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188 AN INTRODUCTION TO THE FINITE ELEMENT METHOD
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Figure 4.5.2 Axial deformation of a composite member (a) Geometry and loading. (b) Finite
element representation.

The governing equations are given by
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(4.5.9)
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where the subscript “s” refers to steel and “a” to aluminum. The boundary conditions are
obvious. We consider the following data:

Es = 30 × 106 psi, As = (c1 + c2x)2, Ea = 107 psi
(4.5.10)

Aa = 1 in.2, h1 = 96 in., L = 216 in., P0 = 10, 000 lb

The finite element equations for a uniform bar element with constant Ee Ae and f (x) = 0
are given by [see Eq. (3.3.5a)]
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(4.5.11a)

where Qe
i are the end forces
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(4.5.11b)

For the present problem, Ae is not constant, but Eq. (4.6.11a) is still valid with
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To see this, we calculate K e
i j for the problem using the local coordinate x̄ (x = x̄ + xa). We

have
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