
leogarcia-38245 book April 15, 2003 11:27

C H A P T E R 2

Applications and Layered Architectures

architecture, n. Any design or orderly arrangement perceived by man.
design, n. The invention and disposition of the forms, parts, or details of something accord-
ing to a plan.1

Communication networks can be called upon to support an extremely wide range of
services. We routinely use networks to talk to people, to send e-mail, to transfer files,
and to retrieve information. Business and industry use networks to carry out critical
functions, such as the transfer of funds and the automated processing of transactions, and
to query or update database information. Increasingly, the Internet is also being used to
provide “broadcast” services along the lines of traditional radio and television. It is clear
then that the network must be designed so that it has the flexibility to provide support
for current services and to accommodate future services. To achieve this flexibility, an
overall network architecture or plan is necessary.

The overall process of enabling two or more devices to communicate effectively
across a network is extremely complex. In Chapter 1 we identified the many elements of
a network that are required to enable effective communication. Early network designers
recognized the need to develop architectures that would provide a structure to organize
these functions into a coherent form. As a result, in the early 1970s various computer
companies developed proprietary network architectures. A common feature to all of
these was the grouping of the communication functions into related and manageable
sets called layers. We saw in Chapter 1 that communication functions can be grouped
according to the following tasks:

• The transport across a network of data from a process in one machine to the process
at another machine.

1Definitions are from The American Heritage Dictionary of the English Language, Houghton Mifflin Co.,
1978.

34

leogarcia-38245 book April 15, 2003 11:27

Applications and Layered Architectures 35

• The routing and forwarding of packets across multiple hops in a network.
• The transfer of a frame of data from one physical interface to another.

These layers of functions build on top of each other to enable communications. We
use the term network architecture to refer to a set of protocols that specify how every
layer is to function.

The decomposition of the overall communications problem into a set of layers is
a first step to simplifying the design of the overall network. In addition the interaction
between layers needs to be defined precisely. This is done through the definition of
the service provided by each layer to the layer above, and through the definition of
the interface between layers through which a service is requested and through which
results are conveyed. A clearly defined service and interface allows a layer to invoke a
service from the layer below without regard to how the service is implemented by any
of the layers below. As long as the service is provided as specified, the implementation
of the underlying layers can be changed. Also, new services that build on existing
services can be introduced at any time, and in turn enable other new services at layers
above. This provides flexibility in modifying and evolving the network. In contrast, a
monolithic network design that uses a single large body of hardware and software to
meet all the network requirements can quickly become obsolete and also is extremely
difficult and expensive to modify. The layered approach accommodates incremental
changes much more readily.

In this chapter we develop the notion of a layered architecture, and we provide
examples from TCP/IP, the most important current network architecture. The discussion
is organized as follows:

1. Web-browsing and e-mail applications are used to demonstrate the operation of a
protocol within a layer and how it makes use of the communication services of the
layer below. We introduce the HTTP, DNS, and SMTP application layer protocols
in these examples.

2. The Open Systems Interconnection (OSI) reference model is discussed to show how
the overall communication process can be organized into functions that are carried
out in seven layers.

3. The TCP/IP architecture is introduced and compared to the OSI reference model.
We present a detailed end-to-end example in a typical TCP/IP Internet. We use a
network protocol analyzer to show the exchange of messages and packets in real
networks. This section is key to seeing the big picture because it shows how all the
layers work together.

Two optional sections present material that is useful in developing lab exercises
and experiments involving TCP/IP:

4. We introduce Berkeley sockets, which allow the student to write applications that
use the services provided by the TCP/IP protocols. We develop example programs
that show the use of UDP and TCP sockets.

5. We introduce several important TCP/IP application layer protocols: Telnet, FTP, and
HTTP. We also introduce several utilities and a network protocol analyzer that can
be used as tools to study the operation of the Internet.

leogarcia-38245 book April 15, 2003 11:27

36 CHAPTER 2 Applications and Layered Architectures

2.1 EXAMPLES OF PROTOCOLS, SERVICES,
AND LAYERING

A protocol is a set of rules that governs how two or more communicating parties are to
interact. When dealing with networks we run into a multiplicity of protocols, such as
HTTP, FTP, and TCP. The purpose of a protocol is to provide some type of communica-
tion service. For example, the HTTP protocol enables the retrieval of web pages, and the
TCP protocol enables the reliable transfer of streams of information between computers.
In this chapter, we will see that the overall communications process can be organized
into a stack of layers. Each layer carries out a specific set of communication functions
using its own protocol, and each layer builds on the services of the layer below it.

This section uses concrete examples to illustrate what is meant by a protocol and
to show how two adjacent layers interact. Together the examples also show the advan-
tages of layering. The examples use two familiar applications, namely, e-mail and Web
browsing. We present a simplified discussion of the associated protocols. Our purpose
here is to relate familiar applications to the underlying network services that are the
focus of this textbook.

2.1.1 HTTP, DNS, and SMTP

All the examples discussed in this section involve a client/server application. A server
process in a computer waits for incoming requests by listening to a port. A port is
an address that identifies which process is to receive a message that is delivered to a
given machine. Widely used applications have well-known port numbers assigned to
their servers, so that client processes in other computers can readily make requests as
required. The servers provide responses to those requests. The server software usually
runs in the background and is referred to as a daemon. For example, httpd refers to
the server daemon for HTTP.

EXAMPLE HTTP and Web Browsing

Let us consider an example of browsing through the World Wide Web (WWW). The
WWW consists of a framework for accessing documents that are located in computers
connected to the Internet. These documents are prepared using the HyperText Markup
Language (HTML) and may consist of text, graphics, and other media and are inter-
connected by links that appear within the documents. The WWW is accessed through a
browser program that displays the documents and allows the user to access other doc-
uments by clicking one of these links. Each link provides the browser with a uniform
resource locator (URL) that specifies the name of the machine where the document is
located as well as the name of the file that contains the requested document.

The HyperText Transfer Protocol (HTTP) specifies rules by which the client and
server interact so as to retrieve a document. The rules also specify how the request and
response are phrased. The protocol assumes that the client and server can exchange

leogarcia-38245 book April 15, 2003 11:27

2.1 Examples of Protocols, Services, and Layering 37

The user clicks on a link to indicate which document is to
be retrieved. The browser must determine the Internet
address of the machine that contains the document. To do
so, the browser sends a query to its local name server.

Once the address is known, the browser establishes a
connection to the server process in the specified machine,
usually a TCP connection. For the connection to be
successful, the specified machine must be ready to accept
TCP connections.

The browser runs a client version of HTTP, which issues a
request specifying both the name of the document and the
possible document formats it can handle.

The machine that contains the requested document runs a server
version of HTTP. It reacts to the HTTP request by sending an
HTTP response which contains the desired
document in the appropriate format.

The user may start to view the document. The TCP
connection is closed after a certain timeout period.

1.

Step:

2.

3.

4.–6.

7.–8.

FIGURE 2.1 Retrieving a document from the web.

messages directly. In general, the client software needs to set up a two-way connection
prior to the HTTP request.

Figure 2.1 and Table 2.1 show the sequence of events and messages that are in-
volved in retrieving a document. In step 1 a user selects a document by clicking on its
corresponding link. For example, the browser may extract the URL associated with the
following link:

http://www.comm.utoronto.ca/comm.html

The client software must usually carry out a Domain Name System (DNS) query to
determine the IP address corresponding to the host name, www.comm.utoronto.ca. (We
discuss how this query is done in the next example.) The client software then sets up a
TCP connection with the WWW server (the default is port 80) at the given IP address
(step 2). The client end identifies itself by an ephemeral port number that is used only
for the duration of the connection. The TCP protocol provides a reliable byte-stream
transfer service that can be used to transmit files across the Internet.

After the connection is established, the client uses HTTP to request a document
(step 3). The request message specifies the method or command (GET), the document
(comm.html), and the protocol version that the browser is using (HTTP/1.1). The server
daemon identifies the three components of the message and attempts to locate the file
(step 4).

leogarcia-38245 book April 15, 2003 11:27

38 CHAPTER 2 Applications and Layered Architectures

TABLE 2.1 Retrieving a document from the web: HTTP message exchange.

Event Message Content

1. User selects document.
2. Network software of client locates the

server host and establishes a two-way
connection.

3. HTTP client sends message requesting GET /comm.html HTTP/1.1
document.

4. HTTP daemon listening on TCP port
80 interprets message.

5. HTTP daemon sends a result code and HTTP/1.1 200 OK
a description of the information that Date: Mon, 06 Jan 2003 23:56:44 GMT
the client will receive. Server: Apache/1.3.23 (Unix)

Last Modified: 03 Sep 2002 02:58:36 GMT
Content-Length: 8218
Content-Type: text/html

6. HTTP daemon reads the file and sends <html>
requested file through the TCP port. <head><title></title>...

What is
Communications?

7. Text is displayed by client browser,
which interprets the HTML format.

8. HTTP daemon disconnects the
connection after the connection is
idle for some timeout period.

In step 5 the daemon sends a status line and a description of the information
that it will send. Result code 200 indicates that the client request was successful and
that the document is to follow. The message also contains information about the server
software, the length of the document (8218 bytes), and the content type of the document
(text/html). If the request was for an image, the type might be image/gif. If the request
is not successful, the server sends a different result code, which usually indicates the
type of failure, for example, 404 when a document is not found.

In step 6 the HTTP daemon sends the file over the TCP connection. In the mean-
time, the client receives the file and displays it (step 7). The server maintains the TCP
connection open so it can accept additional requests from the client. The server closes
the TCP connection if it remains idle for some timeout period (step 8).

The HTTP example clearly indicates that a protocol is solely concerned with the
interaction between the two peer processes, that is, the client and the server. The protocol
assumes that the message exchange between peer processes occurs directly as shown in
Figure 2.2. Because the client and server machines are not usually connected directly,
a connection needs to be set up between them. In the case of HTTP, we require a
two-way connection that transfers a stream of bytes in correct sequential order and
without errors. The TCP protocol provides this type of communication service between
two processes in two machines connected to a network. Each HTTP process inserts its

leogarcia-38245 book April 15, 2003 11:27

2.1 Examples of Protocols, Services, and Layering 39

HTTP
client

HTTP
server

GET

STATUS

FIGURE 2.2 HTTP client/server
interaction.

messages into a buffer, and TCP transmits the contents of the buffer to the other TCP in
blocks of information called segments, as shown in Figure 2.3. Each segment contains
port number information in addition to the HTTP message information. HTTP is said
to use the service provided by TCP in the layer below. Thus the transfer of messages
between HTTP client and server in fact is virtual and occurs indirectly via the TCP
connection as shown in Figure 2.3. Later you will see that TCP, in turn, uses the service
provided by IP.

It is worth noting exactly how the HTTP application protocol invokes the service
provided by TCP. When the HTTP client software first needs to set up the TCP con-
nection, the client does so by making a series of socket system calls. These calls are
similar to function calls except that control is passed to the operating system kernel
when a socket system call is made. A socket system call specifies a certain action and
may contain parameters such as socket type, for example, TCP or UDP, and address
information. Thus the interaction between the HTTP layer and the TCP layer takes
place through these socket system calls.2

EXAMPLE DNS Query

The HTTP example notes that the client first needs to perform a DNS query to obtain
the IP address corresponding to the domain name. This step is done by sending a

2Sockets are explained in detail in Section 2.4.

HTTP
client

Ephemeral
port # Port 80

HTTP
server

TCP TCP

GET 80, #

#, 80 STATUS

FIGURE 2.3 TCP provides a
pipe between the HTTP client and
HTTP server.

leogarcia-38245 book April 15, 2003 11:27

40 CHAPTER 2 Applications and Layered Architectures

message to a DNS server. The Domain Name System (DNS) is a distributed database
that resides in multiple machines on the Internet and is used to convert between names
and addresses and to provide e-mail routing information. Each DNS machine maintains
its own database and acts as a DNS server that other machines can query. Typically
the requesting machine accesses a local name server, which, for example, may reside
in a university department or at an ISP. These local name servers are able to resolve
frequently used domain names into the corresponding IP addresses by caching recent
information. When unable to resolve a name, the local name server may sometimes send
a query to a root name server, of which there are currently 13 distributed globally. When
a root server is unable to determine an IP address, it sends a query to an authoritative
name server. Every machine on the Internet is required to register with at least two
authoritative name servers. If a given name server cannot resolve the domain name, the
queried name server will refer to another name server, and this process continues until
a name server that can resolve the domain name is found.

We now consider a simple case where the resolution takes place in the first server.
Table 2.2 shows the basic steps required for this example. After receiving the ad-
dress request, a process in the host, called the resolver, composes the short mes-
sage shown in step 2. The OPCODE value in the DNS message header indicates
that the message is a standard query. The question portion of the query contains
the following information: QNAME identifies the domain name that is to be trans-
lated. The DNS server can handle a variety of queries, and the type is specified by
QTYPE. In the example, QTYPE = A requests a translation of a name to an IP
address. QCLASS requests an Internet address (some name servers handle non-IP
addresses). In step 3 the resolver sends the message to the local server using the data-
gram communication service UDP.

TABLE 2.2 DNS query and response.

Event Message content

1. Application requests name to address
translation.

2. Resolver composes query message. Header: OPCODE=SQUERY
Question:
QNAME=tesla.comm.toronto.edu.,

QCLASS=IN, QTYPE=A
3. Resolver sends UDP datagram

encapsulating the query message.
4. DNS server looks up address and Header: OPCODE=SQUERY,

prepares response. RESPONSE, AA
Question: QNAME=
tesla.comm.toronto.edu.,

QCLASS=IN, QTYPE=A
Answer: tesla.comm.toronto.edu.

86400 IN A 128.100.11.1
5. DNS sends UDP datagram encapsulating the

response message.

leogarcia-38245 book April 15, 2003 11:27

2.1 Examples of Protocols, Services, and Layering 41

The short message returned by the server in step 4 has the Response and Authori-
tative Answer bits set in the header. This setting indicates that the response comes from
an authority that manages the domain name. The question portion is identical to that
of the query. The answer portion contains the domain name for which the address is
provided. This portion is followed by the Time-to-Live field, which specifies the time
in units of seconds that this information is to be cached by the client. Next are the
two values for QCLASS and QTYPE. IN again indicates that it is an Internet address.
Finally, the IP address of the domain name is given (128.100.11.1).

In this example the DNS query and response messages are transmitted by using the
communication service provided by the User Datagram Protocol (UDP). The UDP
client attaches a header to the user information to provide port information (port 53 for
DNS) and encapsulates the resulting block in an IP packet. The UDP service is connec-
tionless; no connection setup is required, and the datagram can be sent immediately.
Because DNS queries and responses consist of short messages, UDP is ideally suited
for conveying them.

The DNS example shows again how a protocol, in this case the DNS query protocol,
is solely concerned with the interaction between the client and server processes. The
example also shows how the transfer of messages between client and server, in fact, is
virtual and occurs indirectly via UDP datagrams.

EXAMPLE SMTP and E-mail

Finally, we consider an e-mail example, using the Simple Mail Transfer Protocol
(SMTP). Here a mail client application interacts with a local SMTP server to initiate
the delivery of an e-mail message. The user prepares an e-mail message that includes
the recipient’s e-mail address, a subject line, and a body. When the user clicks Send, the
mail application prepares a file with the above information and additional information
specifying format, for example, plain ASCII or Multipurpose Internet Mail Extensions
(MIME) to encode non-ASCII information. The mail application has the name of the
local SMTP server and may issue a DNS query for the IP address. Table 2.3 shows the
remaining steps involved in completing the transfer of the e-mail message to the local
SMTP server.

Before the e-mail message can be transferred, the application process must set up
a TCP connection to the local SMTP server (step 1). Thereafter, the SMTP protocol
is used in a series of exchanges in which the client identifies itself, the sender of the
e-mail, and the recipient (steps 2–8). The client then transfers the message that the
SMTP server accepts for delivery (steps 9–12) and ends the mail session. The local
SMTP server then repeats this process with the destination SMTP server. To locate
the destination SMTP server, the local server may have to perform a DNS query of
type MX (mail exchange). SMTP works best when the destination machine is always
available. For this reason, users in a PC environment usually retrieve their e-mail from
a mail server using the Post Office Protocol version 3 (POP3) instead.

leogarcia-38245 book April 16, 2003 9:7

42 CHAPTER 2 Applications and Layered Architectures

TABLE 2.3 Sending e-mail.

Event Message content

1. The mail application establishes a
TCP connection (port 25) to its local
SMTP server.

2. SMTP daemon issues the following message 220 tesla.comm.toronto.edu ESMTP
to the client, indicating that it is ready to Sendmail 8.9.0/8.9.0; Thu,
receive mail. 2 Jul 1998 05:07:59 -0400 (EDT)

3. Client sends a HELO message and identifies HELO bhaskara.comm.utoronto.ca
itself.

4. SMTP daemon issues a 250 message, 250 tesla.comm.toronto.edu Hello
indicating the client may proceed. bhaskara.comm [128.100.10.9],

pleased to meet you
5. Client sends sender’s address. MAIL FROM:

<banerjea@comm.utoronto.ca>
6. If successful, SMTP daemon replies with a 250 <banerjea@comm.utoronto.ca> ...

250 message. Sender ok
7. Client sends recipient’s address. RCPT TO: <alg@nal.utoronto.ca>
8. A 250 message is returned. 250 <alg@nal.utoronto.ca> ...

Recipient ok
9. Client sends a DATA message requesting DATA

permission to send the mail message.
10. The daemon sends a message giving the client 354 Enter mail, end with "." on

permission to send. a line by itself
11. Client sends the actual text. Hi Al,

This section on email sure needs
a lot of work...

12. Daemon indicates that the message is accepted 250 FAA00803 Message accepted for
for delivery. A message ID is returned. delivery

13. Client indicates that the mail session is over. QUIT
14. Daemon confirms the end of the session. 221 tesla.comm.toronto.edu

closing connection

2.1.2 TCP and UDP Transport Layer Services

The e-mail, DNS query, and HTTP examples show how multiple protocols can operate
by using the communication services provided by the TCP and UDP protocols. Both
the TCP and UDP protocols operate by using the connectionless packet network service
provided by IP.

UDP provides connectionless transfer of datagrams between processes in hosts
attached to the Internet. UDP provides port numbering to identify the source and des-
tination processes in each host. UDP is simple and fast but provides no guarantees in
terms of delivery or sequence addressing.

TCP provides for reliable transfer of a byte stream between processes in hosts
attached to the Internet. The processes write bytes into a buffer for transfer across
the Internet by TCP. TCP is considerably more complex than UDP. TCP involves the
establishment of a connection between the two processes. To provide their service,

leogarcia-38245 book April 15, 2003 11:27

2.2 The OSI Reference Model 43

the TCP entities implement error detection and retransmission as well as flow control
algorithms (discussed in Chapters 5 and 8). In addition, TCP also implements congestion
control, which regulates the flow of segments into the network. This topic is discussed
in Chapters 7 and 8.

Indeed, an entire suite of protocols has been developed to operate on top of TCP and
UDP, thereby demonstrating the usefulness of the layering concept. New services can
be quickly developed by building on the services provided by existing layer protocols.

PEER-TO-PEER FILE SHARING
File-sharing applications such as Napster and Gnutella became extremely popular
as a means of exchanging MP3 audio and other files. The essence of these peer-to-
peer applications is that ordinary PCs (“peers”) attached to the Internet can act not
only as clients, but also as transient file servers while the applications are activated.
When a peer is interested in finding a certain file, it sends a query. The response
provides a list of peers that have the file and additional information such as the speed
of each peer’s connection to the Internet. The requesting peer can then set up a TCP
connection to one of the peers in the list and proceed to retrieve the file.

The technically difficult part in peer-to-peer file sharing is maintaining the
database of peers that are connected at a given point in time and the files that they
have available for sharing. The Napster approach used a centralized database that
peers could contact when they became available for file sharing and/or when they
needed to make a query. The Gnutella approach uses a distributed approach where
the peers organize themselves into an overlay network by keeping track of peers that
are assigned to be adjacent to them. A query from a given peer is then broadcast
by sending the query to each neighbor, their neighbors’ neighbors, and so on up to
some maximum number of hops.

Peer-to-peer file sharing provides another example of how new services and
applications can be deployed very quickly over the Internet. Peer-to-peer file sharing
also brings up many legal, commercial, and cultural issues that will require many
years to resolve.

2.2 THE OSI REFERENCE MODEL

The early network architectures developed by various computer vendors were not
compatible with each other. This situation had the effect of locking in customers with
a single vendor. As a result, there was pressure in the 1970s for an open systems archi-
tecture that would eventually lead to the design of computer network equipment that
could communicate with each other. This desire led to an effort in the International
Organization for Standardization (ISO) first to develop a reference model for open
systems interconnection (OSI) and later to develop associated standard protocols. The
OSI reference model partitioned the communications process into seven layers and

leogarcia-38245 book April 15, 2003 11:27

44 CHAPTER 2 Applications and Layered Architectures

provided a framework for talking about the overall communications process and hence
was intended to facilitate the development of standards. The OSI work also provided a
unified view of layers, protocols and services. This unified view has provided the basis
for the development of networking standards to the present day.

2.2.1 The Seven-Layer OSI Reference Model

Consider an application that involves communications between a process in computer A
and a process in computer B. The OSI reference model divides the basic communi-
cation functions required for computers A and B to communicate into the seven layers
shown in Figure 2.4. In this section, we will discuss the functions of the seven layers
starting from the bottom (physical layer) to the top (application layer). The reader should
compare the definition of the OSI layers to the elements described for the telegraph,
telephone, and computer network architectures discussed in Chapter 1.

The physical layer deals with the transfer of bits over a communication channel,
for example, the digital transmission system and the transmission media such as copper
wire pairs, coaxial cable, radio, or optical fiber. The layer is concerned with the partic-
ular choice of system parameters such as voltage levels and signal durations. The layer
is also concerned with the procedures to set up and release the physical connection, as
well as with mechanical aspects such as socket type and number of pins. For exam-
ple, an Ethernet physical layer standard defines the connector and signal interfaces in
a PC.

Application A

Application
layer

Presentation
layer

Session
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

Application B

Application
layer

Presentation
layer

Session
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

Network
layer

Data link
layer

Physical
layer

Network
layer

Data link
layer

Physical
layer

Communication network

Electrical and/or optical signals

FIGURE 2.4 The seven-layer OSI reference model.

leogarcia-38245 book April 15, 2003 11:27

2.2 The OSI Reference Model 45

The data link layer provides for the transfer of frames (blocks of information)
across a transmission link that directly connects two nodes. The data link layer inserts
framing information in the sequence of transmitted bits to indicate the boundaries of
the frames. It also inserts control and address information in the header and check
bits to enable recovery from transmission errors, as well as flow control. The data link
control is particularly important when the transmission link is prone to transmission
errors. Historically, the data link layer has included the case where multiple terminals
are connected to a host computer in point-to-multipoint fashion. In Chapter 5 we will
discuss High-level Data Link Control (HDLC) protocol and Point-to-Point Protocol
(PPP), which are two standard data link controls that are in wide use.

The OSI data link layer was defined so that it included the functions of LANs,
which are characterized by the use of broadcast transmissions. The notion of a “link,”
then, includes the case where multiple nodes are connected to a broadcast medium.
As before, frames flow directly between nodes. A medium access control procedure
is required to coordinate the transmissions from the machines into the medium. A flat
addressing space is used to enable machines to listen and recognize frames that are
destined to them. Later in this chapter we will discuss the Ethernet LAN standard.

The network layer provides for the transfer of data in the form of packets across a
communication network. One key aspect of the network layer is the use of a hierarchical
addressing scheme that identifies the point of attachment to the network and that can
accommodate a large number of network users. A key aspect of the packet transfer
service is the routing of the packets from the source machine to the destination machine,
typically traversing a number of transmission links and network nodes where routing
is carried out. By routing protocol we mean the procedure that is used to select paths
across a network. The nodes in the network must work together to perform the routing
effectively. This function makes the network layer the most complex in the reference
model. The network layer is also responsible for dealing with the congestion that occurs
from time to time due to temporary surges in packet traffic.

When the two machines are connected to the same packet-switching network as in
Figure 2.5, a single address space and routing procedure are used. However, when the
two machines are connected to different networks, the transfer of data must traverse
two or more networks that possibly differ in their internal routing and addressing

H H

H

H

H

PS

PS

PS

PS

PS � packet switch

 H � host

FIGURE 2.5 A packet-switching
network using a uniform routing
procedure.

leogarcia-38245 book April 15, 2003 11:27

46 CHAPTER 2 Applications and Layered Architectures

G � gateway/router

H � host

G

GG

G

G

G

H

H

H

H

Net 5

Net 4

Net 3

Net 2

Net 1

FIGURE 2.6 An internetwork.

scheme. In this case internetworking protocols are necessary to route the data between
gateways/routers that connect the intermediate networks, as shown in Figure 2.6. The
internetworking protocols must also deal with differences in addressing and differences
in the size of the packets that are handled within each network. This internet sublayer
of the network layer assumes the responsibility for hiding the details of the underlying
network(s) from the upper layers. This function is particularly important given the large
and increasing number of available network technologies for accomplishing packet
transfer.

As shown in Figure 2.4, each intermediate node in the network must implement
the lower three layers. Thus one pair of network layer entities exists for each hop of the
path required through the network. Note that the network layer entities in the source
and destination machines are not peer processes, that is, if there are intermediate nodes
between them, they do not talk directly to each other.

The transport layer is responsible for the end-to-end transfer of messages from
a process in the source machine to a process in the destination machine. The transport
layer protocol accepts messages from its higher layers and prepares blocks of informa-
tion called segments or datagrams for transfer between end machines. The transport
layer uses the services offered by the underlying network or internetwork to provide
the session layer with a transfer of messages that meets a certain quality of service. The
transport layer can provide a variety of services. At one extreme the transport layer may
provide a connection-oriented service that involves the error-free transfer of a sequence
of bytes or messages. The associated protocol carries out error detection and recovery,
and sequence and flow control. At the other extreme the transport layer may instead
provide an unconfirmed connectionless service that involves the transfer of individual
messages. In this case the role of the transport layer is to provide the appropriate ad-
dress information so that the messages can be delivered to the appropriate destination
process. The transport layer may be called upon to segment messages that are too long

leogarcia-38245 book April 15, 2003 11:27

2.2 The OSI Reference Model 47

into shorter blocks of information for transfer across a network and to reassemble these
messages at the destination.

In TCP/IP networks, processes typically access the transport layer through socket
interfaces that are identified by a port number. We discuss the socket interface in the
Berkeley UNIX application programming interface (API) in an optional section later
in this chapter.

The transport layer can be responsible for setting up and releasing connections
across the network. To optimize the use of network services, the transport layer may
multiplex several transport layer connections onto a single network layer connection. On
the other hand, to meet the requirements of a high throughput transport layer connection,
the transport layer may use splitting to support its connection over several network layer
connections.

Note from Figure 2.4 that the top four layers are end to end and involve the inter-
action of peer processes across the network. In contrast the lower two layers of the OSI
reference model involve interaction of peer-to-peer processes across a single hop.

The session layer can be used to control the manner in which data are exchanged.
For example, certain applications require a half-duplex dialog where the two parties
take turns transmitting information. Other applications require the introduction of syn-
chronization points that can be used to mark the progress of an interaction and can
serve as points from which error recovery can be initiated. For example, this type of
service may be useful in the transfer of very long files over connections that have short
times between failures.

The presentation layer is intended to provide the application layer with indepen-
dence from differences in the representation of data. In principle, the presentation layer
should first convert the machine-dependent information provided by application A into
a machine-independent form, and later convert the machine-independent form into a
machine-dependent form suitable for application B. For example, different computers
use different codes for representing characters and integers, and also different conven-
tions as to whether the first or last bit is the most significant bit.

Finally, the purpose of the application layer is to provide services that are fre-
quently required by applications that involve communications. In the WWW example
the browser application uses the HTTP application-layer protocol to access a WWW
document. Application layer protocols have been developed for file transfer, virtual ter-
minal (remote log-in), electronic mail, name service, network management, and other
applications.

In general each layer adds a header, and possibly a trailer, to the block of information
it accepts from the layer above. Figure 2.7 shows the headers and trailers that are added as
a block of application data works its way down the seven layers. At the destination each
layer reads its corresponding header to determine what action to take and it eventually
passes the block of information to the layer above after removing the header and trailer.

In addition to defining a reference model, an objective of the ISO activity was the
development of standards for computer networks. This objective entailed specifying the
particular protocols that were to be used in various layers of the OSI reference model.
However, in the time that it took to develop the OSI protocol standards, the TCP/IP net-
work architecture emerged as an alternative for open systems interconnection. The free
distribution of TCP/IP as part of the Berkeley UNIX® ensured the development of

leogarcia-38245 book April 15, 2003 11:27

48 CHAPTER 2 Applications and Layered Architectures

Application A

Application
layer

Presentation
layer

Session
layer

Transport
layer

Network
layer

Data link
layer

Physical
layer

Application B

Application
layer

Presentation
layer

Session
layer

dh

Bits

dt

Transport
layer

Network
layer

Data link
layer

Physical
layer

nh

th

sh

ph

ah

Data

FIGURE 2.7 Headers and trailers are added to a block of data as it moves
down the layers.

numerous applications at various academic institutions and the emergence of a market
for networking software. This situation eventually led to the development of the global
Internet and to the dominance of the TCP/IP network architecture.

2.2.2 Unified View of Layers, Protocols, and Services

A lasting contribution from the development of the OSI reference model was the de-
velopment of a unified view of layers, protocols, and services. Similar requirements
occur at different layers in a network architecture, for example, in terms of addressing,
multiplexing, and error and flow control. This unified view enables a common under-
standing of the protocols that are found in different layers. In each layer a process on one
machine carries out a conversation with a peer process on the other machine across a
peer interface, as shown in Figure 2.8.3 In OSI terminology the processes at layer n are
referred to as layer n entities. Layer n entities communicate by exchanging protocol
data units (PDUs). Each PDU contains a header, which contains protocol control in-
formation, and usually user information. The behavior of the layer n entities is governed
by a set of rules or conventions called the layer n protocol. In the HTTP example the
HTTP client and server applications acted as peer processes. The processes that carry

3Peer-to-peer protocols are present in every layer of a network architecture. In Chapter 5 we present detailed
examples of peer-to-peer protocols.

leogarcia-38245 book April 15, 2003 11:27

2.2 The OSI Reference Model 49

Layer n
entity

Layer n
entity

Peer interface
n-PDUs

FIGURE 2.8 Peer-to-peer
communication.

Layer
n�1
entity

n-SDUn-SDU

n-SAPn-SAP

Peer interface

Service interface

Layer
n�1
entity

Layer n
entity

Layer n
entity

n-SDU H

n-SDU

n-PDU

H

FIGURE 2.9 Layer services: SDUs are
exchanged between layers while PDUs
are exchanged within a layer.

out the transmitter and receiver functions of TCP also constitute peer processes at the
layer below.

The communication between peer processes is usually virtual in the sense that no
direct communication link exists between them. For communication to take place, the
layer n + 1 entities make use of the services provided by layer n. The transmission of
the layer n + 1 PDU is accomplished by passing a block of information from layer
n + 1 to layer n through a software port called the layer n service access point (SAP)
across a service interface, as shown in Figure 2.9. Each SAP is identified by a unique
identifier (for example, recall that a WWW server process passes information to a TCP
process through a Transport-SAP or port number 80). The block of information passed
between layer n and layer n + 1 entities consists of control information and a layer n
service data unit (SDU), which is the layer n + 1 PDU itself. The layer n entity uses
the control information to form a header that is attached to the SDU to produce the layer
n PDU. Upon receiving the layer n PDU, the layer n peer process uses the header to
execute the layer n protocol and, if appropriate, to deliver the SDU to the corresponding
layer n + 1 entity. The communication process is completed when the SDU (layer n + 1
PDU) is passed to the layer n + 1 peer process.4

In principle, the layer n protocol does not interpret or make use of the information
contained in the SDU.5 We say that the layer n SDU, which is the layer n + 1 PDU,
is encapsulated in the layer n PDU. This process of encapsulation narrows the scope
of the dependencies between adjacent layers to the service definition only. In other

4It may be instructive to reread this paragraph where a DNS query message constitutes the layer n + 1 PDU
and a UDP datagram constitutes the layer n PDU.
5On the other hand, accessing some of the information “hidden” inside the SDU can sometimes be useful.

leogarcia-38245 book April 15, 2003 11:27

50 CHAPTER 2 Applications and Layered Architectures

words, layer n + 1, as a user of the service provided by layer n, is only interested in
the correct execution of the service required to transfer its PDUs. The details of the
implementation of the layers below layer n + 1 are irrelevant.

The service provided by layer n typically involves accepting a block of information
from layer n + 1, transferring the information to its peer process, which in turn delivers
the block to the user at layer n + 1. The service provided by a layer can be connection
oriented or connectionless. A connection-oriented service has three phases.

1. Establishing a connection between two layer n SAPs. The setup involves negotiating
connection parameters as well as initializing “state information” such as the sequence
numbers, flow control variables, and buffer allocations.

2. Transferring n-SDUs using the layer n protocol.
3. Tearing down the connection and releasing the various resources allocated to the

connection.

In the HTTP example in Section 2.1, the HTTP client process uses the connection
services provided by TCP to transfer the HTTP PDU, which consists of the request
message. A TCP connection is set up between the HTTP client and server processes,
and the TCP transmitter/receiver entities carry out the TCP protocol to provide a reliable
message stream service for the exchange of HTTP PDUs. The TCP connection is later
released after one or more HTTP responses have been received.

Connectionless service does not require a connection setup, and each SDU is
transmitted directly through the SAP. In this case the control information that is passed
from layer n + 1 to layer n must contain all the address information required to transfer
the SDU. In the DNS example in Section 2.1, UDP provides a connectionless service
for the exchange of DNS PDUs. No connection is established between the DNS client
and server processes.

In general, it is not necessary for the layers to operate in the same connection
mode. Thus for example, TCP provides a connection-oriented service but builds on the
connectionless service provided by IP.

The services provided by a layer can be confirmed or unconfirmed depending
on whether the sender must eventually be informed of the outcome. For example,
connection setup is usually a confirmed service. Note that a connectionless service can
be confirmed or unconfirmed depending on whether the sending entity needs to receive
an acknowledgment.

Information exchanged between entities can range from a few bytes to multi-
megabyte blocks or continuous byte streams. Many transmission systems impose a
limit on the maximum number of bytes that can be transmitted as a unit. For example,
Ethernet LANs have a maximum transmission size of approximately 1500 bytes. Con-
sequently, when the number of bytes that needs to be transmitted exceeds the maximum
transmission size of a given layer, it is necessary to divide the bytes into appropriate-
sized blocks.

In Figure 2.10a a layer n SDU is too large to be handled by the layer n − 1, and so
segmentation and reassembly are applied. The layer n SDU is segmented into multiple
layer n PDUs that are then transmitted using the services of layer n − 1. The layer n
entity at the other side must reassemble the original layer n SDU from the sequence of
layer n PDUs it receives.

leogarcia-38245 book April 15, 2003 11:27

2.2 The OSI Reference Model 51

Segmentation

Blocking

(b)

(a)

Unblocking

n-PDU n-PDUn-PDU

Reassembly

n-SDU

n-PDU n-PDUn-PDU

n-SDU

n-SDUn-SDU n-SDUn-SDUn-SDU n-SDU

n-PDU n-PDU

FIGURE 2.10 Segmentation/reassembly and blocking/unblocking.

On the other hand, it is also possible that the layer n SDUs are so small as to result
in inefficient use of the layer n − 1 services, and so blocking and unblocking may be
applied. In this case, the layer n entity may block several layer n SDUs into a single
layer n PDU as shown in Figure 2.10b. The layer n entity on the other side must then
unblock the received PDU into the individual SDUs.

Multiplexing involves the sharing of a layer n service by multiple layer n + 1 users.
Figure 2.11 shows the case where each layer n + 1 user passes its SDUs for transfer using
the service of a single layer n entity. Demultiplexing is carried out by the layer n entity at
the other end. When the layer n PDUs arrive at the other end of the connection, the SDUs
are recovered and must then be delivered to the appropriate layer n + 1 user. Clearly a
multiplexing tag is needed in each PDU to determine which user an SDU belongs to.
As an example consider the case where several application layer processes share the

n�1
entity

n-SDU

n�1
entity

n-SDU

n�1
entity

n�1
entity

n entity n entity

n-SDU H

n-SDU

n-PDU

H

FIGURE 2.11 Multiplexing
involves sharing of layer n service
by multiple layer n + 1 users.

leogarcia-38245 book April 15, 2003 11:27

52 CHAPTER 2 Applications and Layered Architectures

datagram services of UDP. Each application layer process passes its SDU through its
socket to the UDP entity. UDP prepares a datagram that includes the source port number,
the destination port number, as well as the IP address of the source and destination
machines. The server-side port number is a well-known port number that unambiguously
identifies the process that is to receive the SDU at the server end. The client-side port
number is an ephemeral number that is selected when the socket for the application is
established. Demultiplexing can then be carried out unambiguously at each UDP entity
by directing an arriving SDU to the port number indicated in the datagram.

Splitting involves the use of several layer n services to support a single layer n + 1
user. The SDUs from the single user are directed to one of several layer n entities, which
in turn transfer the given SDU to a peer entity at the destination end. Recombining
takes place at the destination where the SDUs recovered from each of the layer n entities
are passed to the layer n + 1 user. Sequence numbers may be required to reorder the
received SDUs.

Multiplexing is used to achieve more efficient use of communications services.
Multiplexing is also necessary when only a single connection is available between two
points. Splitting can be used to increase reliability in situations where the underlying
transfer mechanism is unreliable. Splitting is also useful when the transfer rate required
by the user is greater than the transfer rate available from individual services.

In closing we re-iterate: Similar needs occur at different layers and these can be
met by a common set of services such as those introduced here.

2.3 OVERVIEW OF TCP/IP ARCHITECTURE

The TCP/IP network architecture is a set of protocols that allows communication across
multiple diverse networks. The architecture evolved out of research that had the original
objective of transferring packets across three different packet networks: the ARPANET
packet-switching network, a packet radio network, and a packet satellite network. The
military orientation of the research placed a premium on robustness with regard to
failures in the network and on flexibility in operating over diverse networks. This envi-
ronment led to a set of protocols that are highly effective in enabling communications
among the many different types of computer systems and networks. Indeed, the Inter-
net has become the primary fabric for interconnecting the world’s computers. In this
section we introduce the TCP/IP network architecture. The details of specific protocols
that constitute the TCP/IP network architecture are discussed in later chapters.

2.3.1 TCP/IP Architecture

Figure 2.12a shows the TCP/IP network architecture, which consists of four layers.
The application layer provides services that can be used by other applications. For exam-
ple, protocols have been developed for remote login, for e-mail, for file transfer, and for
network management. The TCP/IP application layer incorporates the functions of the

leogarcia-38245 book April 15, 2003 11:27

2.3 Overview of TCP/IP Architecture 53

Application
layer

(a) (b)

Transport
layer

Internet
layer

Network
interface

Application
layer

Transport
layer

Internet
layer

Network
interface

FIGURE 2.12 TCP/IP network
architecture.

Application
layer

Transport
layer

Internet
layer

Network
interface

layer

Router/gateway

Machine BMachine A

Internet
layer

Network
interface

layer

Application
layer

Transport
layer

Internet
layer

Network 1 Network 2

Network
interface

layer

FIGURE 2.13 The internet
layer and network interface layers.

top three OSI layers. The HTTP protocol discussed in Section 2.1 is actually a TCP/IP
application layer protocol. Recall that the HTTP request message included format in-
formation and the HTTP protocol defined the dialogue between the client and server.

The TCP/IP application layer programs are intended to run directly over the trans-
port layer. Two basic types of services are offered in the transport layer. The first service
consists of reliable connection-oriented transfer of a byte stream, which is provided by
the Transmission Control Protocol (TCP). The second service consists of best-effort
connectionless transfer of individual messages, which is provided by the User Data-
gram Protocol (UDP). This service provides no mechanisms for error recovery or flow
control. UDP is used for applications that require quick but not necessarily reliable
delivery.

The TCP/IP model does not require strict layering, as shown in Figure 2.12b. In
other words, the application layer has the option of bypassing intermediate layers. For
example, an application layer may run directly over the internet layer.

The internet layer handles the transfer of information across multiple networks
through the use of gateways/routers, as shown in Figure 2.13. The internet layer

leogarcia-38245 book April 15, 2003 11:27

54 CHAPTER 2 Applications and Layered Architectures

corresponds to the part of the OSI network layer that is concerned with the transfer of
packets between machines that are connected to different networks. It must therefore
deal with the routing of packets from router to router across these networks. A key
aspect of routing in the internet layer is the definition of globally unique addresses for
machines that are attached to the Internet. The internet layer provides a single service,
namely, best-effort connectionless packet transfer. IP packets are exchanged between
routers without a connection setup; the packets are routed independently, and so they
may traverse different paths. For this reason, IP packets are also called datagrams.
The connectionless approach makes the system robust; that is, if failures occur in the
network, the packets are routed around the points of failure; there is no need to set up
the connections again. The gateways that interconnect the intermediate networks may
discard packets when congestion occurs. The responsibility for recovery from these
losses is passed on to the transport layer.

Finally, the network interface layer is concerned with the network-specific aspects
of the transfer of packets. As such, it must deal with part of the OSI network layer and
data link layer. Various interfaces are available for connecting end computer systems to
specific networks such as ATM, frame relay, Ethernet, and token ring. These networks
are described in later chapters.

The network interface layer is particularly concerned with the protocols that access
the intermediate networks. At each gateway the network access protocol encapsulates
the IP packet into a packet or frame of the underlying network or link. The IP packet
is recovered at the exit gateway of the given network. This gateway must then encap-
sulate the IP packet into a packet or frame of the type of the next network or link. This
approach provides a clear separation of the internet layer from the technology-dependent
network interface layer. This approach also allows the internet layer to provide a data
transfer service that is transparent in the sense of not depending on the details of the
underlying networks. The next section provides a detailed example of how IP operates
over the underlying networks.

Figure 2.14 shows some of the protocols of the TCP/IP protocol suite. The figure
shows two of the many protocols that operate over TCP, namely, HTTP and SMTP.

IP

UDP

RTPDNS

TCP

SMTPHTTP

Network
interface 3

Network
interface 2

Network
interface 1

FIGURE 2.14 TCP/IP protocol
graph.

leogarcia-38245 book April 15, 2003 11:27

2.3 Overview of TCP/IP Architecture 55

The figure also shows DNS and Real-Time Protocol (RTP), which operate over UDP.
The transport layer protocols TCP and UDP, on the other hand, operate over IP. Many
network interfaces are defined to support IP. The salient part of Figure 2.14 is that all
higher-layer protocols access the network interfaces through IP. This feature provides
the capability to operate over multiple networks. The IP protocol is complemented by
additional protocols (ICMP, IGMP, ARP, RARP) that are required to operate an internet.
These protocols are discussed in Chapter 8.

The hourglass shape of the TCP/IP protocol graph underscores the features that
make TCP/IP so powerful. The operation of the single IP protocol over various networks
provides independence from the underlying network technologies. The communication
services of TCP and UDP provide a network-independent platform on which applica-
tions can be developed. By allowing multiple network technologies to coexist, the
Internet is able to provide ubiquitous connectivity and to achieve enormous economies
of scale.

2.3.2 TCP/IP Protocol: How the Layers Work Together

We now provide a detailed example of how the layering concepts discussed in the
previous sections are put into practice in a typical TCP/IP network scenario. We show

• Examples of each of the layers.
• How the layers interact across the interfaces between them.
• How the PDUs of a layer are built and what key information is in the header.
• The relationship between physical addresses and IP addresses.
• How an IP packet or datagram is routed across several networks.

We first consider a simplified example, and then we present an example showing PDUs
captured in a live network by a network protocol analyzer. These examples will complete
our goal of providing the big picture of networking. In the remainder of the book we
systematically examine the details of the various components and aspects of networks.

Consider the network configuration shown in Figure 2.15a. A server, a workstation,
and a router are connected to an Ethernet LAN, and a remote PC is connected to the
router through a point-to-point link. From the point of view of IP, the Ethernet LAN
and the point-to-point link constitute two different networks as shown in Figure 2.15b.

IP ADDRESSES AND PHYSICAL ADDRESSES
Each host in the Internet is identified by a globally unique IP address. Strictly speaking,
the IP address identifies the host’s network interface rather than the host itself. A node
that is attached to two or more physical networks is called a router. In this example the
router attaches to two networks with each network interface assigned to a unique
IP address. An IP address is divided into two parts: a network id and a host id. The
network id must be obtained from an organization authorized to issue IP addresses. In
this example we use simplified notation and assume that the Ethernet has net id 1 and
that the point-to-point link has a net id 2. In the Ethernet we suppose that the server has
IP address (1,1), the workstation has IP address (1,2), and the router has address (1,3).
In the point-to-point link, the PC has address (2,2), and the router has address (2,1).

leogarcia-38245 book April 15, 2003 11:27

56 CHAPTER 2 Applications and Layered Architectures

HTTP

TCP

IP

Network
interface

Router

PC

(1,2)

PPP

Server

Ethernet

Workstation

(1,1) (2,2)

Server PC

(b)

(a)

IP

Network
interface

HTTP

Router

(1,3)
r

w

s

TCP

IP

Network
interface

Ethernet PPP

(2,1)

FIGURE 2.15 An example of an internet consisting of an Ethernet
LAN and a point-to-point link: (a) physical configuration view and
(b) IP network view.

On a LAN the attachment of a device to the network is often identified by a physical
address. The format of the physical address depends on the particular type of network.
For example, Ethernet LANs use 48-bit addresses. Each Ethernet network interface card
(NIC) is issued a globally unique medium access control (MAC) or physical address.
When a NIC is used to connect a machine to any Ethernet LAN, all machines in the
LAN are automatically guaranteed to have unique addresses. Thus the router, server,
and workstation also have physical addresses designated by r, s, and w, respectively.

SENDING AND RECEIVING IP DATAGRAMS
First, let us consider the case in which the workstation wants to send an IP datagram to
the server. The IP datagram has the workstation’s IP address and the server’s IP address
in the IP packet header. We suppose that the IP address of the server is known. The IP
entity in the workstation looks at its routing table to see whether it has an entry for the

leogarcia-38245 book April 15, 2003 11:27

2.3 Overview of TCP/IP Architecture 57

IP
header

Ethernet
header

Frame
check

sequence

Header contains
source and destination
physical addresses;
network protocol type

FIGURE 2.16 IP datagram is encapsulated in an Ethernet frame.

complete IP address. It finds that the server is directly connected to the same network
and that the server has physical address s.6 The IP datagram is passed to the Ethernet
device driver, which prepares an Ethernet frame as shown in Figure 2.16. The header in
the frame contains the source physical address, w, and the destination physical address,
s. The header also contains a protocol type field that is set to the value that corresponds
to IP. The type field is required because the Ethernet may be carrying packets for other
non-IP protocols. The Ethernet frame is then broadcast over the LAN. The server’s NIC
recognizes that the frame is intended for its host, so the card captures the frame and
examines it. The NIC finds that the protocol type field is set to IP and therefore passes
the IP datagram up to the IP entity.

Next let us consider the case in which the server wants to send an IP datagram to
the personal computer. The PC is connected to the router through a point-to-point link
that we assume is running PPP as the data link control.7 We suppose that the server
knows the IP address of the PC and that the IP addresses on either side of the link were
negotiated when the link was set up. The IP entity in the server looks at its routing
table to see whether it has an entry for the complete IP address of the PC. We suppose
that it doesn’t. The IP entity then checks to see whether it has a routing table entry that
matches the network id portion of the IP portion of the IP address of the PC. Again we
suppose that the IP entity does not find such an entry. The IP entity then checks to see
whether it has an entry that specifies a default router that is to be used when no other
entries are found. We suppose that such an entry exists and that it specifies the router
with address (1,3).

The IP datagram is passed to the Ethernet device driver, which prepares an
Ethernet frame. The header in the frame contains the source physical address, s, and the
destination physical address, r . However, the IP datagram in the frame contains the des-
tination IP address of the PC, (2,2), not the destination IP address of the router. The
Ethernet frame is then broadcast over the LAN. The router’s NIC captures the frame
and examines it. The card passes the IP datagram up to its IP entity, which discovers
that the IP datagram is not for itself but is to be routed on.

6If the IP entity does not know the physical address corresponding to the IP address of the server, the entity
uses the Address Resolution Protocol (ARP) to find it. ARP is discussed in Chapter 8.
7PPP is discussed in Chapter 5.

leogarcia-38245 book April 15, 2003 11:27

58 CHAPTER 2 Applications and Layered Architectures

The routing tables at the router show that the machine with address (2,2) is con-
nected directly on the other side of the point-to-point link. The router encapsulates
the IP datagram in a PPP frame that is similar to that of the Ethernet frame shown in
Figure 2.16. However, the frame does not require physical address information, since
there is only one “other side” of the link. The PPP receiver at the PC receives the frame,
checks the protocol type field, and passes the IP datagram to its IP entity.

HOW THE LAYERS WORK TOGETHER
The preceding discussion shows how IP datagrams are sent across an internet. Next
let’s complete the picture by seeing how things work at the higher layers. Consider the
browser application discussed in the beginning of the chapter. We suppose that the user
at the PC has clicked on a web link of a document contained in the server and that a
TCP connection has already been established between the PC and the server.8 Consider
what happens when the TCP connection is confirmed at the PC. The HTTP request
message GET is passed to the TCP layer, which encapsulates the message into a TCP
segment as shown in Figure 2.17. The TCP segment contains an ephemeral port number
for the client process, say, c, and a well-known port number for the server process, 80
for HTTP.

The TCP segment is passed to the IP layer, which in turn encapsulates the segment
into an Internet packet. The IP packet header contains the IP addresses of the sender,
(2,2), and the destination, (1,1). The header also contains a protocol field, which des-
ignates the layer that is operating above IP, in this case TCP. The IP datagram is then
encapsulated using PPP and sent to the router, which routes the datagram to the server
using the procedures discussed above. Note that the router encapsulates the IP datagram
for the server in an Ethernet frame.

Eventually the server NIC captures the Ethernet frame and extracts the IP datagram
and passes it to the IP entity. The protocol field in the IP header indicates that a TCP
segment is to be extracted and passed on to the TCP layer. The TCP layer, in turn,
uses the port number to find out that the message is to be passed to the HTTP server
process. A problem arises at this point: The server process is likely to be simultaneously
handling multiple connections to multiple clients. All these connections have the same
destination IP address; the same destination port number, 80; and the same protocol
type, TCP. How does the server know which connection the message corresponds to?
The answer is in how an end-to-end process-to-process connection is specified.

The source port number, the source IP address, and the protocol type are said to
define the sender’s socket address. Similarly, the destination port number, the destina-
tion IP address, and the protocol type define the destination’s socket address. Together
the source socket address and the destination socket address uniquely specify the con-
nection between the HTTP client process and the HTTP server process. For example,
in the earlier HTTP example the sender’s socket is (TCP, (2,2), c), and the destination’s
socket is (TCP, (1,1), 80). The combination of these five parameters (TCP, (2,2), c,
(1,1), 80) uniquely specify the process-to-process connection.

8The details of how a TCP connection is set up are described in Chapter 8.

leogarcia-38245 book April 23, 2003 11:55

2.3 Overview of TCP/IP Architecture 59

IP
header

Ethernet
header

Frame
check

sequence

Header contains
source and destination
physical addresses;
network protocol type

Header contains
source and destination
IP addresses;
transport protocol type

Header contains
source and destination
port numbers

TCP
header

HTTP request

FIGURE 2.17 Encapsulation of PDUs in TCP/IP and addressing information in
the headers. (Ethernet header is replaced with PPP header on a PPP link.)

VIEWING THE LAYERS USING A NETWORK PROTOCOL ANALYZER
A network protocol analyzer is a tool that can capture, display, and analyze the PDUs
that are exchanged between peer processes. Protocol analyzers are extremely useful in
troubleshooting network problems and also as an educational tool. Network protocol
analyzers are discussed in the last section of this chapter. In our examples we will use
the Ethereal open source package. In this section we use a sequence of captured packets
to show how the layers work together in a simple web interaction.

Figure 2.18 shows the Ethereal display after capturing packets that are transmitted
after clicking on the URL of the New York Times. The top pane in the display shows
the first eight packets that are transmitted during the interaction:

1. The first packet carries a DNS query from the machine with IP address
128.100.100.13 for the IP address of www.nytimes.com. It can be seen from the
first packet that the IP address of the local DNS server is 128.100.100.128. The sec-
ond packet carries the DNS response that provides three IP addresses, 64.15.347.200,
64.15.347.245, and 64.94.185.200 for the URL.

2. The next three packets correspond to the three-way handshake that is used to estab-
lish a TCP connection between the client and the server.9 In the first packet the client
(with IP address 128.100.100.128 and port address 1127) makes a TCP connection
setup request by sending an IP packet to 64.15.347.200 and well-known port number
80. In the first packet, the client also includes an initial sequence number to keep

9TCP is discussed in detail in Chapter 8.

leogarcia-38245 book April 16, 2003 9:9

60 CHAPTER 2 Applications and Layered Architectures

FIGURE 2.18 Viewing packet exchanges and protocol layers using Ethereal; the display has
three panes (from top to bottom): packet capture list, details of selected packet, and data from
the selected packet.

count of the bytes it transmits. In the second packet the server acknowledges the con-
nection request and proposes its own initial sequence number. With the third packet,
the client confirms the TCP connection setup and the initial sequence numbers. The
TCP connection is now ready.

3. The sixth packet carries the HTTP “GET” request from the client to the server.
4. The seventh packet carries an acknowledgment message that is part of the

TCP protocol.
5. The final packet carries the HTTP status response from the server. The response code

200 confirms that the request was successful and that the document will follow.

The process of encapsulation (see Figure 2.17) means that a given captured frame
carries information from multiple layers. Figure 2.18 illustrates this point quite clearly.
The middle pane displays information about the highlighted packet (a DNS query) of
the top pane. By looking down the list in the middle pane, one can see the protocol
stack that the DNS query traversed, UDP over IP over Ethernet.

Figure 2.19 provides more information about the same DNS packet (obtained by
clicking on the “+” to the left of the desired entry in the middle pane). In the figure the
UDP and DNS entries have been expanded. In the UDP entry, it can be seen that the first
packet carries source port number 1126 and well-known destination port number 53. The
DNS entry shows the contents of the DNS query. Finally the third pane in Figure 2.19

leogarcia-38245 book April 15, 2003 11:27

2.3 Overview of TCP/IP Architecture 61

FIGURE 2.19 More detailed protocol layer information for selected captured packet.

shows the actual raw data of the captured packet. The highlighted data in the third pane
corresponds to the fields that are highlighted in the middle pane. Thus the highlighted
area in the figure contains the data relating to the DNS PDU. From the third line in the
middle pane we can see the source and destination IP addresses of the IP datagram that
carries the given UDP packet. The second line shows the Ethernet physical addresses of
this frame that carries the given UDP packet. By expanding the IP and Ethernet entries
we can obtain the details of the IP datagram and the Ethernet frame. We will explore
the details of these and other protocols in the remainder of the book.

2.3.3 Protocol Overview

This completes the discussion on how the different layers work together in a TCP/IP
Internet. In the remaining chapters we examine the details of the operation of the
various layers. In Chapters 3 and 4 we consider various aspects of physical layers. In
Chapter 5 we discuss peer-to-peer protocols that allow protocols such as TCP to provide
reliable service. We also discuss data link control protocols. In Chapter 6 we discuss
LANs and their medium access controls. In Chapter 7 we return to the network layer
and examine the operation of routers and packet switches as well as issues relating to
addressing, routing, and congestion control. Chapter 8 presents a detailed discussion of
the TCP and IP protocols. In Chapter 9 we introduce ATM, a connection-oriented packet

leogarcia-38245 book April 15, 2003 11:27

62 CHAPTER 2 Applications and Layered Architectures

network architecture. In Chapter 10 we discuss advanced topics, such as connection-
oriented IP networks realized through MPLS, new developments in TCP/IP architecture
and the support of real-time multimedia services over IP. In Chapter 11 we introduce
enhancements to IP that provide security. From time to time it may be worthwhile to
return to this example to place the discussion of details in the subsequent chapters into
the big picture presented here.

◆ 2.4 THE BERKELEY API10

An Application Programming Interface (API) allows application programs (such as
Telnet, web browsers, etc.) to access certain resources through a predefined and prefer-
ably consistent interface. One of the most popular of the APIs that provide access to
network resources is the Berkeley socket interface, which was developed by a group
at the University of California at Berkeley in the early 1980s. The socket interface
is now widely available on many UNIX machines. Another popular socket interface,
which was derived from the Berkeley socket interface, is called the Windows sockets
or Winsock and was designed to operate in a Microsoft® Windows environment.

By hiding the details of the underlying communication technologies as much as pos-
sible, the socket mechanism allows programmers to write application programs easily
without worrying about the underlying networking details. Figure 2.20 shows how two
applications talk to each other across a communication network through the socket
interface. In a typical communication session, one application operates as a server and
the other as a client. The server is the provider of a particular service while the client is
the consumer. A server waits passively most of the time until a client requires a service.

This section explains how the socket mechanism can provide services to the appli-
cations. Two modes of services are available through the socket interface: connection-
oriented and connectionless. With the connection-oriented mode, an application must
first establish a connection to the other end before the actual communication (i.e., data
transfer) can take place. The connection is established if the other end agrees to accept
the connection. Once the connection is established, data will be delivered through the
connection to the destination in sequence. The connection-oriented mode provides a
reliable delivery service. With the connectionless mode an application sends its data im-
mediately without waiting for the connection to get established at all. This mode avoids
the setup overhead found in the connection-oriented mode. However, the price to pay
is that an application may waste its time sending data when the other end is not ready to
accept it. Moreover, data may not arrive at the other end if the network decides to discard
it. Worse yet, even if data arrives at the destination, it may not arrive in the same order as
it was transmitted. The connectionless mode is said to provide best-effort service, since
the network would try its best to deliver the information but cannot guarantee delivery.

Figure 2.21 shows a typical diagram of the sequence of socket calls for the
connection-oriented mode. The server begins by carrying out a passive open as

10This section is optional and is not required for later sections. A knowledge of C programming is assumed.

leogarcia-38245 book April 15, 2003 11:27

2.4 The Berkeley API 63

Communication
network

Application 1 Application 2

Underlying
communication

protocols

Underlying
communication

protocols

Socket

User

Kernel

User

Kernel

Socket

Socket
interface

Socket
interface

FIGURE 2.20 Communications through the socket interface.

Server

Client

socket()

bind()

listen()

accept()

connect()

read()

Blocks until server receives
a connect request from client

write()

close()

socket()

write()

read()

close()

Data

Connect
negotiation

Data

FIGURE 2.21 Socket calls for
connection-oriented mode.

leogarcia-38245 book April 15, 2003 11:27

64 CHAPTER 2 Applications and Layered Architectures

Server

Client

Data

Data

socket()

bind()

recvfrom()

socket()

sendto()

Blocks until server receives
data from client

close()

sendto()

recvfrom()

close()

FIGURE 2.22 Socket calls for
connectionless mode.

follows. The socket call creates a TCP socket. The bind call then binds the well-
known port number of the server to the socket. The listen call turns the socket into a
listening socket that can accept incoming connections from clients. Finally, the accept
call puts the server process to sleep until the arrival of a client connection request. The
client does an active open. The socket call creates a socket on the client side, and the
connect call attempts to establish the TCP connection to the server with the specified
destination socket address. When the TCP connection is established, the accept func-
tion at the server wakes up and returns the descriptor for the given connection, namely,
the source IP address, source port number, destination IP address, and destination port
number. The client and server are now ready to exchange information.

Figure 2.22 shows the sequence of socket calls for the connectionless mode. Note
that no connection is established prior to data transfer. The recvfrom call returns when
a complete UDP datagram has been received. For both types of communication, the
data transfer phase may occur in an arbitrary number of exchanges.

2.4.1 Socket System Calls

Socket facilities are provided to programmers through C system calls that are simi-
lar to function calls except that control is transferred to the operating system kernel
once a call is entered. To use these facilities, the header files <sys/types.h> and
<sys/socket.h> must be included in the program.

CREATING A SOCKET
Before an application program (client or server) can transfer any data, it must first create
an endpoint for communication by calling socket. Its prototype is

int socket(int family, int type, int protocol);

leogarcia-38245 book April 15, 2003 11:27

2.4 The Berkeley API 65

where family identifies the family by address or protocol. The address family identifies
a collection of protocols with the same address format, while the protocol family
identifies a collection of protocols having the same architecture. Although it may be
possible to classify the family based on addresses or protocols, these two families
are currently equivalent. Some examples of the address family that are defined in
<sys/socket.h> include AF_UNIX, which is used for communication on the local
UNIX machine, and AF_INET, which is used for Internet communication using TCP/IP
protocols. The protocol family is identified by the prefix PF_. The value of PF_XXX
is equal to that of AF_XXX, indicating that the two families are equivalent. We are
concerned only with AF_INET in this book.

The type identifies the semantics of communication. Some of the types include
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW. A SOCK_STREAM type provides data de-
livery service as a sequence of bytes and does not preserve message boundaries. A
SOCK_DGRAM type provides data delivery service in blocks of bytes called datagrams.
A SOCK_RAW type provides access to internal network interfaces and is available only
to superuser.

The protocol identifies the specific protocol to be used. Normally, only one pro-
tocol is available for each family and type, so the value for the protocol argu-
ment is usually set to 0 to indicate the default protocol. The default protocol of
SOCK_STREAM type with AF_INET family is TCP, which is a connection-oriented pro-
tocol providing a reliable service with in-sequence data delivery. The default protocol
of SOCK_DGRAM type with AF_INET family is UDP, which is a connectionless protocol
with unreliable service.

The socket call returns a nonnegative integer value called the socket descriptor or
handle (just like a file descriptor) on success. On failure, socket returns −1.

ASSIGNING AN ADDRESS TO THE SOCKET
After a socket is created, the bind system call can be used to assign an address to the
socket. Its prototype is

int bind(int sd, struct sockaddr *name, int namelen);

where sd is the socket descriptor returned by the socket call, name is a pointer to an
address structure that contains the local IP address and port number, and namelen is
the size of the address structure in bytes. The bind system call returns 0 on success
and −1 on failure. The sockaddr structure is a generic address structure and has the
following definition:

struct sockaddr {
u_short sa_family; /* address family */
char sa_data[14]; /* address */

};

where sa_family holds the address family and sa_data holds up to 14 bytes of address
information that varies from one family to another. For the Internet family the address
information consists of the port number that is two bytes long and an IP address that

leogarcia-38245 book April 15, 2003 11:27

66 CHAPTER 2 Applications and Layered Architectures

is four bytes long. The appropriate structures to use for the Internet family are defined
in <netinet/in.h>:

struct in addr {
u_long s_addr; /* 32-bit IP address */

};
struct sockaddr_in {

u_short sin_family; /* AF_INET */

u_short sin_port; /* TCP or UDP port */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* unused */

};

An application program using the Internet family should use the sockaddr_in

structure to assign member values and should use the sockaddr structure only for
casting purposes in function arguments. For this family sin_family holds the value of
the identifier AF_INET. The structure member sin_port holds the local port number.
Port numbers 1 to 1023 are normally reserved for system use. For a server, sin_port
contains a well-known port number that clients must know in advance to establish a
connection. Specifying a port number 0 to bind asks the system to assign an available
port number. The structure member sin_addr holds the local IP address. For a host
with multiple IP addresses, sin_addr is typically set to INADDR_ANY to indicate that
the server is willing to accept communication through any of its IP addresses. This
setting is useful for a host with multiple IP addresses. The structure member sin_zero
is used to fill out struct sockaddr_in to 16 bytes.

Different computers may store a multibyte word in different orders. If the least
significant byte is stored first (has lower address), it is known as little endian. If the
most significant byte is stored first, it is known as big endian. For any two computers to
be able to communicate, they must agree on a common data format while transferring
multibyte words. The Internet adopts the big-endian format. This representation is
known as network byte order in contrast to the representation adopted by the host,
which is called host byte order. It is important to remember that the values of sin_port
and sin_addr must be in the network byte order, since these values are communicated
across the network. Four functions are available to convert between the host and network
byte order conveniently. Functions htons and htonl convert an unsigned short and an
unsigned long, respectively, from the host to network byte order. Functions ntohs and
ntohl convert an unsigned short and an unsigned long, respectively, from the network to
host byte order. We need to use these functions so that programs will be portable to any
machine. To use these functions, we should include the header files <sys/types.h>
and <netinet/in.h>. The appropriate prototypes are

u_long htonl(u_long hostlong);
u_short htons(u_short hostshort);
u_long ntohl(u_long netlong);
u_short ntohs(u_short netshort);

ESTABLISHING AND ACCEPTING CONNECTIONS
A client establishes a connection on a socket by calling connect. The prototype is

int connect(int sd, struct sockaddr *name, int namelen);

leogarcia-38245 book April 15, 2003 11:27

2.4 The Berkeley API 67

where sd is the socket descriptor returned by the socket call, name points to the server
address structure, and namelen specifies the amount of space in bytes pointed to by
name. For the connection-oriented mode, connect attempts to establish a connection
between a client and a server. For the connectionless mode, connect stores the server’s
address so that the client can use a mode socket descriptor when sending datagrams,
instead of specifying the server’s address each time a datagram is sent. The connect

system call returns 0 on success and −1 on failure.
A connection-oriented server indicates its willingness to receive connection re-

quests by calling listen. The prototype is

int listen(int sd, int backlog);

where sd is the socket descriptor returned by the socket call and backlog specifies
the maximum number of connection requests that the system should queue while it
waits for the server to accept them (the maximum value is usually 5). This mechanism
allows pending connection requests to be saved while the server is busy processing
other tasks. The listen system call returns 0 on success and −1 on failure.

After a server calls listen, it can accept the connection request by calling accept
with the prototype

int accept(int sd, struct sockaddr *addr, int *addrlen);

where sd is the socket descriptor returned by the socket call, addr is a pointer to an
address structure that accept fills in with the client’s IP address and port number, and
addrlen is a pointer to an integer specifying the amount of space pointed to by addr

before the call. On return, the value pointed to by addrlen specifies the number of
bytes of the client address information.

If no connection requests are pending, accept will block the caller until a con-
nection request arrives. The accept system call returns a new socket descriptor having
nonnegative value on success and −1 on failure. The new socket descriptor inherits the
properties of sd. The server uses the new socket descriptor to perform data transfer for
the new connection. While data transfer occurs on an existing connection, a concurrent
server can accept further connection requests using the original socket descriptor sd,
allowing multiple clients to be served simultaneously.

TRANSMITTING AND RECEIVING DATA
Clients and servers may transmit data using write or sendto. The write call is usually
used for the connection-oriented mode. However, a connectionless client may also
call write if it has a connected socket (that is, the client has executed connect). On
the other hand, the sendto call is usually used for the connectionless mode. Their
prototypes are

int write(int sd, char *buf, int buflen);
int sendto(int sd, char *buf, int buflen, int flags,

struct sockaddr *addrp, int addrlen);

where sd is the socket descriptor, buf is a pointer to a buffer containing the data to
transmitted, buflen is the length of the data in bytes, flags can be used to control

leogarcia-38245 book April 15, 2003 11:27

68 CHAPTER 2 Applications and Layered Architectures

transmission behavior such as handling out-of-band (high priority) data but is usually
set to 0 for normal operation, addrp is a pointer to the sockaddr structure containing
the address information of the remote hosts, and addrlen is the length of the address
information. Both write and sendto return the number of bytes transmitted on success
or −1 on failure.

The corresponding system calls to receive data read and recvfrom. Their proto-
types are

int read(int sd, char *buf, int buflen);
int recvfrom(int sd, char * buf, int buflen, int flags,

struct sockaddr *addrp, int *addrlen);

The parameters are similar to the ones discussed above except buf is now a pointer to
a buffer that is used to store the received data and buflen is the length of the buffer in
bytes. Both read and recvfrom return the number of bytes received on success or −1
on failure. Both calls will block if no data arrives at the local host.

CLOSING A CONNECTION
If a socket is no longer in use, the application can call close to terminate a connection
and return system resources to the operating system. The prototype is

int close(int sd);

where sd is the socket descriptor to be closed. The close call returns 0 on success and
−1 on failure.

2.4.2 Network Utility Functions

Library routines are available to convert a human-friendly domain name such as
tesla.comm.utoronto.ca into a 32-bit machine-friendly IP as 10000000 01100100
00001011 00000001 and vice versa. To perform the conversion we should include
the header files <sys/socket.h>, <sys/types.h>, and <netdb.h>. The appropriate
structure that stores the host information defined in the <netdb.h> file is

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias name this host uses */
int h_addrtype; /* address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses from name

server */
};

The h_name element points to the official name of the host. If the host has name
aliases, these aliases are pointed to by h_aliases, which is terminated by a NULL.
Thus h_aliases[0] points to the first alias, h_aliases[1] points to the second

leogarcia-38245 book April 15, 2003 11:27

2.4 The Berkeley API 69

alias, and so on. Currently, the h_addrtype element always takes on the value of
AF_INET, and the h_length element always contains a value of 4. The h_addr_list
points to the list of network addresses in network byte order and is terminated by a
NULL.

NAME-TO-ADDRESS CONVERSION FUNCTIONS
Two functions are used for routines performing a name-to-address-conversion:
gethostbyname and gethostbyaddr.

struct hostent *gethostbyname (char *name);

The function gethostbyname takes a domain name at the input and returns the host
information as a pointer to struct hostent. The function returns a NULL on error. The
parameter name is a pointer to a domain name of a host whose information we would
like to obtain. The function gethostbyname obtains the host information either from
the file /etc/hosts or from a name server. Recall that the host information includes
the desired address.

struct hostent *gethostbyaddr (char *addr, int len, int type);

The function gethostbyaddr takes a host address at the input in network byte order,
its length in bytes, and type, which should be AF_INET. The function returns the same
information as gethostbyname. This information includes the desired host name.

The IP address is usually communicated by people using a notation called the
dotted-decimal notation. As an example, the dotted-decimal notation of the IP address
10000000 01100100 00001011 00000001 is 128.100.11.1. To convert between these
two formats, we could use the functions inet_addr and inet_ntoa. The header files
that must be included are <sys/types.h>, <sys/socket.h>, <netinet/in.h>, and
<arpa/inet.h>.

IP ADDRESS MANIPULATION FUNCTIONS
Two functions are used for routines converting addresses between a 32-bit format and
the dotted-decimal notation: inet_nota and inet_addr.

char *inet_ntoa(struct in_addr in);

The function inet_ntoa takes a 32-bit IP address in network byte order and returns
the corresponding address in dotted-decimal notation.

unsigned long inet_addr(char *cp);

The function inet_addr takes a host address in dotted-decimal notation and returns
the corresponding 32-bit IP address in network byte order.

leogarcia-38245 book April 15, 2003 11:27

70 CHAPTER 2 Applications and Layered Architectures

EXAMPLE Communicating with TCP

As an illustration of the use of the system calls and functions described previously, let
us show two application programs that communicate via TCP. The client prompts a
user to type a line of text, sends it to the server, reads the data back from the server,
and prints it out. The server acts as a simple echo server. After responding to a client,
the server closes the connection and then waits for the next new connection. In this
example each application (client and server) expects a fixed number of bytes from the
other end, specified by BUFLEN. Because TCP is stream oriented, the received data may
come in multiple pieces of byte streams independent of how the data was sent at the
other end. For example, when a transmitter sends 100 bytes of data in a single write

call, the receiver may receive the data in two pieces—80 bytes and 20 bytes—or in
three pieces—10 bytes, 50 bytes, and 40 bytes—or in any other combination. Thus the
program has to make repeated calls to read until all the data has been received. The
following program is the server.

/* A simple echo server using TCP */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_TCP_PORT 3000 /* well-known port */
#define BUFLEN 256 /* buffer length */

int main(int argc, char **argv)
{

int n, bytes_to_read;
int sd, new_sd, client_len, port;
struct sockaddr_in server, client;
char *bp, buf[BUFLEN];

switch(argc) {
case 1:

port = SERVER_TCP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, "Usage: %s [port]\n", argv[0]);
exit(1);

}

/* Create a stream socket */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

fprintf(stderr, "Can’t create a socket\n");
exit(1);

}

leogarcia-38245 book April 15, 2003 11:27

2.4 The Berkeley API 71

/* Bind an address to the socket */
bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;

server.sin_port = htons(port);
server.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {
fprintf(stderr, "Can’t bind name to socket\n");
exit(1);

}

/* queue up to 5 connect requests */
listen(sd, 5);

while (1) {
client_len = sizeof(client);
if ((new_sd = accept(sd, (struct sockaddr *)
&client, &client_len)) == -1) {
fprintf(stderr, "Can’t accept client\n");
exit(1);

}

bp = buf;
bytes_to_read = BUFLEN;
while ((n = read(new_sd, bp, bytes_to_read)) > 0) {
bp += n;
bytes_to_read -= n;

}

write(new_sd, buf, BUFLEN);
close(new_sd);

}
close(sd);
return(0);

}

The client program allows the user to identify the server by its domain name. Conversion
to the IP address is done by the gethostbyname function. Again, the client makes
repeated calls to read until no more data is expected to arrive. The following program
is the client.

/* A simple TCP client */
#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_TCP_PORT 3000
#define BUFLEN 256 /* buffer length */

leogarcia-38245 book April 15, 2003 11:27

72 CHAPTER 2 Applications and Layered Architectures

int main(int argc, char **argv)
{

int n, bytes_to_read;
int sd, port;
struct hostent *hp;
struct sockaddr_in server;
char *host, *bp, rbuf[BUFLEN], sbuf[BUFLEN];

switch(argc) {
case 2:

host = argv[1];
port = SERVER_TCP_PORT;
break;

case 3:
host = argv[1];
port = atoi(argv[2]);
break;

default:
fprintf(stderr, "Usage: %s host[port]\n", argv[0]);
exit(1);

}

/* Create a stream socket */
if ((sd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

fprintf(stderr, "Can’t create a socket\n");
exit(1);

}

bzero((char *)&server, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, "Can’t get server’s address\n");
exit(1);

}
bcopy(hp->h_addr, (char *)&server.sin_addr,

hp->h_length);

/* Connecting to the server */
if (connect(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can’t connect\n");
exit(1);

}
printf("Connected: server’s address is %s\n",

hp->h_name);

leogarcia-38245 book April 15, 2003 11:27

2.4 The Berkeley API 73

printf("Transmit:\n");
gets(sbuf); /* get user’s text */
write(sd, sbuf, BUFLEN); /* send it out */

printf("Receive:\n");
bp = rbuf;
bytes_to_read = BUFLEN;
while ((n = read (sd, bp, bytes_to_read)) > 0) {

bp += n;
bytes_to_read -= n;

}
printf("%s\n", rbuf);

close(sd);
return(0);

}

The student is encouraged to verify the sequence of socket calls in the above client
and server programs with those shown in Figure 2.21. Further, the student may trace
the sequence of calls by inserting a print statement after each call and verify that the
accept call in the TCP server blocks until the connect call in the TCP client returns.

EXAMPLE Using the UDP Protocol

Let us now take a look at client/server programs using the UDP protocol. The following
source code is a program that uses the UDP server as an echo server as before. Note
that data receipt can be done in a single call with recvfrom, since UDP is blocked
oriented.

/* Echo server using UDP */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_UDP_PORT 5000 /* well-known port */
#define MAXLEN 4096 /* maximum data length */

int main(int argc, char **argv)
{

int sd, client_len, port, n;
char buf[MAXLEN];
struct sockaddr_in server, client;

leogarcia-38245 book April 15, 2003 11:27

74 CHAPTER 2 Applications and Layered Architectures

switch(argc) {
case 1:

port = SERVER_UDP_PORT;
break;

case 2:
port = atoi(argv[1]);
break;

default:
fprintf(stderr, "Usage: %s [port]\n", argv[0]);
exit(1);

}

/* Create a datagram socket */
if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "Can’t create a socket\n");
exit(1);

}

/* Bind an address to the socket */
bzero((char *)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = htonl(INADDR_ANY);
if (bind(sd, (struct sockaddr *)&server,
sizeof(server)) == -1) {

fprintf(stderr, "Can’t bind name to socket\n");
exit(1);

}

while (1) {
client_len = sizeof(client);
if ((n = recvfrom(sd, buf, MAXLEN, 0,
(struct sockaddr *)&client, &client_len)) < 0) {

fprintf(stderr, "Can’t receive datagram\n");
exit(1);

}

if (sendto(sd, buf, n, 0,
(struct sockaddr *)&client, client_len) != n) {

fprintf(stderr, "Can’t send datagram\n");
exit(1);

}
}
close(sd);
return(0);

}

The following client program first constructs a simple message of a predetermined
length containing a string of characters a, b, c, . . . , z, a, b, c, . . . , z, . . . The client then
gets the start time from the system using gettimeofday and sends the message to

leogarcia-38245 book April 15, 2003 11:27

2.4 The Berkeley API 75

the echo server. After the message travels back, the client records the end time and
measures the difference that represents the round-trip latency between the client and
the server. The unit of time is recorded in milliseconds. This simple example shows
how we can use sockets to gather important network statistics such as latencies and
jitter.

/* A simple UDP client which measures round trip delay */
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define SERVER_UDP_PORT 5000
#define MAXLEN 4096 /* maximum data length */
#define DEFLEN 64 /* default length */

long delay(struct timeval t1, struct timeval t2);

int main(int argc, char **argv)
{

int data_size = DEFLEN, port = SERVER_UDP_PORT;
int i, j, sd, server_len;
char *pname, *host, rbuf[MAXLEN], sbuf[MAXLEN];
struct hostent *hp;
struct sockaddr_in server;
struct timeval start, end;

pname = argv[0];
argc--;
argv++;
if (argc > 0 && (strcmp(*argv, "-s") == 0)) {

if (--argc > 0 && (data_size = atoi(*++argv))) {
argc--;
argv++;

}
else {

fprintf (stderr,
"Usage: %s [-s data_size] host [port]\n",
pname);
exit(1);

}
}
if (argc > 0) {

host = *argv;
if (--argc > 0)

port = atoi(*++argv);
}

leogarcia-38245 book April 15, 2003 11:27

76 CHAPTER 2 Applications and Layered Architectures

else {
fprintf(stderr,
"Usage: %s [-s data_size] host [port]\n", pname);
exit(1);

}

/* Create a datagram socket */
if ((sd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {

fprintf(stderr, "Can’t create a socket\n");
exit(1);

}

/* Store server’s information */
bzero((char *)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(port);
if ((hp = gethostbyname(host)) == NULL) {

fprintf(stderr, "Can’t get server’s IP address\n");
exit(1);

}
bcopy(hp->h_addr, (char *)&server.sin_addr,

hp->h_length);
if (data_size > MAXLEN) {

fprintf(stderr, "Data is too big\n");
exit(1);

}
/* data is a, b, c,..., z, a, b,... */
for (i = 0; i < data_size; i++) {

j = (i < 26) ? i : i % 26;
sbuf[i] = ’a’ + j;

}

gettimeofday(&start, NULL); /* start delay measure */

/* transmit data */
server_len = sizeof(server);
if (sendto(sd, sbuf, data_size, 0, (struct sockaddr *)

&server, server_len) == -1) {
fprintf(stderr, "sendto error\n");
exit(1);

}

/* receive data */
if (recvfrom(sd, rbuf, MAXLEN, 0, (struct sockaddr *)

&server, &server_len) < 0) {
fprintf(stderr, "recvfrom error\n");
exit(1);

}

leogarcia-38245 book April 15, 2003 11:27

2.5 Application Layer Protocols and TCP/IP Utilities 77

gettimeofday(&end, NULL); /* end delay measure */

printf ("Round-trip delay = %ld ms.\n",
delay(start, end));

if (strncmp(sbuf, rbuf, data_size) != 0)
printf("Data is corrupted\n");

close(sd);
return(0);

}

/*
* Compute the delay between t1 and t2 in milliseconds
*/
long delay (struct timeval t1, struct timeval t2)
{

long d;

d = (t2.tv_sec - t1.tv_sec) * 1000;
d += ((t2.tv_usec - t1.tv_usec + 500) / 1000);
return(d);

}

It is important to remember that datagram communication using UDP is unreliable. If
the communication is restricted to a local area network environment, say within a
building, then datagram losses are extremely rare in practice, and the above client
program should work well. However, in a wide area network environment, datagrams
may be frequently discarded by the network. If the reply from the server does not
reach the client, the client will wait forever! In this situation, the client must provide
a timeout mechanism and retransmit the message. Also, further reliability may be
provided to reorder the datagram at the receiver and to ensure that duplicated datagrams
are discarded.

◆ 2.5 APPLICATION LAYER PROTOCOLS
AND TCP/IP UTILITIES

Application layer protocols are high-level protocols that provide services to user appli-
cations. These protocols tend to be more visible to the user than other types of protocols.
Furthermore, application protocols may be user written, or they may be standardized
applications. Several standard application protocols form part of the TCP/IP protocol
suite, the more common ones being Telnet, File Transfer Protocol (FTP), HTTP, and
SMTP. Coverage of the various TCP/IP application layer protocols is beyond the scope
of this textbook. The student is referred to “Internet Official Protocol Standards,” which

leogarcia-38245 book April 15, 2003 11:27

78 CHAPTER 2 Applications and Layered Architectures

provides a list of Internet protocols and standards [RFC 3000]. In this section the focus
is on applications and utilities that can be used as tools to study the operation of the
Internet. We also introduce network protocol analyzers and explain the basics of packet
capture.

2.5.1 Telnet

Telnet is a TCP/IP protocol that provides a standardized means of accessing resources
on a remote machine where the initiating machine is treated as local to the remote host.
In many implementations Telnet can be used to connect to the port number of other
servers and to interact with them using a command line. For example, the HTTP and
SMTP examples in Section 2.1 were generated this way.

The Telnet protocol is based on the concept of a network virtual terminal (NVT),
which is an imaginary device that represents a lowest common denominator terminal.
By basing the protocol on this interface, the client and server machines do not have to
obtain information about each other’s terminal characteristics. Instead, each machine
initially maps its characteristics to that of an NVT and negotiates options for changes
to the NVT or other enhancements, such as changing the character set.

The NVT acts as a character-based terminal with a keyboard and printer. Data input
by the client through the keyboard is sent to the server through the Telnet connection.
This data is echoed back by the server to the client’s printer. Other incoming data from
the server is also printed.

Telnet commands use the seven-bit U.S. variant of the ASCII character set. A
command consists minimally of a two-byte sequence: the Interpret as Command (IAC)
escape character followed by the command code. If the command pertains to option
negotiation, that is, one of WILL, WONT, DO, or DONT, then a third byte contains
the option code. Table 2.4 lists the Telnet command names, their corresponding ASCII
code, and their meaning.

A substantial number of Telnet options can be negotiated. Option negotiations
begin once the connection is established and may occur at any time while connected.
Negotiation is symmetric in the sense that either side can initiate a negotiation. A nego-
tiation syntax is defined in RFC 854 to prevent acknowledgment loops from occurring.

Telnet uses one TCP connection. Because a TCP connection is identified by a pair
of port numbers, a server is capable of supporting more than one Telnet connection at a
time. Once the connection is established, the default is for the user, that is, the initiator
of the connection, to enter a login name and password. By default the password is sent
as clear text, although more recent versions of Telnet offer an authentication option.

2.5.2 File Transfer Protocol

File Transfer Protocol (FTP) is another commonly used application protocol. FTP
provides for the transfer of a file from one machine to another. Like Telnet, FTP
is intended to operate across different hosts, even when they are running different
operating systems or have different file structures.

leogarcia-38245 book April 15, 2003 11:27

2.5 Application Layer Protocols and TCP/IP Utilities 79

TABLE 2.4 Telnet commands.

Name Code Meaning

EOF 236 End of file.
SUSP 237 Suspend cursor process.
ABORT 238 Abort process.
EOR 239 End of record.
SE 240 End of subnegotiation parameters.
NOP 241 No operation.
Data mark 242 The data stream portion of a synch signal.

This code should always be accompanied by a TCP
urgent notification.

Break 243 NVT character BRK.
Interrupt process 244 The function IP.
Abort output 245 The function AO.
Are you there 246 The function AYT.
Erase character 247 The function EC.
Erase line 248 The function EL.
Go ahead 249 The GA signal.
SB 250 Indicates that what follows is subnegotiation

of the indicated option.
WILL (option code) 251 Option negotiation.
WONT (option code) 252 Option negotiation.
DO (option code) 253 Option negotiation.
DONT (option code) 254 Option negotiation.
IAC 255 Data byte 255.

Server PI

Server
DTP

Server FTP

User PI

User
interface

User
DTP

User FTP

Control
connection

Data
connection

 PI � Protocol interpreter

DTP � Data transfer process

FIGURE 2.23 Transferring files using FTP.

FTP requires two TCP connections to transfer a file. One is the control connection
that is established on port 21 at the server. The second TCP connection is a data
connection used to perform a file transfer. A data connection must be established for
each file transferred. Data connections are used for transferring a file in either direction
or for obtaining lists of files or directories from the server to the client. Figure 2.23
shows the role of the two connections in FTP.

leogarcia-38245 book April 15, 2003 11:27

80 CHAPTER 2 Applications and Layered Architectures

A control connection is established following the Telnet protocol from the user to
the server port. FTP commands and replies are exchanged via the control connection.
The user protocol interpreter (PI) is responsible for sending FTP commands and in-
terpreting the replies. The server PI is responsible for interpreting commands, sending
replies, and directing the server data transfer process (DTP) to establish a data con-
nection and transfer. The commands are used to specify information about the data
connection and about the particular file system operation being requested.

A data connection is established usually upon request from the user for some sort
of file operation. The user PI usually chooses an ephemeral port number for its end of
the operation and then issues a passive open from this port. The port number is then
sent to the server PI using a PORT command. Upon receipt of the port number via
the control connection, the server issues an active open to that same port. The server
always uses port 20 for its end of the data connection. The user DTP then waits for the
server to initiate and perform the file operation.

Note that the data connection may be used to send and receive simultaneously.
Note also that the user may initiate a file transfer between two nonlocal machines, for
example, between two servers. In this case there would be a control connection between
the user and both servers but only one data connection, namely, the one between the
two servers.

The user is responsible for requesting a close of the control connection, although the
server performs the action. If the control connection is closed while the data connection
is still open, then the server may terminate the data transfer. The data connection is
usually closed by the server. The main exception is when the user DTP closes the data
connection to indicate an end of file for a stream transmission. Note that FTP is not
designed to detect lost or scrambled bits; the responsibility for error detection is left to
TCP.

The Telnet protocol works across different systems because it specifies a common
starting point for terminal emulation. FTP works across different systems because it
can accommodate several different file types and structures. FTP commands are used
to specify information about the file and how it will be transmitted. In general, three
types of information must be specified. Note that the default specifications must be
supported by every FTP implementation.

1. File type. FTP supports ASCII, EBCDIC, image (binary), or local. Local specifies
that the data is to be transferred in logical bytes, where the size is specified in a
separate parameter. ASCII is the default type. If the file is ASCII or EBCDIC, then
a vertical format control may also be specified.

2. Data structure. FTP supports file structure (a continuous stream of bytes with no
internal structure), record structure (used with text files), and page structure (file
consists of independent indexed pages). File structure is the default specification.

3. Transmission mode. FTP supports stream, block, or compressed mode. When trans-
mission is in stream mode, the user DTP closes the connection to indicate the end of
file for data with file structure. If the data has block structure, then a special two-byte
sequence indicates end of record and end of file. The default is stream mode.

An FTP command consists of three or four bytes of uppercase ASCII characters fol-
lowed by a space if parameters follow, or by a Telnet end of option list (EOL) otherwise.

leogarcia-38245 book April 15, 2003 11:27

2.5 Application Layer Protocols and TCP/IP Utilities 81

FTP commands fall into one of the following categories: access control identification,
data transfer parameters, and FTP service requests. Table 2.5 lists some of the common
FTP commands encountered.

Every command must produce at least one FTP reply. The replies are used to
synchronize requests and actions and to keep the client informed of the state of the ser-
ver. A reply consists of a three-digit number (in alphanumeric representation) followed
by some text. The numeric code is intended for the user PI; the text, if processed, is
intended for the user. For example, the reply issued following a successful connection
termination request is “221 Goodbye.” The first digit indicates whether and to what
extent the specified request has been completed. The second digit indicates the category
of the reply, and the third digit provides additional information about the particular
category. Table 2.6 lists the possible values of the first two digits and their meanings.

In this case of the goodbye message, the first 2 indicates a successful completion.
The second digit is also 2 to indicate that the reply pertains to a connection request.

TABLE 2.5 Some common FTP commands.

Command Meaning

ABOR Abort the previous FTP command and any data transfer.
LIST List files or directories.
QUIT Log off from server.
RETR filename Retrieve the specified file.
STOR filename Store the specified file.

TABLE 2.6 FTP replies—the first and second digits.

Reply Meaning

1yz Positive preliminary reply (action has begun, but wait for
another reply before sending a new command).

2yz Positive completion reply (action completed successfully; new
command may be sent).

3yz Positive intermediary reply (command accepted, but action cannot
be performed without additional information; user should send
a command with the necessary information).

4yz Transient negative completion reply (action currently
cannot be performed; resend command later).

5yz Permanent negative completion reply (action cannot be
performed; do not resend it).

x0z Syntax errors.
x1z Information (replies to requests for status or help).
x2z Connections (replies referring to the control and

data connections).
x3z Authentication and accounting (replies for the login process and

accounting procedures).
x4z Unspecified.
x5z File system status.

leogarcia-38245 book April 15, 2003 11:27

82 CHAPTER 2 Applications and Layered Architectures

2.5.3 Hypertext Transfer Protocol and the World Wide Web

The World Wide Web (WWW) provides a framework for accessing documents and
resources that are located in computers connected to the Internet. These documents
consist of text, graphics and other media and are interconnected by hyperlinks or links
that appear within the documents. The Hypertext Markup Language (HTML) is
used to prepare these documents. The WWW is accessed through a browser program
that interprets HTML, displays the documents, and allows the user to access other
documents by clicking on these links.

Each link provides the browser with a uniform resource locator (URL) that spec-
ifies the name of the machine where the document is located as well as the name of
the file that contains the requested document. For example, the sequence of packet
exchanges captured in Figure 2.18 and Figure 2.19 result after clicking on the URL
http://www.nytimes.com/. The first term ‘http’ specifies the retrieval mechanism to be
used, in this case, the HTTP protocol. The next term specifies the name of the host
machine, namely, www.nytimes.com. The remaining term gives the path component,
that is, it identifies the file on that server containing the desired article. In this example,
the final slash (/) refers to the server root. By clicking a highlighted item in a browser
page the user begins an interaction to obtain the desired file from the server where it
is stored. The Hypertext Transfer Protocol (HTTP) is the application layer protocol
that defines the interaction between the web client and the web server.

HTTP
HTTP is a client/server application defined in RFC 1945 and RFC 2616 to support
communications between web browsers and web servers. HTTP defines how the client
makes the request for an object (typically a document) and how the server replies with a
response message. The typical interaction is shown in Figure 2.18. After the user clicks
on a link, the browser program must first resolve the URL to an IP address by invoking
the DNS protocol (frame 1 in the figure). Once the IP address is returned (frame 2),
the HTTP client must set up a TCP connection to the desired server over well-known
port 80 (frames 2, 3, and 4). The HTTP client and server are then ready to exchange
messages: the client sends a GET message requesting the document, and the server
replies with a response followed by the desired document.

HTTP is a stateless protocol in that it does not maintain any information (“state”)
about its clients. In other words, the HTTP server handles each request independently
of all other requests. Thus if a client sends a request multiple times, the server handles
each request in the same manner. HTTP was designed to be stateless in order to keep it
simple. This design allows requests to be handled quickly and enables servers to handle
large volumes of requests per second.

The initial design of HTTP/1.0 (and earlier versions) uses nonpersistent connec-
tions. The TCP connection is closed after each request-response interaction. Each sub-
sequent request from the same client to the same server involves the setting up and
tearing down of an additional TCP connection. From the example in Figure 2.18, we
can see that each TCP connection setup involves the exchange of three segments be-
tween the client and server machines and hence the sending of the request is delayed

leogarcia-38245 book April 15, 2003 11:27

2.5 Application Layer Protocols and TCP/IP Utilities 83

by multiple round-trip times.11 Another disadvantage of nonpersistent connections is
that TCP processing and memory resources are wasted in the server and the client.
HTTP/1.1 made persistent connections the default mode. The server now keeps the
TCP connection open for a certain period of time after sending a response. This en-
ables the client to make multiple requests over the same TCP connection and hence
avoid the inefficiency and delay of the nonpersistent mode.

MESSAGE FORMATS
Like Telnet and FTP, HTTP messages are written in ASCII text and can be read and
interpreted readily. Figure 2.24 (middle pane) shows a typical HTTP request message.
The first line of a request message is the request line, and subsequent lines are called
header lines. Each line is written in ASCII text and terminated by a carriage return
followed by a line feed character. The last header line is followed by an extra carriage
return and line feed. Some request messages include an entity body that follows the
header section and provides additional information to the server.

The request line has the following form: Method URL HTTP-Version \r\n. The
Method field specifies the action method or action that is applied to the object. The
second field identifies the object, and the remaining field is the HTTP version. In
the first line of the HTTP section in the middle pane of Figure 2.24, the method is

11A round-trip time (RTT) is the time that elapses from when a message is sent from a transmitter to when
a response is received back from the receiver.

FIGURE 2.24 Ethereal capture of an HTTP GET message.

leogarcia-38245 book April 15, 2003 11:27

84 CHAPTER 2 Applications and Layered Architectures

TABLE 2.7 HTTP request methods.

Request method Meaning

GET Retrieve information (object) identified by the URL.
HEAD Retrieve meta-information about the object, but do not

transfer the object; Can be used to find out if a
document has changed.

POST Send information to a URL (using the entity body)
and retrieve result; used when a user fills out a
form in a browser.

PUT Store information in location named by URL.
DELETE Remove object identified by URL.
TRACE Trace HTTP forwarding through proxies,

tunnels, etc.
OPTIONS Used to determine the capabilities of the server,

or characteristics of a named resource.

GET and the absolute URL of the file requested is http://www.nytimes.com/. However
HTTP/1.1 uses the relative URL which consists of the path only, in this case /. The
HTTP version is 1.1.

The HTTP headers consist of a sequence of zero or more lines each consisting
of an attribute name, followed by a colon, “:”, and an attribute value. The client uses
header lines to inform the server about: the type of the client, the kind of content
it can accept, and the identity of the requester. In the example in Figure 2.24, the
Accept header indicates a list of document format types that the client can accept. The
Accept-language header indicates that U.S. English is accepted. The User-agent header
indicates that the browser is Mozilla/4.0.

The current request methods available in HTTP/1.1 are given in Table 2.7. HTTP/1.0
only provides the methods GET, POST, and HEAD, and so these are the three methods
that are supported widely.

The HTTP response message begins with an ASCII status line, followed by a
headers section, and then by content, which is usually either an image or an HTML
document. Figure 2.25 shows an example of a captured HTTP response message.

The response status line has the form: HTTP-Version Status-Code Message \r \n.
The status code is a 3-digit number that indicates the result of the request to the client.
The message indicates the result of the request in text that can be interpreted by humans.
Examples of commonly encountered status lines are:

• HTTP/1.0 200 OK
• HTTP/1.0 301 Moved Permanently
• HTTP/1.0 400 Bad Request
• HTTP/1.0 500 Internal Server Error

The response headers provide information about the object that is being transferred
to the client. Header lines are used to indicate: the type of server; the date and time
the HTTP response was prepared and sent; and the time and date when the object was
created or last modified. A Content-length header line indicates the length in bytes

leogarcia-38245 book April 23, 2003 11:55

2.5 Application Layer Protocols and TCP/IP Utilities 85

FIGURE 2.25 Ethereal capture showing HTTP response message.

of the object being transferred, and a Content-type header line indicates the type of
the object (document) and how it is encoded. All these header lines are evident in the
example in Figure 2.25. The response headers section ends with a blank line and may
be followed by an entity body that carries the content.

HTTP PROXY SERVER AND CACHING
The simple-to-use graphical interface of web browsers made the web accessible to
ordinary computer users and led to an explosion in the volume of traffic handled by
the Internet. Web traffic is by far the largest component of all the traffic carried in the
Internet. When the volume of requests for information from popular websites becomes
sufficiently large, it makes sense to cache web information in servers closer to the user.
By intercepting and responding to the HTTP request closer to the user, the volume of
traffic that has to traverse the backbone of the Internet is reduced.

A web proxy server can be deployed to provide caching of web information. Typ-
ically proxy servers are deployed by Internet Service Providers to reduce the delay of
web responses and to control the volume of web traffic. The user’s browser must be
configured to first access the proxy server when making a web request. If the proxy
server has the desired object, it replies with an HTTP response. If it does not have the
object, it sets up a TCP connection to the target URL and retrieves the desired object. It
then replies to the client with the appropriate response, and caches the object for future
requests.

leogarcia-38245 book April 15, 2003 11:27

86 CHAPTER 2 Applications and Layered Architectures

COOKIES AND WEB SESSIONS
It was indicated that the HTTP protocol is stateless and does not maintain information
about prior requests from a given client. The use of cookies makes it possible to have
web sessions where a user interacts with a web site in a manner that takes into account
the user’s preferences. Cookies are data that are exchanged and stored by clients and
servers and transferred as header lines in HTTP messages. These header lines provide
context for each HTTP interaction.

When a client first accesses a web server that uses cookies, the server replies with
Response message that includes a Set-cookie header line. This header line includes a
unique ID number for the given client. If the client software accepts cookies, the cookie
is added to the browser’s cookie file. Each time the client makes a request to the given
site, it includes a Cookie header line with the unique ID number in its requests. The
server site maintains a separate cookie database where it can store which pages were
accessed at what date and time by each client. In this manner, the server can prepare
responses to HTTP requests that take into account the history of the given user. Cookies
enable a website to keep track of a user’s shopping cart during a session, as well as other
longer term information such as address and credit card information. The example in
Figure 2.24 can be seen to include a Cookie header line with an ID number that consists
of 24 hexadecimal numerals.

Cookies are required to include an expiration date. Cookies that do not include
an expiration date are deleted by the browser at the end of an interaction. Cookies
are an indirect means for a user to identify itself to a server. If security and privacy are
required, protocols such as SSL and TLS need to be used. These protocols are discussed
in Chapter 12.

2.5.4 IP Utilities

A number of utilities are available to help in finding out about IP hosts and domains
and to measure Internet performance. In this section we discuss PING, which can be
used to determine whether a host is reachable; traceroute, a utility to determine the
route that a packet will take to another host; netstat, which provides information about
the network status of a local host; and tcpdump, which captures and observes packet
exchanges in a link. We also discuss the use of Telnet with standard TCP/IP services
as a troubleshooting and monitoring tool.

PING
PING is a fairly simple application used to determine whether a host is online and avail-
able. The name is said to derive from its analogous use in sonar operations to detect
underwater objects.12 PING makes use of Internet Control Message Protocol (ICMP)
messages. The purpose of ICMP is to inform sending hosts about errors encountered in
IP datagram processing or other control information by destination hosts or by routers.
ICMP is discussed in Chapter 8. PING sends one or more ICMP Echo messages to a
specified host requesting a reply. PING is often used to measure the round-trip delay

12PING is also reported to represent the acronym Packet Internet Groper [Murhammer 1998].

leogarcia-38245 book April 15, 2003 11:27

2.5 Application Layer Protocols and TCP/IP Utilities 87

Microsoft(R) Windows DOS
(c)Copyright Microsoft Corp 1990—2001.

C:\DOCUME~1\1>ping nal.toronto.edu

Pinging nal.toronto.edu [128.100.244.3] with 32 bytes of data:

Reply from 128.100.244.3: bytes=32 time=84ms TTL=240
Reply from 128.100.244.3: bytes=32 time=110ms TTL=240
Reply from 128.100.244.3: bytes=32 time=81ms TTL=240
Reply from 128.100.244.3: bytes=32 time=79ms TTL=240

Ping statistics for 128.100.244.3:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 79ms, Maximum = 110ms, Average = 88ms

C:\DOCUME~1\1>

FIGURE 2.26 Using PING to determine host accessibility.

between two hosts. The sender sends a datagram with a type 8 Echo message and a se-
quence number to detect a lost, reordered, or duplicated message. The receiver changes
the type to Echo Reply (type 0) and returns the datagram. Because the TCP/IP suite
incorporates ICMP, any machine with TCP/IP installed can reply to PING. However,
because of the increased presence of security measures such as firewalls, the tool is not
always successful. Nonetheless, it is still the first test used to determine accessibility
of a host.

In Figure 2.26 PING is used to determine whether the NAL machine is available.
In this example, the utility was run in an MS-DOS session under Windows XP. The
command in its simplest form is ping <hostname>. The round-trip delay is indicated,
as well as the time-to-live (TTL) value. The TTL is the maximum number of hops
an IP packet is allowed to remain in the network. Each time an IP packet passes
through a router, the TTL is decreased by 1. When the TTL reaches 0, the packet is
discarded. See Chapter 8 for a PING and ICMP packet capture.

TELNET AND STANDARD SERVICES
Because ICMP operates at the IP level, PING tests the reachability of the IP layer
only in the destination machine. PING does not test the layers above IP. A number
of standard TCP/IP application layer services can be used to test the layers above IP.
Telnet can be used to access these services for testing purposes. Examples of these
services include Echo (port number 7), which echoes a character back to the sender,
and Daytime (port number 13), which returns the time and date. A variety of utilities
are becoming available for testing reachability and performance of HTTP and Web
servers. The student is referred to the Cooperative Association for Internet Data Analysis
(CAIDA) website, currently www.caida.org.

TRACEROUTE
A second TCP/IP utility that is commonly used is traceroute. This tool allows users to
determine the route that a packet takes from the local host to a remote host, as well as
latency and reachability from the source to each hop. Traceroute is generally used as a
debugging tool by network managers.

leogarcia-38245 book April 15, 2003 11:27

88 CHAPTER 2 Applications and Layered Architectures

Tracing route to www.comm.utoronto.ca [128.100.11.60]
over a maximum of 30 hops:

 1 1 ms <10 ms <10 ms 192.168.2.1
 2 3 ms 3 ms 3 ms 10.202.128.1
 3 4 ms 3 ms 3 ms gw04.ym.phub.net.cable.rogers.com [66.185.83.142]
 4 * * * Request timed out.
 5 47 ms 59 ms 66 ms gw01.bloor.phub.net.cable.rogers.com [66.185.80.230]
 6 3 ms 3 ms 38 ms gw02.bloor.phub.net.cable.rogers.com [66.185.80.242]
 7 8 ms 3 ms 5 ms gw01.wlfdle.phub.net.cable.rogers.com [66.185.80.2]
 8 8 ms 7 ms 7 ms gw02.wlfdle.phub.net.cable.rogers.com [66.185.80.142]
 9 4 ms 10 ms 4 ms gw01.front.phub.net.cable.rogers.com [66.185.81.18]
10 6 ms 4 ms 5 ms ra1sh-ge3-4.mt.bigpipeinc.com [66.244.223.237]
11 16 ms 17 ms 13 ms rx0sh-hydro-one-telecom.mt.bigpipeinc.com [66.244.223.246]
12 7 ms 14 ms 8 ms 142.46.4.2
13 10 ms 7 ms 6 ms utorgw.onet.on.ca [206.248.221.6]
14 7 ms 6 ms 11 ms mcl-gateway.gw.utoronto.ca [128.100.96.101]
15 7 ms 5 ms 8 ms sf-gpb.gw.utoronto.ca [128.100.96.17]
16 7 ms 7 ms 10 ms bi15000.ece.utoronto.ca [128.100.96.236]
17 7 ms 9 ms 9 ms www.comm.utoronto.ca [128.100.11.60]

Trace complete.

FIGURE 2.27 Output from traceroute (running from a home PC to a host at the
University of Toronto).

Traceroute makes use of both ICMP and UDP. The sender first sends a UDP data-
gram with TTL = 1 as well as an invalid port number to the specified destination host.
The first router to see the datagram sets the TTL field to zero, discards the datagram,
and sends an ICMP Time Exceeded message to the sender. This information allows the
sender to identify the first machine in the route. Traceroute continues to identify the
remaining machines between the source and destination machines by sending datagrams
with successively larger TTL fields. When the datagram finally reaches its destination,
that host machine returns an ICMP Port Unreachable message to the sender because of
the invalid port number deliberately set in the datagram.

Figure 2.27 shows the result from running traceroute from a home PC to a host at
the University of Toronto. The first line corresponds to the first hop in a home router.
The next eight lines correspond to hops within the Internet Service Provider’s network.
The University of Toronto router gateway is reached in hop 13, and then various routers
inside the university are traversed before arriving at the desired host.

IPCONFIG
The ipconfig utility, available on Microsoft® Windows operating systems, can be used to
display the TCP/IP information about a host. In its simplest form the command returns
the IP address, subnet mask (discussed in Chapter 8) and default gateway for the host.
The utility can also be used to obtain information for each IP network interface for the
host, for example, DNS hostname, IP addresses of DNS servers, physical address of
the network card, IP address for the network interface, and whether DHCP is enabled
for automatic configuration of the card’s IP address. The ipconfig/renew command is
used to renew an IP address with a DHCP server.

NETSTAT
The netstat queries a host about its TCP/IP network status. For example, netstat can
be used to find the status of the network drivers and their interface cards, such as the

leogarcia-38245 book April 15, 2003 11:27

2.5 Application Layer Protocols and TCP/IP Utilities 89

IPv4 Statistics

 Packets Received = 71271
 Received Header Errors = 0
 Received Address Errors = 9
 Datagrams Forwarded = 0
 Unknown Protocols Received = 0
 Received Packets Discarded = 0
 Received Packets Delivered = 71271
 Output Requests = 70138
 Routing Discards = 0
 Discarded Output Packets = 0
 Output Packet No Route = 0
 Reassembly Required = 0
 Reassembly Successful = 0
 Reassembly Failures = 0
 Datagrams Successfully Fragmented = 0
 Datagrams Failing Fragmentation = 0
 Fragments Created = 0

UDP Statistics for IPv4

 Datagrams Received = 6810
 No Ports = 15
 Receive Errors = 0
 Datagrams Sent = 6309

ICMPv4 Statistics

Received Sent
 Messages 10 6
 Errors 0 0
 Destination Unreachable 8 1
 Time Exceeded 0 0
 Parameter Problems 0 0
 Source Quenches 0 0
 Redirects 0 0
 Echos 0 2
 Echo Replies 2 0
 Timestamps 0 0
 Timestamp Replies 0 0
 Address Masks 0 0
 Address Mask Replies 0 0

TCP Statistics for IPv4

 Active Opens = 798
 Passive Opens = 17
 Failed Connection Attempts = 13
 Reset Connections = 467
 Current Connections = 0
 Segments Received = 64443
 Segments Sent = 63724
 Segments Retransmitted = 80

FIGURE 2.28 Sample protocol statistics output from netstat.

number of in packets, out packets, errored packets, and so on. It can also find out the
state of the routing table in a host, which TCP/IP server processes are active in the
host, as well as which TCP connections are active. Figure 2.28 shows the result from
running netstat with the protocol statistics option. Various counts for IP, ICMP, TCP,
and UDP are displayed.

2.5.5 Tcpdump and Network Protocol Analyzers

The tcpdump program can capture and observe IP packet exchanges on a network
interface. The program usually involves setting an Ethernet network interface card into
a “promiscuous” mode so that the card listens and captures every frame that traverses
the Ethernet broadcast network. A packet filter is used to select the IP packets that are
of interest in a given situation. These IP packets and their higher-layer contents can
then be observed and analyzed. Because of security concern, normal users typically
cannot run the tcpdump program.

The tcpdump utility can be viewed as an early form of a protocol analyzer. A net-
work protocol analyzer is a tool for capturing, displaying, and analyzing the PDUs that
are exchanged in a network. Current analyzers cover a very broad range of protocols
and are constantly being updated. Protocol analyzers are indispensable in troubleshoot-
ing network problems and in designing new network systems. Protocol analyzers are
also extremely useful in teaching the operation of protocols by providing a means of
examining traffic from a live network.

The first component for a protocol analyzer is hardware to capture the digital
information from the physical medium. The most cost-effective means for capturing

leogarcia-38245 book April 15, 2003 11:27

90 CHAPTER 2 Applications and Layered Architectures

information is to use a LAN network interface card. Most LANs support operation in
promiscuous mode where all frames on the LAN are captured for examination. Note that
in most LAN protocols the frames can be seen by all devices attached to the medium,
even if the frame is not intended for them. Since most computers are connected to
Ethernet LANs, packet capture can be done readily by installing device driver software
to control the network interface card.

Given the increasingly high speeds of LAN operation, the volume of information
that can be captured can quickly become huge. The second component of a protocol
analyzer is filtering software to select the frames that contain the desired information.
Filtering can be done by frame address, by IP address, by protocol, and by many other
combinations. The final component of a protocol analyzer consists of the utilities for
the display and analysis of protocol exchanges. A number of commercial and open
source network protocol analyzers packages are available. In this book we will use
the Ethereal open source package. Several hundred developers have contributed to the
development of Ethereal leading to a tool that supports an extensive set of protocols.
The Ethereal package can be downloaded from www.ethereal.com. Their website also
contains instructions and example screen captures.

Network protocol analyzers give the ability to capture all packets in a LAN and in
doing so provide an opportunity to gain unauthorized access to network information.
These tools should always be used in a responsible and ethical manner.

SUMMARY

This chapter describes how network architectures are based on the notion of layering.
Layering involves combining network functions into groups that can be implemented
together. Each layer provides a set of services to the layer above it; each layer builds
its services using the services of the layer below. Thus applications are developed
using application layer protocols, and application layer protocols are built on top of the
communication services provided by TCP and UDP. These transport protocols in turn
build on the datagram service provided by IP, which is designed to operate over various
network technologies. IP allows the applications above it to be developed independently
of specific underlying network technologies. The network technologies below IP range
from full-fledged packet-switching networks, such as ATM, to LANs, and individual
point-to-point links.

The Berkeley socket API allows the programmer to develop applications using
the services provided by TCP and UDP. Examples of applications that run over TCP
are HTTP, FTP, SMTP and Telnet. DNS and RTP are examples that run over UDP.
The power of the TCP/IP architecture is that any new application that runs over TCP
or UDP will run over the entire global Internet. Consequently, new services and ap-
plications can be deployed globally very quickly, a capability that no other network
architecture can provide. We also introduced various TCP/IP utilities and tools that
allow the programmer to determine the state and configuration of a TCP/IP network.
Students can use these tools to get some hands on experience with the operation of
TCP/IP.

leogarcia-38245 book April 15, 2003 11:27

Further Reading 91

CHECKLIST OF IMPORTANT TERMS

application layer
blocking/unblocking
client/server
confirmed/unconfirmed service
connectionless service
connection-oriented service
cookie
daemon
data link layer
datagram
Domain Name System (DNS)
encapsulation
ephemeral port number
frame
globally unique IP address
header
HyperText Markup Language (HTML)
Hypertext Transfer Protocol (HTTP)
internet layer
internetworking
layer
layer n entity
layer n protocol
multiplexing/demultiplexing
network architecture
network interface layer

network layer
OSI reference model
packet
peer process
physical address
physical layer
Point-to-Point Protocol (PPP)
port
Post Office Protocol version 3 (POP3)
presentation layer
protocol
protocol data unit (PDU)
segment
segmentation and reassembly
service access point (SAP)
service data unit (SDU)
session layer
Simple Mail Transfer Protocol (SMTP)
socket
socket address
splitting/recombining
TCP/IP network architecture
Transmission Control Protocol (TCP)
transport layer
User Datagram Protocol (UDP)
well-known port number

FURTHER READING

Comer, D. E. and D. L. Stevens, Internetworking with TCP/IP, Vol. III: Client-Server Program-
ming and Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1993.

Murhammer, M. W., O. Atakan, S. Bretz, L. R. Pugh, K. Suzuki, and D. H. Wood, TCP/IP
Tutorial and Technical Overview, Prentice Hall PTR, Upper Saddle River, New Jersey,
1998.

Perlman, R., Interconnections: Bridges, Routers Switches and Internet Protocols, Addison-
Wesley, Reading, Massachusetts, 2000.

Piscitello, D. M. and A. L. Chapin, Open Systems Networking: TCP/IP and OSI, Addison-Wesley,
Reading, Massachusetts, 1993.

Sechrest, S., “An Introductory 4.4 BSD Interprocess Communication Tutorial,” Computer
Science Network Group, UC Berkeley.

Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, Reading,
Massachusetts, 1994.

Stevens, W. R., UNIX Network Programming, Volume 1, 2nd edition, Prentice Hall, Englewood
Cliffs, New Jersey, 1998. An excellent treatment of socket programming.

leogarcia-38245 book April 15, 2003 11:27

92 CHAPTER 2 Applications and Layered Architectures

Yeager, N. J. and R. E. McGrath, Web Server Technology: The Advanced Guide for World Wide
Web Information Providers, Morgan Kaufmann, San Francisco, 1996.

RFC 821, J. Postel, “Simple Mail Transfer Protocol,” August 1982.
RFC 854, J. Postel and J. Reynolds, “Telnet Protocol Specification,” May 1983.
RFC 959, J. Postel and J. Reynolds, “File Transfer Protocol,” October 1985.
RFC 1034, Mockapetris, “Domain Names—Concepts and Facilities,” November 1987.
RFC 1035, Mockapetris, “Domain Names—Implementation and Specification,” November 1987.
RFC 1945, T. Berners-Lee, R. Fielding, and H. Frystik, “Hypertext Transfer Protocol/1.0,”

May 1996.
RFC 2068, R. Fielding, J. Geetys, J. Mogul, H. Frystyk, T. Berners-Lee, “Hypertext Transfer

Protocol,” January 1997.
RFC 2151, G. Kessler and S. Shepard, “Internet & TCP/IP Tools and Utilities,” June 1997.
RFC 2616, R. Fielding, J. Geetys, J. Mogul, H. Frystyk, L. Masinder, P. Leach, T. Berners-Lee,

“Hypertext Transfer Protocol/1.1,” June 1999.
RFC 2821, J. Klensin, ed., “Simple Mail Transfer Protocol,” April 2001.
RFC 3000, J. Reynolds, R. Braden, S. Ginoza, and L. Shiota, eds., “Internet Official Protocol

Standards,” November 2001.
See our website for additional references available through the Internet.

PROBLEMS

2.1. Explain how the notion of layering and internetworking make the rapid growth of appli-
cations such as the World Wide Web possible.

2.2. (a) What universal set of communication services is provided by TCP/IP?
(b) How is independence from underlying network technologies achieved?
(c) What economies of scale result from (a) and (b)?

2.3. What difference does it make to the network layer if the underlying data link layer provides
a connection-oriented service versus a connectionless service?

2.4. Suppose transmission channels become virtually error free. Is the data link layer still
needed?

2.5. Why is the transport layer not present inside the network?

2.6. Which OSI layer is responsible for the following?
(a) Determining the best path to route packets.
(b) Providing end-to-end communications with reliable service.
(c) Providing node-to-node communications with reliable service.

2.7. Should connection establishment be a confirmed service or an unconfirmed service? What
about data transfer in a connection-oriented service? Connection release?

2.8. Does it make sense for a network to provide a confirmed, connectionless packet transfer
service?

2.9. Explain how the notion of multiplexing can be applied at the data link, network, and
transport layers. Draw a figure that shows the flow of PDUs in each multiplexing scheme.

leogarcia-38245 book April 15, 2003 11:27

Problems 93

2.10. Give two features that the data link layer and transport layer have in common. Give two
features in which they differ. Hint: Compare what can go wrong to the PDUs that are
handled by these layers.

2.11. (a) Can a connection-oriented, reliable message transfer service be provided across a
connectionless packet network? Explain.

(b) Can a connectionless datagram transfer service be provided across a connection-
oriented network?

2.12. An internet path between two hosts involves a hop across network A, a packet-switching
network, to a router and then another hop across packet-switching network B. Suppose that
packet-switching network A carries the packet between the first host and the router over
a two-hop path involving one intermediate packet switch. Suppose also that the second
network is an Ethernet LAN. Sketch the sequence of IP and non-IP packets and frames
that are generated as an IP packet goes from host 1 to host 2.

2.13. Does Ethernet provide connection-oriented or connectionless service?

2.14. Ethernet is a LAN so it is placed in the data link layer of the OSI reference model.
(a) How is the transfer of frames in Ethernet similar to the transfer of frames across a

wire? How is it different?
(b) How is the transfer of frames in Ethernet similar to the transfer of frames in a packet-

switching network? How is it different?

2.15. Suppose that a group of workstations is connected to an Ethernet LAN. If the workstations
communicate only with each other, does it make sense to use IP in the workstations? Should
the workstations run TCP directly over Ethernet? How is addressing handled?

2.16. Suppose two Ethernet LANs are interconnected by a box that operates as follows. The
box has a table that tells it the physical addresses of the machines in each LAN. The box
listens to frame transmissions on each LAN. If a frame is destined to a station at the other
LAN, the box retransmits the frame onto the other LAN; otherwise, the box does nothing.
(a) Is the resulting network still a LAN? Does it belong in the data link layer or the

network layer?
(b) Can the approach be extended to connect more than two LANs? If so, what problems

arise as the number of LANs becomes large?

2.17. Suppose all laptops in a large city are to communicate using radio transmissions from
a high antenna tower. Is the data link layer or network layer more appropriate for this
situation? Now suppose the city is covered by a large number of small antennas covering
smaller areas. Which layer is more appropriate?

2.18. Suppose that a host is connected to a connection-oriented packet-switching network and
that it transmits a packet to a server along a path that traverses two packet switches.
Suppose that each hop in the path involves a point-to-point link, that is, a wire. Show the
sequence of network layer and data link layer PDUs that is generated as the packet travels
from the host to the server.

2.19. Suppose an application layer entity wants to send an L-byte message to its peer process,
using an existing TCP connection. The TCP segment consists of the message plus 20 bytes
of header. The segment is encapsulated into an IP packet that has an additional 20 bytes

leogarcia-38245 book April 15, 2003 11:27

94 CHAPTER 2 Applications and Layered Architectures

of header. The IP packet in turn goes inside an Ethernet frame that has 18 bytes of header
and trailer. What percentage of the transmitted bits in the physical layer corresponds to
message information if L = 100 bytes? 500 bytes? 1000 bytes?

2.20. Suppose that the TCP entity receives a 1.5-megabyte file from the application layer and
that the IP layer is willing to carry blocks of maximum size 1500 bytes. Calculate the
amount of overhead incurred from segmenting the file into packet-sized units.

2.21. Suppose a TCP entity receives a digital voice stream from the application layer. The voice
stream arrives at a rate of 8000 bytes/second. Suppose that TCP arranges bytes into block
sizes that result in a total TCP and IP header overhead of 50 percent. How much delay is
incurred by the first byte in each block?

2.22. How does the network layer in a connection-oriented packet-switching network differ
from the network layer in a connectionless packet-switching network?

2.23. Identify session layer and presentation layer functions in the HTTP protocol.

2.24. Suppose we need a communication service to transmit real-time voice over the Internet.
What features of TCP and what features of UDP are appropriate?

2.25. Consider the end-to-end IP packet transfer examples in Figure 2.15. Sketch the sequences
of IP packets and Ethernet and PPP frames that are generated by the three examples of
packet transfers: from the workstation to the server, from the server to the PC, and from
the PC to the server. Include all relevant header information in the sketch.

2.26. Suppose a user has two browser applications active at the same time and suppose that the
two applications are accessing the same server to retrieve HTTP documents at the same
time. How does the server tell the difference between the two applications?

2.27. Consider the operation of nonpersistent HTTP and persistent HTTP.
(a) In nonpersistent HTTP (version 1.0): Each client/server interaction involves setting up

a TCP connection, carrying out the HTTP exchange, and closing the TCP connection.
Let T be the time that elapses from when a packet is sent from client to server to
when the response is received. Find the rate at which HTTP exchanges can be made
using nonpersistent HTTP.

(b) In persistent HTTP (version 1.1) the TCP connection is kept alive. Find the rate at
which HTTP exchanges can be made if the client cannot send an additional request
until it receives a response for each request.

(c) Repeat part (b) if the client is allowed to pipeline requests, that is, it does not have to
wait for a response before sending a new request.

2.28. What is the difference between a physical address, a network address, and a domain name?

2.29. Explain how a DNS query proceeds if the local name server does not have the IP address
for a given host when the following approaches are used. Assume an example where four
machines are involved in ultimately resolving a given query.
(a) When a machine B cannot resolve an address in response to a query from A, machine B

sends the query to another machine in the chain. When B receives the response, it
forwards the result to B.

leogarcia-38245 book April 15, 2003 11:27

Problems 95

(b) When a machine B cannot resolve an address in response to a query from A, machine B
sends a DNS reply to A with the IP address of the next machine in the chain, and
machine A contacts that machine.

2.30. Suppose that the DNS system used a single centralized database handle all queries.
Compare this centralized approach to the distributed approach in terms of reliability,
throughput (volume of queries/second that can be processed), query response delay, and
maintainability.

2.31. What is wrong with the following methods of assigning host id addresses?
(a) Copy the address from the machine in the next office.
(b) Modify the address from the machine in the next office.
(c) Use an example from the vendor’s brochure.

2.32. Suppose a machine is attached to several physical networks. Why does it need a different
IP address for each attachment?

2.33. Suppose a computer is moved from one department to another. Does the physical address
need to change? Does the IP address need to change? Does it make a difference if the
computer is a laptop?

2.34. Suppose the population of the world is 6 billion people and that there is an average of
1000 communicating devices per person. How many bits are required to assign a unique
host address to each communicating device? Suppose that each device attaches to a single
network and that each network on average has 10,000 devices. How many bits are required
to provide unique network ids to each network?

2.35. Can the Internet protocol be used to run a homogeneous packet-switching network, that
is, a network with identical packet switches interconnected with point-to-point links?

2.36. Is it possible to build a homogeneous packet-switching network with Ethernet LANs
interconnecting the packet switches? If so, can connection-oriented service be provided
over such a network?

2.37. In telephone networks one basic network is used to provide worldwide communications.
In the Internet a multiplicity of networks are interconnected to provide global connectivity.
Compare these two approaches, namely, a single network versus an internetwork, in terms
of the range of services that can be provided and the cost of establishing a worldwide
network.

2.38. Consider an internetwork architecture that is defined using gateways/routers to commu-
nicate across networks but that uses a connection-oriented approach to packet switching?
What functionality is required in the routers? Are any additional constraints imposed on
the underlying networks?

2.39. The internet below consists of three LANs interconnected by two routers. Assume that
the hosts and routers have the IP addresses as shown.
(a) Suppose that all traffic from network 3 that is destined to H1 is to be routed directly

through router R2 and that all other traffic from network 3 is to go to network 2. What
routing table entries should be present in the network 3 hosts and in R2?

leogarcia-38245 book April 15, 2003 11:27

96 CHAPTER 2 Applications and Layered Architectures

H1 H2

H4

(2,3)

H3

(2,2)

H5

(3,3)

H6

(3,2)

Network 2

Network 3

Network 1

(1,2) (1,3)

R1

(2,1)

(1,1)

R2

(3,1)

(1,4)
(2,4)

(b) Suppose that all traffic from network 1 to network 3 is to be routed directly through
R2. What routing table entries should be present in the network 1 hosts and in R2?

2.40. Explain why it is useful for application layer programs to have a “well-known” TCP port
number?

2.41. Use a Web browser to connect to cnn.com. Explain what layers in the protocol stack are
involved in the delivery of the video newscast.

2.42. Use a Web browser to connect to an audio program, say, www.rollingstone.com/radio/
(Rolling Stone Radio) or www.cbc.ca (CBC Radio). Explain what layers in the protocol
stack are involved here. How does this situation differ from the delivery of video in
problem 2.41?

2.43. Which of the TCP/IP transport protocol (UDP or TCP) would you select for the following
applications: packet voice, file transfers, remote login, multicast communication (i.e.,
multiple destinations).

2.44. (a) Use the Telnet program to send an e-mail by directly interacting with your local mail
server. The SMTP server has port 25. You can find the list of commands for the SMTP
protocol in RFC 2821, which can be downloaded from www.ietf.org.

(b) Use Ethereal to capture and analyze the sequence of messages exchanged. Identify the
various types of addresses for Ethernet, IP, and TCP PDUs. Examine the data in the
Telnet messages to determine whether the login name and password are encrypted.

2.45. (a) Use the Telnet program to retrieve e-mail from your local mail server. The POP3
server has port 110. You can find the list of commands for the POP3 protocol in
RFC 1939, which can be downloaded from www.ietf.org.

(b) Repeat Problem 2.44(b).

2.46. The nslookup program can be used to query the Internet domain name servers. Use this
program to look up the IP address of www.utoronto.ca.

leogarcia-38245 book April 15, 2003 11:27

Problems 97

2.47. (a) Use PING to find the round-trip time to the home page of your university and to the
home page of your department.

(b) Use Ethereal to capture the ICMP packets exchanged. Correlate the information in
the packet capture with the information displayed by the PING result.

2.48. (a) Use netstat to find out the routing table for a host in your network.
(b) Use netstat to find the IP statistics for your host.

2.49. Suppose regularly spaced PING packets are sent to a remote host. What can you conclude
from the following results?
(a) No replies arrive back.
(b) Some replies are lost.
(c) All replies arrive but with variable delays.
(d) What kind of statistics would be useful to calculate for the round-trip delays?

2.50. Suppose you want to test the response time of a specific web server. What attributes would
such a measurement tool have? How would such a tool be designed?

2.51. A denial-of-service attack involves loading a network resource to the point where it
becomes nonfunctional.
(a) Explain how PING can be used to carry out a denial-of-service attack.
(b) On October 21, 2002, the 13 DNS root servers were subject to a distributed denial-

of-service attack. Explain the impact of the attack on the operation of the Internet if
some of the servers are brought down; if all of the servers are brought down.

2.52. (a) Use a web browser to retrieve a file from a local web server.
(b) HTTP relies on ASCII characters. To verify the sequence of messages shown in

Table 2.1, use the Telnet program to retrieve the same file from the local website.

2.53. Use Ethereal to capture the sequence of PDUs exchanged in problem 2.52 parts (a) and (b).
(a) Identify the Ethernet, IP, and TCP addresses of the machines involved in the exchange.
(b) Are there any DNS queries?
(c) Identify the TCP connection setup.
(d) Examine the contents of the HTTP GET and response messages.
(e) Examine how the TCP sequence numbers evolve over time.

2.54. Discuss the similarities and differences between the control connection in FTP and the
remote control used to control a television. Can the FTP approach be used to provide
VCR-type functionality to control the video from a video-on-demand service?

2.55. Use a Web browser to access the CAIDA Web page (http://www.caida.org/tools/taxonomy/)
to retrieve the CAIDA measurement tool taxonomy document. You will find links there
to many free Internet measurement tools and utilities.

2.56. Use traceroute to determine the path from your home PC to your university’s main web
page, while capturing the packets using Ethereal.
(a) Using the output from traceroute, try to identify how many different networks and

service providers are traversed.
(b) Verify the operation of traceroute by examining the contents of the packets.

leogarcia-38245 book April 15, 2003 11:27

98 CHAPTER 2 Applications and Layered Architectures

2.57. Run the UDP client and server programs from the Berkeley API section on different
machines, record the round-trip delays with respect to the size of the data, and plot the
results.

2.58. In the TCP example from the Berkeley API section, the message size communicated is
fixed regardless of how many characters of actual information a user types. Even if the
user wants to send only one character, the programs still sends 256 bytes of messages—
clearly an inefficient method. One possible way to allow variable-length messages to be
communicated is to indicate the end of a message by a unique character, called the sentinel.
The receiver calls read for every character (or byte), compares each character with the
sentinel value, and terminates after this special value is encountered. Modify the TCP
client and server programs to handle variable-length messages using a sentinel value.

2.59. Another possible way to allow variable-length messages to be communicated is to precede
the data to be transmitted by a header indicating the length of the data. After the header
is decoded, the receiver knows how many more bytes it should read. Assuming the length
of the header is two bytes, modify the TCP client and server programs to handle variable-
length messages.

2.60. The UDP client program in the example from the Berkeley API section may wait forever
if the datagram from the server never arrives. Modify the client program so that if the
response from the server does not arrive after a certain timeout (say, 5 seconds), the read
call is interrupted. The client then retransmits a datagram to the server and waits for a
new response. If the client does not receive a response after a fixed number of trials (say,
10 trials), the client should print an error message and abandon the program. Hint: Use
the sigaction and alarm functions.

2.61. Modify the UDP client to access a date-and-time server in a host local to your network. A
date-and-time server provides client programs with the current day and time on demand.
The system internal clock keeps the current day and time as a 32-bit integer. The time is
incremented by the system (every second). When an application program (the server in
this case) asks for the date or time, the system consults the internal clock and formats the
date and time of day in human-readable format. Sending any datagram to a date-and-time
server is equivalent to making a request for the current date and time; the server responds
by returning a UDP message containing the current date and time. The date-and-time
server can be accessed in UDP port 13.

2.62. Write a file transfer application that runs over UDP. Assume the transfer occurs over a local
area network so reliable transfer is not a concern. Assume also that UDP will accept at
most 500 bytes/datagram. Implement a server that opens a socket and listens for incoming
data at a particular port number. Implement a client that reads a file from the file system
and transfers the file to the server. When the server receives the client’s data, it writes this
data to a file. Include a means for the client to indicate the end of transmission.

