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Figure 6.2.2 Approximation of the derivative of a function.

When o =0, Eq. (6.2.10a) gives
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which is nothing but the slope of the function u(#) at time ¢ = 7, based on the values of the
function at time #, and 7, ;. Since the value of the function from a step in front is used, it is
termed a forward difference approximation. When « = 1, we obtain
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which is termed, for obvious reason, the backward difference approximation.
Returning to Eq. (6.2.8), we note that it is valid for all times ¢ > 0. In particular, it is
valid at times t =, and t =, ;. Hence, from Eq. (6.2.8) we have
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Substituting the above expressions into Eq. (6.2.10a), we arrive at
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Solving for u, we obtain
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Thus, Eq. (6.2.11) can be used repeatedly to march in time and obtain the solution at times
t =ts41, tyy2, .., Iy, Where Nt-i-mF is the number of time steps required to reach the final
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