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(x̄ , z̄). Note that there is no displacement in the direction of the coordinate y (i.e., v = 0).
However, there is a rotation about the y-axis, and it remains the same in both coordinate
systems because y = ȳ. Note that rotation θ is equal to −dw/dx in Euler–Bernoulli beam
theory and it is equal to � in Timoshenko beam theory. Hence, the relationship between
(u, w, θ ) and (ū, w̄ , θ̄ ) can be written as
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(5.4.5)

Therefore, the three nodal degrees of freedom (ūe
i ,w̄ e

i ,S̄e
i ) at the i th node (i = 1, 2) in the (x̄ ,

ȳ, z̄) system are related to the three degrees of freedom (ue
i , we

i , Se
i ) in the (x, y, z) system

by 
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ū1

w̄1

S̄1

ū2
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(5.4.6a)

or

{�̄e} = [T e]{�e} (5.4.6b)

Analogously, the element force vectors in the local and global coordinate systems are related
according to

{F̄}e = [T ]e{F}e (5.4.7)

Returning to Eq. (5.4.1a), we substitute the transformation equations (5.4.6b) and (5.4.7)
into (5.4.1a) and obtain

[K̄ ]e[T ]e{�}e = [T ]e{F}e

Premultiplying both sides with [T ]−1 = [T ]T, we obtain

[T ]T[K̄ ]e[T ]e{�}e = {F}e or [K ]e{�}e = {F}e (5.4.8)

where

[K e] = [T ]T[K̄ ]e[T ]e, {F}e = [T ]T{F̄}e (5.4.9)

Thus, if we know the element matrices [K̄ ]e and {F̄}e of an element �e in the local coordinate
system (x̄, ȳ, z̄) , the element matrices in the global coordinate system are obtained by
(5.4.9).

Using [K̄ ]e and {F̄}e from Eq. (5.4.1b) in (5.4.9) and carrying out the indicated matrix
multiplications, we arrive at the following element stiffness matrix [K e] referred to the
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