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The obvious boundary conditions are U; = U, = Q4 =0. The effect of the spring is that
[see Fig. 5.2.9(b)] it exerts a force of kU; upward on the beam. Hence, Q3 = —kUs3. Thus,
we have
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and the condensed equations for the unknown displacements U3 (deflection) and U, (rota-
tion) become
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Note that when k = 0, we obtain the deflection U3 = goL*/8 EI and rotation Uy = —qoL>/
6E1 at the free end of a cantilever beam under uniformly distributed load of intensity go.
When k — 0o, we obtain the deflection Uz = 0 and rotation Uy = —goL3/48E1 at x = L
(where it is simply supported).

Alternatively, the assembly of the beam and spring elements [see Fig. 5.2.9(c)] yields
the result

whose solution is
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Using the boundary conditions, U; = U, = Us =0 and Qi =0, and the equilibrium condi-
tion Q% + Q% =0, we obtain the condensed equations
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which are identical to those obtained earlier.

5.2.6 Postprocessing of the Solution

Once the boundary conditions are imposed, the resulting equations are solved for the un-
known nodal displacements and forces. The solution is then given by Eq. (5.2.10) in each
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