 1 43

F i g u r e 1 . 4 3

Add a new label for your name
at the bottom of the form.

Enter your name
in a label

STEP 2: Move the English button to the left to make room for a Spanish button
(see Figure 1.44).

Add a Spanish Button

STEP 1: Add a new button. Move and resize it as necessary, referring to Fig-
ure 1.44.

STEP 2: Change the Name property of the new button to btnSpanish.
STEP 3: Change the Text property of the new button to Spanish.

Add an Event Procedure for the Spanish Button

STEP 1: Double-click on the Spanish button to open the editor for
btnSpanish _Click.

STEP 2: Add a remark:

'Display the Hello World message in Spanish

STEP 3: Press Enter twice and type the following Basic code line:

lblMessage.Text = ''Hola Mundo''

STEP 4: Return to design view.

Lock the Controls

STEP 1: When you are satisfied with the placement of the controls on the form,
display the context menu and select Lock Controls again.

Save and Run the Project

STEP 1: Save your project again. You can use the File/Save All menu com-
mand or the Save All toolbar button.

44 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 4 4

Move the English button to the
left and add a Spanish button.

C H A P T E R 1 45

STEP 2: Run your project again. Try clicking on the English button and the
Spanish button.

Problems? See “Finding and Fixing Errors” later in this chapter.
STEP 3: Click the Exit button to end program execution.

Add Remarks
Good documentation guidelines require some more remarks in the project. Al-
ways begin each procedure with remarks that tell the purpose of the procedure.
In addition, each project file needs identifying remarks at the top.

The Declarations section at the top of the file is a good location for these
remarks.

STEP 1: Display the code in the editor and click in front of the first line
(Public Class frmHello). Make sure that you have an insertion
point; if the entire first line is selected, press the left arrow to set the
insertion point.

Press Enter to create a blank line.
Warning: If you accidentally deleted the first line, click Undo (or

press Ctrl � Z) and try again.
STEP 2: Move the insertion point up to the blank line and type the following re-

marks, one per line (Figure 1.45):

'Project: Hello World
'Programmer: Your Name (Use your own name here.)
'Date: (Fill in today’s date.)
'Description: This project will display a ''Hello World''
' message in two different languages.

Explore the Editor Window
STEP 1: Notice the two drop-down list boxes at the top of the Editor window,

called the Class list and the Method list. You can use these lists to
move to any procedure in your code.

F i g u r e 1 . 4 5

Enter remarks in the
Declarations section of the
form file.

• References to General Declarations
section are changed to Declarations
section.

• The two list boxes at the top of the
Editor window are called the Class
list and the Method list. They work
a little differently from the old lists.
You must select from both lists to
jump to a procedure. And to find
the Form_Load procedures, select
(Base Class Events) from the
Class list and Load from the
Method list.

46 V I S U A L B A S I C Introduction to Visual Basic .NET

STEP 2: Click on the left down-pointing arrow to view the Class list. Notice that
every object in your form is listed there (Figure 1.46). At the top of the
list, you see the name of your form and project: frmHello.

STEP 3: Click on frmHello to select it. Then notice the Method list on the
right, which says (Declarations). Clicking on (Declarations) is the
quick way to jump to the Declarations section of a module.

STEP 4: Drop down the Class list (the left list) and select btnSpanish.
STEP 5: Drop down the Method list (the right list); it shows all possible events

for a Button control. Notice that the Click event is bold and the rest are
not. Any event for which you have written an event procedure appears
in bold.

STEP 6: Select the Click event from the Method list; the insertion point jumps
to the event procedure for btnSpanish. You are currently viewing the
btnSpanish_Click event procedure.

To write code for more than one event for an object, use the Method
drop-down list. You can jump to another procedure by selecting its
name from the list. Selecting a new event from the Method list causes
the Editor to generate the Sub and End Sub lines for that procedure.

STEP 7: Select frmHello in the Class list and drop down the Method list.
Notice that your event procedures are all listed. Try selecting
btnPush_Click and btnExit_Click to jump to each of those
procedures.

Finish Up

STEP 1: Save the project again.

Print the Code

Select the Printing Options

STEP 1: Make sure that the Editor window is open, showing your form’s code.
The File/Print command is disabled unless the code is displaying
and its window selected.

STEP 2: Open the File menu and choose Print. Click OK.

• The IDE will print only code. It’s no
longer possible to print a form im-
age or form text.

If you want to have students turn
in a printout of a form, have them
press Alt � Print Screen while the
program is running. This saves the
current window to the Clipboard.
Then have them paste the Clip-
board contents into a Word docu-
ment. You can instruct them to add
their name and class info before
printing.

You can change an option to
print or not print the heading line
on the code printout.

F i g u r e 1 . 4 6

View the list of objects in this
form by dropping down the
Class list. Select an object from
the list to display the sub
procedures for that object.

Class list Method list

C H A P T E R 1 47

Sample Printout

This output is produced when you print the form’s code. Notice the symbol
used to continue long lines on the printout. On the screen, those long lines are
not split, but scroll off the right side of the screen.

If you are using a color printer, the colors on the screen will also appear on
the printed output.

A:\HelloWorld\frmHello.vb 1
'Project: Hello World
'Programmer: Your Name
'Date: Today’s Date
'Description: This project will display a ''Hello World''
' message in two different languages.

Public Class frmHello
Inherits System.Windows.Forms.Form

Windows Form Designer generated code

Private Sub btnPush_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnPush.Click

'Display the Hello World Message

lblMessage.Text = ''Hello World''
End Sub

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles btnExit.Click

'Exit the project

Me.Close()
End Sub

Private Sub btnSpanish_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles btnSpanish.Click

'Display the Hello World message in Spanish

lblMessage.Text = ''Hola Mundo''
End Sub

End Class

Finding and Fixing Errors

You already may have seen some errors as you entered the first sample project.
Programming errors come in three varieties: syntax errors, run-time errors, and
logic errors.

Syntax Errors

When you break VB’s rules for punctuation, format, or spelling, you generate a
syntax error. Fortunately, the smart editor finds most syntax errors and even
corrects many of them for you. The syntax errors that the editor cannot identify

➔

➔
➔

➔

are found and reported by the compiler as it attempts to convert the code into
intermediate machine language. A compiler-reported syntax error may be re-
ferred to as a compile error.

The editor can correct some syntax errors by making assumptions and not
even report the error to you. For example, if you type the opening quote of
“Hello World” but forget the closing quote, the editor automatically adds the
closing quote when you move to the next line. And if you forget the opening and
closing parentheses after a method name, such as Close(), again the editor
will add them for you when you move off the line. Of course, sometimes the ed-
itor will make a wrong assumption, but you will be watching, right?

The editor identifies syntax errors as you move off the offending line: A
blue squiggly line appears under the part of the line that the editor cannot in-
terpret, and a message appears in the Task list at the bottom of the screen (Fig-
ure 1.47). Notice also that the Task list shows the line number of the statement
that caused the error. You can display line numbers on the source code (Figure
1.48) with Tools/Options/Text Editor/Basic/Display/Line Numbers.
You can also pause the mouse pointer over the error line to pop up an error
message (refer to Figure 1.48).

48 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 4 7

The editor identifies a syntax error with a squiggly blue line and places a message in the Task list.

Syntax error

Error message

Task list

Note: If the Task list does not appear, show it with View/Other Windows/Task
List.

The quickest way to jump to an error line is to point to a message in the
Task list and double-click. The line in error will display in the Editor window
with the error highlighted (Figure 1.49).

C H A P T E R 1 49

F i g u r e 1 . 4 8

You can display line numbers
in the source code to help
identify the lines, and you can
point to an error to pop up the
error message.

F i g u r e 1 . 4 9

Quickly jump to the line in
error by double-clicking on the
error message in the Task list.

Double-click anywhere on this line to jump to the error

If a syntax error is found by the compiler, you will see the dialog box shown
in Figure 1.50. Click No and return to the editor, correct your errors, and run
the program again.

Run-Time Errors

If your project halts during execution, it is called a run-time error or an ex-
ception. Visual Basic displays a dialog box and highlights the statement caus-
ing the problem.

Statements that cannot execute correctly cause run-time errors. The state-
ments are correctly formed Basic statements that pass the syntax checking;
however, the statements fail to execute. Run-time errors can be caused by at-
tempting to do impossible arithmetic operations, such as calculate with non-
numeric data, divide by zero, or find the square root of a negative number.

In Chapter 3 you will learn to catch exceptions, so that the program does
not come to a halt when an error occurs.

Logic Errors

When your program contains logic errors, your project runs but produces in-
correct results. Perhaps the results of a calculation are incorrect or the wrong
text appears, or the text is OK but appears in the wrong location.

Beginning programmers often overlook their logic errors. If the project
runs, it must be right—right? All too often, that statement is not correct. You
may need to use a calculator to check the output. Check all aspects of the proj-
ect output: computations, text, and spacing.

For example, the Hello World project in this chapter has event procedures
for printing “Hello World” in English and in Spanish. If the contents of the two
procedures were switched, the program would work but the results would be
incorrect.

The following code does not give the proper instructions to display the
message in Spanish:

Private Sub cmdSpanish_Click
'Display the Hello World Message in Spanish

lblMessage.Text = ''Hello World''
End Sub

50 V I S U A L B A S I C Introduction to Visual Basic .NET

• No edit-and-continue as in VB 6. If
you modify code during break time,
you must restart the program. At-
tempting to continue from break
time causes it to execute the “old”
unchanged code. This behavior is
due to the fact that VB must com-
pletely compile a program before
running it.

F i g u r e 1 . 5 0

When the compiler identifies
syntax errors, it cannot
continue. Click No to return to
the editor and correct the error.

Project Debugging

If you talk to any computer programmer, you will learn that programs don’t have
errors but that programs get “bugs” in them. Finding and fixing these bugs is
called debugging.

For syntax errors and run-time errors, your job is easier. Visual Basic dis-
plays the Editor window with the offending line highlighted. However, you must
identify and locate logic errors yourself.

A Clean Compile
After you locate the problem and fix it, you must recompile the program and
run it again. Each time you compile the program, you must have a clean com-
pile, which means zero errors (Figure 1.51). You are looking for this line in the
Output window:

Build: 1 succeeded, 0 failed, 0 skipped

You can confuse yourself if you try to run a program without first getting a
clean compile. For example, say you do get a clean compile and run the pro-
gram once; then you make some modifications to the program and tell it to run
again. If you ignore the error message (refer to Figure 1.50) and attempt to run
it anyway, you will actually be running the last cleanly compiled version, with-
out the changes that you just made.

The Visual Studio IDE has some very helpful tools to aid in debugging your
projects. The debugging tools are covered in Chapter 4.

Naming Rules and Conventions for Objects

Using good consistent names for objects can make a project easier to read and
understand, as well as easier to debug. You must follow the Visual Basic rules
for naming objects, procedures, and variables. In addition, conscientious pro-
grammers also follow certain naming conventions.

Most professional programming shops have a set of standards that their
programmers must use. Those standards may differ from the ones you find in
this book, but the most important point is this: Good programmers follow stan-
dards. You should have a set of standards and always follow them.

C H A P T E R 1 51

F i g u r e 1 . 5 1

Zero build errors means that
you have a clean compile.

The Naming Rules

When you select a name for an object, Visual Basic requires the name to begin
with a letter. The name can contain letters, digits, and underscores. An object
name cannot include a space or punctuation mark.

The Naming Conventions

This text follows standard naming conventions, which help make projects more
understandable. Always begin a name with a lowercase three-letter prefix,
which identifies the object type (such as label, button, or form) and capitalize
the first character after the prefix (the “real” name of the object). For names
with multiple words, capitalize each word in the name. All names must be
meaningful and indicate the purpose of the object.

Examples

lblMessage
btnExit
frmDataEntry
lblDiscountRate

Do not keep the default names assigned by Visual Basic, such as Button1
and Label3. Also, do not name your objects with numbers. The exception to
this rule is for labels that never change during project execution. These labels
usually hold items such as titles, instructions, and labels for other controls.
Leaving these labels with their default names is perfectly acceptable and is
practiced in this text.

Refer to Table 1.2 for the list of object prefixes.

52 V I S U A L B A S I C Introduction to Visual Basic .NET

Recommended Naming Conventions for Visual Basic Objects T a b l e 1 . 2

Object Class Prefix Example

Form frm frmDataEntry

Button btn btnExit

TextBox txt txtPaymentAmount

Label lbl lblTotal

Radio button rad radBold

CheckBox chk chkPrintSummary

Horizontal scroll bar hsb hsbRate

Vertical scroll bar vsb vsbTemperature

PictureBox pic picLandscape

ComboBox cbo cboBookList

ListBox lst lstIngredients

• The maximum length for identifiers
changes from 40 characters to
16,383—probably not a problem
for most programmers. In the text
we just omitted the statement con-
cerning a maximum length.

C H A P T E R 1 53

Visual Studio Help

Visual Studio has an extensive Help facility, which contains lots more informa-
tion than you will ever use. You can look up any Basic statement, object, prop-
erty, method, or programming concept. Many coding examples are available,
and you can copy and paste the examples into your own project, modifying
them if you wish.

The VS Help facility is greatly changed and expanded in the .NET version.
Help includes all of the Microsoft Developer Network library (MSDN), which
contains several books, technical articles, and the Microsoft Knowledge Base,
a database of frequently asked questions and their answers. MSDN includes
reference materials for the VS IDE, the .NET Framework, Visual Basic, C#,
and C��. You will want to filter the information to display only the VB and re-
lated information.

Installing and Running MSDN

You can run MSDN from a hard drive, from a network drive, from a CD, or from
the Web. If you run from a CD, you must keep the CD in the drive while you de-
velop programs, and, of course, if you plan to access MSDN from the Web, you
must have a live Internet connection as you work.

When you install Visual Studio, by default MSDN is installed on the hard
drive. If you don’t want to install it there, you must specifically choose this op-
tion. You can access MSDN on the web at http://msdn.microsoft.com.

Or, if you want to go directly to VB documentation, add this link to your
favorites:
http://msdn.microsoft.com/library/en-us/vblr7/html/vboriVBLangRefTopNode.asp

The expanded Help is a two-edged sword: You have available a wealth of
materials, but it may take some time to find the topic you want.

• Help is totally different. The Con-
tents/Index/Search pops up in a
new tabbed window in the Solution
Explorer’s space. A selected topic
appears as a tabbed window in the
Document window. And if several
topics match the selected item
in Contents/Index/Search, a new
tabbed window appears at the bot-
tom of the screen, docked with the
Task List and Output window.

Viewing Help Topics

You view the Help topics in various windows in the VS IDE. When you choose
Contents, Index, or Search from the Help menu, a new tabbed window
opens in the same location as the Solution Explorer (Figure 1.52). Select a topic
and the correct page appears in the Document window. Notice the new tab at
the top of the Document window in Figure 1.52.

54 V I S U A L B A S I C Introduction to Visual Basic .NET

F i g u r e 1 . 5 2

The Help Index, Contents, and Search windows appear as tabs in the Solution Explorer window. Note that this window was
widened to show the text in the tabs.

Help topic tab

Search
tab

Index tab
Contents tab

You can choose to filter the Help topics, so that you don’t have to view top-
ics for all of the languages when you search for a particular topic. Drop down
the Filtered By list and choose Visual Basic and Related (Figure 1.53).

Sometimes you may select a topic that has several pages from which to
choose. When that happens, a new tabbed window opens in the Task List win-
dow (Figure 1.54). Double-click the topic you wish to view and the selected
page appears in the Document window.

C H A P T E R 1 55

F i g u r e 1 . 5 3

Filter the Help topics so that
only Visual Basic topics
appear.

F i g u r e 1 . 5 4

Multiple matching topics appear in a tabbed window at the bottom of the screen. Select a topic from the list and the
corresponding page appears in the Document window.

Help topic tab

Tab for all matching topics Index tab

56 V I S U A L B A S I C Introduction to Visual Basic .NET

➤

Many Help topics have entries for both Windows Forms and Web Forms.
For now, always choose Windows Forms. Chapters 1 to 8 deal with Windows
Forms exclusively; Web Forms are introduced in Chapter 9.

A good way to start using Help is to view the topics that demonstrate how to
look up topics in Help. Select Help/Contents and choose Visual Studio
.NET/Getting Assistance/Using Help in Visual Studio .NET.

Context-Sensitive Help

A quick way to view Help on any topic is to use context-sensitive Help.
Select a VB object, such as a form or control, or place the insertion point in
a word in the editor, and press F1. The corresponding Help topic will appear
in the Document window, if possible, saving you a search. You can display
context-sensitive Help about the environment by clicking in an area of the
screen and pressing Shift � F1.

Managing Windows

At times you may have more windows and tabs open than you want. You can
hide or close any window, or switch to a different window.

• To close a window that is a part of a tabbed window, click the window’s
Close button. Only the top window will close.

• To hide a window that is a part of a tabbed window, right-click the tab and
select Hide from the context menu.

• To switch to another window that is part of a tabbed window, click on its tab.

For additional help with the environment, see Appendix C “Tips and Short-
cuts for Mastering the Visual Studio Environment.”

Feedback 1.1
Note: Answers for Feedback questions appear in Appendix A.

1. Use the Help menu’s Index, filter by Visual Basic and Related,
and type “button control”. In the Index list, notice that one heading
covers Web Forms and another covers Windows Forms. Under Button
control (Windows Forms) select overview. At the bottom of the
screen, you should see a new tabbed window showing the two topics
that Help found. Double-click on the “Button Control (Windows
Forms)” entry; the corresponding page should appear in the Document
window. Notice that additional links appear in the text in the Document
window. You can click on a link to view another topic.

2. Display the Editor window of your Hello World project. Click on the
Close method to place the insertion point. Press the F1 key to view
context-sensitive help.

3. Display the Help menu and view all of the options. Try the Contents,
Index, Search, Index Results, and Search Results options. No-
tice the Next Topic and Previous Topic items and the Show Start
Page item; you can use this command to show the Start Page if its tab
does not appear in the Document window.

C H A P T E R 1 57

S u m m a r y

1. Visual Basic is an object-oriented language used to write application pro-
grams that run in Windows or on the Internet using a graphical user inter-
face (GUI).

2. In the OOP object model, classes are used to create objects that have prop-
erties, methods, and events.

3. The current release of Visual Basic (VB) is called .NET, which corresponds
to Version 7. Visual Basic .NET is part of Visual Studio .NET. VS .NET has
an Academic Edition, a Professional Edition, an Enterprise Developer Edi-
tion, and an Enterprise Architect Edition.

4. The .NET Framework provides an environment for the objects from many
languages to interoperate. Each language compiles to Microsoft Intermedi-
ate Language (MSIL) and runs in the Common Language Runtime (CLR).

5. To plan a project, first sketch the user interface and then list the objects
and properties needed. Then plan the necessary event procedures.

6. The three steps to creating a Visual Basic project are (1) define the user in-
terface, (2) set the properties, and (3) write the Basic code.

7. A Visual Basic application is called a solution. Each solution can contain
multiple projects, and each project may contain multiple forms and addi-
tional files. The solution file has an extension of .sln, a project file has an
extension of .vbproj, form files and additional VB files have an extension
of .vb. In addition, the Visual Studio environment and the VB compiler
both create several more files.

8. The Visual Studio integrated development environment (IDE) consists of
several tools, including a form designer, an editor, a compiler, a debugger,
an object browser, and a Help facility.

9. VB has three modes: design time, run time, and break time.
10. You can customize the Visual Studio IDE and reset all customizations to

their default state.
11. You create the user interface for an application by adding controls from the

toolbox to a form. You can move, resize, and delete the controls.
12. The Name property of a control is used to refer to the control in code. The

Text property holds the words that the user sees on the screen.
13. Visual Basic code is written in procedures. Sub procedures begin with the

word Sub and end with End Sub.
14. Project remarks are used for documentation. Good programming practice re-

quires remarks in every procedure and in the Declarations section of a file.
15. Assignment statements assign a value to a property or a variable. Assign-

ment statements work from right to left, assigning the value on the right
side of the equal sign to the property or variable named on the left side of
the equal sign.

16. The Me.Close method terminates program execution.
17. Each event to which you want to respond requires an event procedure.
18. You can print out the Visual Basic code for documentation.
19. Three types of errors can occur in a Visual Basic project: syntax errors (vi-

olating the syntax rules of Basic statements), run-time errors (containing a
statement that cannot execute properly), and logic errors (producing erro-
neous results).

58 V I S U A L B A S I C Introduction to Visual Basic .NET

20. Finding and fixing programming errors is called debugging.
21. You must have a clean compile each time you modify a program before you

can run the program.
22. Following good naming conventions can help make a project easier to debug.
23. Visual Basic Help has very complete descriptions of all project elements and

their uses. You can use the Contents, Index, Search, or context-sensitive
Help.

K e y T e r m s

R e v i e w Q u e s t i o n s

1. What are objects and properties? How are they related to each other?
2. What are the three steps for planning and creating Visual Basic projects?

Describe what happens in each step.
3. What is the purpose of these Visual Basic file types: .sln, .suo, and .vb?
4. When is Visual Basic in design time? run time? break time?
5. What is the purpose of the Name property of a control?
6. Which property determines what appears on the form for a Label control?
7. What is the purpose of the Text property of a button? the Text property of a

form?

Academic Edition 5
assignment statement 33
break time 14
Button 21
class 4
clean compile 51
code 6
context menu 25
context-sensitive Help 56
control 4
debugging 51
design time 14
Declarations section 45
Document window 12
Enterprise Architect Edition 5
Enterprise Developer Edition 5
event 4
event procedure 33
form 4
Form Designer 12
graphical user interface (GUI) 3
handle 22
Help 13
integrated development environment

(IDE) 8
Label 21

logic error 50
method 4
namespace 26
object 4
object-oriented programming

(OOP) 3
procedure 32
Professional Edition 5
project file 7
Properties window 12
property 4
pseudocode 6
remark statement 33
run time 14
run-time error 50
solution 7
Solution Explorer window 12
solution file 7
sub procedure 32
syntax error 47
Text property 28
toolbar 10
toolbox 12
user interface 6
Visual Studio environment 8

8. What does btnPush_Click mean? To what does btnPush refer? To what
does Click refer?

9. What is a Visual Basic event? Give some examples of events.
10. What property must be set to center text in a label? What should be the

value of the property?
11. What is the Declarations section of a file? What belongs there?
12. What is a syntax error, when does it occur, and what might cause it?
13. What is a run-time error, when does it occur, and what might cause it?
14. What is a logic error, when does it occur, and what might cause it?
15. Tell the class of control and the likely purpose of each of these object

names:
lblAddress
btnExit
txtName

16. What does context-sensitive Help mean? How can you use it to see the
Help page for a button?

P r o g r a m m i n g E x e r c i s e s

1.1 For your first Visual Basic exercise, you must first complete the Hello
World project. Then add buttons and event procedures to display the
“Hello World” message in two more languages. You may substitute any
other languages for those shown. Feel free to modify the user interface to
suit yourself (or your instructor).

Make sure to use meaningful names for your new buttons, following
the naming conventions in Table 1.2. (Begin the name with lowercase
“btn”.) Include remarks at the top of every procedure and in the Decla-
rations section of the code.

“Hello World” in French: Bonjour tout le monde
“Hello World” in Italian: Ciao Mondo

1.2 Write a new Visual Basic project that displays a different greeting, or
make it display the name of your school or your company. Include at
least two buttons to display the greeting, and exit the project.

Include a label that holds your name at the bottom of the form and
change the Text property of the form to something meaningful.

Follow good naming conventions for object names; include remarks at
the top of every procedure and in the Declarations section of the code.

Select a different font name and font size for the greeting label. If you
wish, you can also select a different color for the font. Select each font at-
tribute from the Font dialog box from the Properties window.

1.3 Write a project that displays four sayings, such as “The early bird gets
the worm” or “A penny saved is a penny earned.” (You will want to keep
the sayings short, as each must be entered on one code statement. How-
ever, when the saying displays on your form, long lines will wrap within
the label if the label is large enough.)

Make a button for each saying with a descriptive Text property for
each, as well as a button to exit the project.

Include a label that holds your name at the bottom of the form. Also,
make sure to change the form’s title bar to something meaningful.

C H A P T E R 1 59

60 V I S U A L B A S I C Introduction to Visual Basic .NET

You may change the Font properties of the large label to the font and
size of your choice.

Make sure the label is large enough to display your longest saying and
that the buttons are large enough to hold their entire Text properties.

Follow good naming conventions for object names; include remarks at
the top of every procedure and in the Declarations section of the code.

1.4 Write a project to display company contact information. Include buttons
and labels for contact person, department, and phone. When the user
clicks on one of the buttons, display the contact information in the cor-
responding label. Include a button to exit.

Include a label that holds your name at the bottom of the form and
change the title bar of the form to something meaningful.

You may change the Font properties of the labels to the font and size
of your choice.

Follow good naming conventions for object names; include remarks at
the top of every procedure and in the Declarations section of the code.

1.5 Create a project to display the daily specials for “your” diner. Make up a
name for your diner and display it in a label at the top of the form. Add a
label to display the appropriate special depending on the button that is
pressed. The buttons should be “Soup of the Day,” “Chef’s Special,” and
“Daily Fish.”

Also include an Exit button.
Sample Data: Dorothy’s Diner is offering Tortilla Soup, a California
Cobb Salad, and Hazelnut-Coated Mahi Mahi.

Case Studies
Very Busy (VB) Mail Order

If you don’t have the time to look for all those hard-to-
find items, tell us what you’re looking for. We’ll send
you a catalog from the appropriate company or order
for you. We can place an order and ship it to you. We
also help with shopping for gifts; your order can be gift
wrapped and sent anywhere you wish.

The company title will be shortened to “VB Mail
Order”. Include this name on the title bar of the first
form of each project that you create for this case study.

Your first job is to create a project that will display
the name and telephone number for the contact person
for the customer relations, marketing, order process-
ing, and shipping departments.

Include a button for each department. When the
user clicks on the button for a department, display the
name and telephone number for the contact person in

two labels. Also include identifying labels with Text
“Department Contact” and “Telephone Number”.

Be sure to include a button for Exit.
Include a label at the bottom of the form that holds

your name and give the form a meaningful title bar.

Test Data

Department Telephone
Department Contact Number

Customer Relations Tricia Mills 500-1111

Marketing Michelle Rigner 500-2222

Order Processing Kenna DeVoss 500-3333

Shipping Eric Andrews 500-4444

C H A P T E R 1 61

Valley Boulevard (VB) Auto Center

Video Bonanza

Valley Boulevard Auto Center will meet all of your au-
tomobile needs. The center has facilities with every-
thing for your vehicles including sales and leasing for
new and used cars and RVs, auto service and repair,
detail shop, car wash, and auto parts.

The company title will be shortened to “VB Auto
Center”. This name should appear as the title bar on
the first form of every project that you create through-
out the text for this case study.

Your first job is to create a project that will display
current notices.

Include four buttons labeled: “Auto Sales”, “Ser-
vice Center”, “Detail Shop”, and “Employment Op-
portunities”. One Label will be used to display the
information when the buttons are clicked. Be sure to
include a button for Exit.

Include your name in a label at the bottom of the
form.

This neighborhood store is an independently owned
video rental business. The owners would like to allow
their customers to use the computer to look up the
aisle number for movies by category.

Create a form with a button for each category.
When the user clicks on a button, display the corre-
sponding aisle number in a label. Include a button to
exit.

Include a label that holds your name at the bottom
of the form and change the title bar of the form to
“Video Bonanza.”

You may change the font properties of the labels to
the font and size of your choice. Include additional
categories, if you wish.

Follow good programming conventions for object

names; include remarks at the top of every procedure
and in the Declarations section of the code.

Test Data

Button Location

Comedy Aisle 1

Drama Aisle 2

Action Aisle 3

Sci-Fi Aisle 4

Horror Aisle 5

New Releases Back Wall

Test Data

Button Label Text

Auto Sales Family wagon, immaculate condition $12,995

Service Center Lube, oil, filter $25.99

Detail Shop Complete detail $79.95 for most cars

Employment Opportunities Sales position, contact Mr. Mann 551-2134 x475

Very Very Boards

62 V I S U A L B A S I C Introduction to Visual Basic .NET

This chain of stores features a full line of clothing and
equipment for snowboard and skateboard enthusiasts.
Management wants a computer application to allow
employees to display the address and hours for each of
their branches.

Create a form with a button for each store branch.
When the user clicks on a button, display the correct
address and hours.

Include a label that holds your name at the bottom

of the form, and change the title bar of the form to
“Very Very Boards”.

You may change the font properties of the labels to
the font and size of your choice.

Follow good programming conventions for object
names; include remarks at the top of every procedure
and in the Declarations section of the code.

Store Branches: The three branches are Downtown,
Mall, and Suburbs. Make up hours and locations for each.

