CHAPTER 13: COMPUTER IMPLEMENTATION OF 2-D PROBLEMS 677

Table 13.4.1 Description of the input variables to the program FEM2D.

	l
TITLE	Title of the problem being solved (80 characters)
Data Card 2	2
ITYPE	Problem type
	ITYPE = 0 Single variable problems
	ITYPE = 1 Viscous incompressible flow problems
	ITYPE = 2 Plane elasticity problems
	ITYPE = 3 Plate bending problems by FSDT
	ITYPE = 4 Plate bending problems by $CPT(N)$
	ITYPE = 5 Plate bending problems by $CPT(C)$
IGRAD	Indicator for computing the gradient of the solution or stresses in the postprocessor
	IGRAD = 0 No postprocessing is required
	IGRAD > 0 Postprocessing is required
	When $ITYPE = 0$ and $IGRAD = 1$, the gradient is computed as in Eq. (13.4.2);
	for ITYPE = 0 and IGRAD > 1 the gradient is computed by Eq. $(13.4.3)$
ITEM	Indicator for dynamic analysis
	ITEM $= 0$ Static analysis is required
	ITEM > 0 Either eigenvalue or transient analysis is required:
	ITEM = 1 Parabolic equation
	ITEM $= 2$ Hyperbolic equation
NEIGN	Indicator for eigenvalue analysis
	NEIGN $= 0$ Static or transient analysis
	NEIGN > 0 Eigenvalue analysis:
	NEIGN = 1 Vibration analysis
	NEIGN > 1 Stability of plates
ip card 3 if	NEIGN = 0.
Data Card 3	3
NVALU	Number of eigenvalues to be printed
NVCTR	
	NVCTR = 0 Do not print eigenvectors
	NVCTR > 0 Print eigenvectors
Data Card 4	•
IELTYP	Element type used in the analysis
	IELTYP = 0 Triangular elements
	IELTYP > 0 Quadrilateral elements
NPE	Nodes per element
	NPE = 3 Linear triangle (IELTYP = 0)
	NPE = 4 Linear quadrilateral (IELTYP > 0)
	NPE = 6 Quadratic triangle (IELTYP = 0)
	NPE = 8 or 9 Quadratic quadrilateral (IELTYP > 0)
MESH	Indicator for mesh generation by the program
MESH	indicator for mesh generation by the program
MESH	MESH = 0 Mesh is not generated by the program
MESH	
MESH	MESH = 0 Mesh is not generated by the program
MESH	MESH = 0 Mesh is not generated by the program MESH = 1 Mesh is generated by the program for rectangular domains
MESH	MESH = 0 Mesh is not generated by the program MESH = 1 Mesh is generated by the program for rectangular domains by MESH2DR
MESH NPRNT	 MESH = 0 Mesh is not generated by the program MESH = 1 Mesh is generated by the program for rectangular domains by MESH2DR MESH > 1 Mesh is generated by the program for nonrectangular domains
	 MESH = 0 Mesh is not generated by the program MESH = 1 Mesh is generated by the program for rectangular domains by MESH2DR MESH > 1 Mesh is generated by the program for nonrectangular domains by MESH2DG

 $678 \qquad \text{an introduction to the finite element method} \\$

(Table 13.4.1 continued)

```
NPRNT = 2 Print array NOD and assembled matrices GLK and GLF
```

NPRNT > 2 Combination of NPRNT = 1 and 2

Skip card 5 if MESH = 1.

• Data Card 5	
NEM	Number of elements in the mesh when the user inputs the mesh or
	the mesh is generated by MESH2DG
NNM	Number of nodes in the mesh when the user inputs the mesh or the mesh is concerned by MESUPPC
	the mesh is generated by MESH2DG

Skip cards 6 and 7 if MESH \neq 0; otherwise, read card 6 in a loop on the number of elements (N = 1, NEM) and card 7 in loops on I and J.

• Data Card 6	
NOD(N, I)	Connectivity for the Nth element (I=1, NPE)
• Data Card 7	• • • •
GLXY(I, J)	Global <i>x</i> and <i>y</i> coordinates of the Ith global node in the mesh $(J = 1, x \text{ coordinate}; J = 2, y \text{ coordinate})$ Loops on I and J are: [$(J = 1, 2), I = 1, NNM$]; the NNM pairs of (x, y) coordinates are read sequentially
Cards 8-11 are rea	ad in MESH2DG . Skip them unless $MESH > 1$.
• Data Card 8	
NRECL	Number of line records to be read in the mesh
• Data Card 9	
Read the follo	owing variables NRECL times:
NOD1 NODL NODINC X1 Y1 XL YL RATIO • Data Card 10 _	First global node number of the line segment Last global node number of the line segment Node increment on the line The global <i>x</i> coordinate of the NOD1 The global <i>y</i> coordinate of the NOD1 The global <i>x</i> coordinate of NODL The global <i>y</i> coordinate of NODL The ratio of the first element length to the last element length
NRECEL	Number of rows of elements to be read in the mesh
• Data Card 11 _	
	owing variables NRECEL times:
NEL1 NELL IELINC NODINC NPE NODE(I)	First element number of the row Last element number of the row Increment of element number in the row Increment of the global node number in the row Number of nodes in each element Connectivity array of the first element in the row (I=1, NPE)
Skip cards 12–14	• •
• Data Card 12	
• Data Card 12 NX • Data Card 13	Number of elements in the <i>x</i> direction Number of elements in the <i>y</i> direction
X0 DX(I)	The <i>x</i> coordinate of global node 1 The <i>x</i> dimension of the Ith element $(I = 1, NX)$

(Table 13.4.1 continued)

• Data Card 14 Y0 The y coordinate of gobal node 1 DY(I) The y dimension of the Ith element (I = 1, NY)• Data Card 15 NSPV The number of specified primary variables Skip card 16 if NSPV = 0• Data Card 16 ISPV(I, J) Node number and local degree of freedom (DOF) number of the Ith specified primary variable ISPV(I, 1) = Node numberISPV(I, 2) = Local DOF number The do-loops on I and J are: [(J = 1, 2), I = 1, NSPV]Skip card 17 if NSPV = 0 or NEIGN $\neq 0$. • Data Card 17_ VSPV(I) Specified value of the Ith primary variable (I = 1, NSPV)Skip card 18 if NEIGN $\neq 0$. • Data Card 18_ NSSV Number of (nonzero) specified secondary variables Skip card 19 if NSSV = 0 or NEIGN $\neq 0$. Data Card 19. ISSV(I, J) Node number and local DOF number of the Ith specified secondary variable ISSV(I, 1) = Node numberISSV(I, 2) = Local DOF number The loops on I and J are: ((J = 1, 2), I = 1, NSSV)Skip card 20 if NSSV = 0 or NEIGN \neq 0. • Data Card 20_ VSSV(I) Specified value of the Ith secondary variable (I = 1, NSSV)Data Cards 21-27 are for the single variable problems (ITYPE = 0). • Data Card 21_ A10 Coefficients of the differential equation A1X A1Y $a11 = A10 + A1X^*X + A1Y^*Y$ • Data Card 22 A20 Coefficients of the differential equation A2X A2Y $\mathbf{a22} = \mathbf{A20} + \mathbf{A2X^*X} + \mathbf{A2Y^*Y}$ • Data Card 23 A00 Coefficient of the differential equation • Data Card 24 ICONV Indicator for convection boundary conditions ICONV = 0 No convection boundary conditions ICONV > 0 Convection boundary conditions present • Data Card 25 NBE Number elements with convection • Data Card 26. The following cards are read for each I, I = 1, NBE: IBN(I) Ith element number with convection Film coefficient for convection on Ith element BETA(I) TINF(I) Ambient temperature of the Ith element

 $680 \qquad \text{an introduction to the finite element method} \\$

(Table 13.4.1 continued)

• Data Card 27		
INOD(I, J)	Local node numbers of the side with convection	
	(J = 1, 2; for quadratic elements, give end nodes)	
	Loops on I and J are: $[(J = 1, 2), I = 1, NBE]$	
Data Card 28 is f	For viscous fluid flows (ITYPE = 1) only.	
• Data Card 28		
VISCSITY	Viscosity of the fluid	
PENALTY	Value of the penalty parameter	
Data Cards 29 and 30 are for plane elasticity problems (ITYPE = 2) only.		
• Data Card 29		
LNSTRS	Flag for plane stress or plane strain problems	
	LNSTRS = 0 Plane strain elastic problems	
	LNSTRS > 0 Plane stress elastic problems	
 Data Card 30 		
E1	Young's moduli along the global x axis	
E2	Young's moduli along the global y axis	
ANU12	Poisson's ratio in the xy plane	
G12	Shear modulus in the xy plane	
THKNS	Thickness of the plane elastic body analyzed	
	for plate bending problems (ITYPE = $3 \text{ to } 5$) only.	
 Data Card 31_ 		
E1	Young's moduli along the global x axis	
E2	Young's moduli along the global y axis	
ANU12	Poisson's ratio in the xy plane	
G12	Shear modulus in the xy plane	
G13	Shear modulus in the xz plane	
G23	Shear modulus in the yz plane	
THKNS	Thickness of the plate analyzed	
e	lata cards are for all problem types. ***	
Skip card 32 if N	,	
• Data Card 32		
F0	Coefficients to define the source term	
FX		
FY	$f(x, y) = F0 + FX^*x + FY^*y$	
*** Cards 33-37	are for transient analysis (ITEM $\neq 0$) only. ***	
Skip card 33 if I	$\Gamma EM = 0.$	
• Data Card 33		
C0	Coefficients defining the temporal parts of the	
CX	differential equations, as defined below:	
CY		
	CT = C0 + CX*X + CY*Y when $ITYPE = 0$ or 1	
	CT = (C0 + CX*X + CY*Y)*THKNS when $ITYPE = 2$	
	I0 = C0*THKNS, I2 = C0*(THKNS**3)/12	
	and CX and CY are not used (when NEIGH ≤ 1 and ITYPE = 3 to 5)	
	C0, CX, and CY denote the buckling parameters when $ITYPE = 3$ and $NEIGN > 1$	
Skin card 34 if F	$\Gamma EM = 0$ or $N EIGN \neq 0$	

Skip card 34 if ITEM = 0 or NEIGN \neq 0.

CHAPTER 13: COMPUTER IMPLEMENTATION OF 2-D PROBLEMS 681

(Table 13.4.1 continued) • Data Card 34		
NTIME	Number of time steps for the transient solution	
NSTP	Time step number at which the source is removed	
INTVL	Time step interval at which to print the solution	
INTIAL	Indicator for nature of initial conditions	
	INTIAL = 0 Zero initial conditions are used	
	INTIAL > 0 Nonzero initial conditions are used	
Skip card 35 i	f ITEM = 0 or NEIGN $\neq 0$.	
 Data Card 3 	35	
DT	Time step used for the transient solution	
ALFA	Parameter in the alfa-family of time approximation used for parabolic equations:	
	ALFA = 0 The forward difference scheme (C.S.) [†]	
	ALFA = 0.5 The Crank–Nicolson scheme (stable)	
	ALFA = 2/3 The Galerkin scheme (stable)	
	ALFA = 1 The backward difference scheme (stable)	
	$\dagger C.S. =$ conditionally stable; for all schemes with	
	ALFA < 0.5, the time step DT is restricted to	
	DT < 2/[MAXEGN*(1-2*ALFA)], where MAXEGN is the maximum eigenvalue	
	of the discrete problem	
GAMA	Parameter in the Newmark time integration scheme used for	
	hyperbolic equations:	
	GAMA = 0.5 Constant-average acceleration (stable)	
	GAMA = 1/3 Linear acceleration scheme (C.S.)	
	GAMA = 0.0 The central difference scheme (C.S.)	
	ALFA = 0.5 for all schemes; For schemes for which	
	$ALFA \le 0.5$ and $GAMA < ALFA$, DT is restricted to:	
	DT < 2/SQRT[MAXEGN*(ALFA-GAMA)], MAXEGN	
	being the maximum eigenvalue of the discrete system	
EPSLN	A small parameter to check if the solution has reached a steady state	
1	f ITEM or INTIAL = 0, or NEIGN $\neq 0$.	
• Data Card .		
GLU(I)	Vector of initial value of the primary variables ($I = 1$, NEQ), where NEQ = Number of nodal values in the mesh	
Skip card 37 is	f ITEM ≤ 1 , NEIGN $\neq 0$, or INTIAL = 0.	
• Data Card 3	37	
GLV(I)	Vector of the initial values of the first derivative of the primary variables (velocity) (I = 1, NEQ)	

13.4.2 Description of Mesh Generators

A major limitation of the program **FEM2D** lies in the mesh generation [i.e., the computation of arrays NOD(I, J) and GLXY(I, J) for arbitrary domains]. For such problems, the user is required to input the mesh information, which can be a tedious job if many elements are used. Of course, the program can be modified to accept other mesh generation subroutines. Here we discuss the input data to the two mesh generators, namely, **MESH2DR** and **MESH2DG**.