Table 13.4.1 Description of the input variables to the program FEM2D.

- Data Card 1

TITLE Title of the problem being solved (80 characters)

- Data Card 2

ITYPE
Problem type
ITYPE $=0 \quad$ Single variable problems
ITYPE $=1 \quad$ Viscous incompressible flow problems
ITYPE $=2 \quad$ Plane elasticity problems
ITYPE $=3 \quad$ Plate bending problems by FSDT
ITYPE $=4 \quad$ Plate bending problems by $\mathrm{CPT}(\mathrm{N})$
ITYPE $=5 \quad$ Plate bending problems by $\mathrm{CPT}(\mathrm{C})$
IGRAD Indicator for computing the gradient of the solution or stresses in the postprocessor
IGRAD $=0 \quad$ No postprocessing is required
IGRAD >0 Postprocessing is required
When ITYPE $=0$ and IGRAD $=1$, the gradient is computed as in Eq. (13.4.2);
for ITYPE $=0$ and IGRAD >1 the gradient is computed by Eq. (13.4.3)
ITEM Indicator for dynamic analysis
ITEM $=0 \quad$ Static analysis is required
ITEM >0 Either eigenvalue or transient analysis is required:
ITEM $=1$ Parabolic equation
ITEM $=2$ Hyperbolic equation
NEIGN Indicator for eigenvalue analysis
NEIGN $=0 \quad$ Static or transient analysis
NEIGN >0 Eigenvalue analysis:
NEIGN $=1$ Vibration analysis
NEIGN >1 Stability of plates
Skip card 3 if NEIGN $=0$.

- Data Card 3

NVALU Number of eigenvalues to be printed
NVCTR Indicator for printing eigenvectors:
NVCTR $=0$ Do not print eigenvectors
NVCTR > 0 Print eigenvectors

- Data Card 4

IELTYP Element type used in the analysis
IELTYP $=0$ Triangular elements
IELTYP > 0 Quadrilateral elements
NPE Nodes per element
NPE $=3$ Linear triangle $($ IELTYP $=0)$
NPE $=4$ Linear quadrilateral (IELTYP >0)
NPE $=6$ Quadratic triangle (IELTYP $=0$)
NPE $=8$ or 9 Quadratic quadrilateral (IELTYP $>0)$
MESH Indicator for mesh generation by the program
$\mathrm{MESH}=0$ Mesh is not generated by the program
$\mathrm{MESH}=1$ Mesh is generated by the program for rectangular domains

by MESH2DR

MESH >1 Mesh is generated by the program for nonrectangular domains by MESH2DG
NPRNT Indicator for printing certain output
NPRNT $=0$ Not print array NOD, element matrices or global matrices NPRNT $=1$ Print array NOD and element 1 matrices ELK and ELF
(Table 13.4.1 continued)
NPRNT $=2$ Print array NOD and assembled matrices GLK and GLF
NPRNT >2 Combination of NPRNT $=1$ and 2
Skip card 5 if MESH $=1$.

- Data Card 5

NEM Number of elements in the mesh when the user inputs the mesh or
the mesh is generated by MESH2DG
NNM Number of nodes in the mesh when the user inputs the mesh or the mesh is generated by MESH2DG
Skip cards 6 and 7 if MESH $\neq 0$; otherwise, read card 6 in a loop on the number of elements ($\mathrm{N}=1$, NEM) and card 7 in loops on I and J.

- Data Card 6 \qquad
NOD(N, I) Connectivity for the Nth element (I=1, NPE)
- Data Card 7

GLXY(I, J) Global x and y coordinates of the Ith global node in the mesh
($\mathrm{J}=1, x$ coordinate; $\mathrm{J}=2, y$ coordinate)
Loops on I and J are: $[(\mathrm{J}=1,2), \mathrm{I}=1, \mathrm{NNM}]$; the NNM pairs of (x, y)
coordinates are read sequentially
Cards 8-11 are read in MESH2DG. Skip them unless MESH >1.

- Data Card 8

NRECL Number of line records to be read in the mesh

- Data Card 9
following variables NRECL times
NOD1 First global node number of the line segment
NODL Last global node number of the line segment
NODINC Node increment on the line
X1 \quad The global x coordinate of the NOD1
Y1 The global y coordinate of the NOD1
XL The global x coordinate of NODL
YL The global y coordinate of NODL
RATIO The ratio of the first element length to the last element length
- Data Card 10

NRECEL Number of rows of elements to be read in the mesh

- Data Card 11

Read the following variables NRECEL times:
NEL1 First element number of the row
NELL Last element number of the row
IELINC Increment of element number in the row
NODINC Increment of the global node number in the row
NPE Number of nodes in each element
NODE(I) Connectivity array of the first element in the row ($\mathrm{I}=1$, NPE)
Skip cards $12-14$ if MESH $\neq 1$.

- Data Card 12

NX \quad Number of elements in the x direction
NY Number of elements in the y direction

- Data Card 13

The x coordinate of global node 1
X0 \quad The x coordinate of global node 1
DX(I) The x dimension of the Ith element $(\mathrm{I}=1, \mathrm{NX})$
(Table 13.4.1 continued)

- Data Card 14

The y coordinate of gobal node 1
Y0 The y coordinate of gobal node 1
DY(I) The y dimension of the Ith element $(\mathrm{I}=1, \mathrm{NY})$

- Data Card 15

NSPV The number of specified primary variables
Skip card 16 if NSPV $=0$

- Data Card 16

ISPV(I, J) Node number and local degree of freedom (DOF) number of the Ith
specified primary variable
$\operatorname{ISPV}(\mathrm{I}, 1)=$ Node number
$\operatorname{ISPV}(\mathrm{I}, 2)=$ Local DOF number
The do-loops on I and J are: $[(\mathrm{J}=1,2), \mathrm{I}=1$, NSPV $]$
Skip card 17 if NSPV $=0$ or NEIGN $\neq 0$.

- Data Card 17

VSPV(I) Specified value of the Ith primary variable $(\mathrm{I}=1, \mathrm{NSPV})$
Skip card 18 if NEIGN $\neq 0$.

- Data Card 18

NSSV Number of (nonzero) specified secondary variables
Skip card 19 if NSSV $=0$ or NEIGN $\neq 0$.

- Data Card 19
$\operatorname{ISSV}(\mathrm{I}, \mathrm{J})$ Node number and local DOF number of the Ith specified secondary variable $\operatorname{ISSV}(\mathrm{I}, 1)=$ Node number $\operatorname{ISSV}(\mathrm{I}, 2)=\operatorname{Local} \operatorname{DOF}$ number
The loops on I and J are: $((\mathrm{J}=1,2), \mathrm{I}=1$, NSSV $)$
Skip card 20 if NSSV $=0$ or NEIGN $\neq 0$.
- Data Card 20

VSSV(I) Specified value of the Ith secondary variable ($\mathrm{I}=1$, NSSV)
Data Cards 21-27 are for the single variable problems (ITYPE $=0$).

- Data Card 21 \qquad
A10 Coefficients of the differential equation
A1X
A1Y \quad a11 $=\mathrm{A} 10+\mathrm{A} 1 \mathrm{X} * \mathrm{X}+\mathrm{A} 1 \mathrm{Y} * \mathrm{Y}$
- Data Card 22

A20 Coefficients of the differential equation
A2X
A2Y $\quad \mathrm{a} 22=\mathrm{A} 20+\mathrm{A} 2 \mathrm{X} * \mathrm{X}+\mathrm{A} 2 \mathrm{Y} * \mathrm{Y}$

- Data Card 23

A00 Coefficient of the differential equation

- Data Card 24

ICONV Indicator for convection boundary conditions
ICONV $=0 \quad$ No convection boundary conditions
ICONV > 0 Convection boundary conditions present

- Data Card 25

NBE Number elements with convection

- Data Card 26

The following cards are read for each $I, I=1$, NBE:
IBN(I) Ith element number with convection
BETA(I) Film coefficient for convection on Ith element
TINF(I) Ambient temperature of the Ith element
(Table 13.4.1 continued)

- Data Card 27

INOD(I, J) Local node numbers of the side with convection
($\mathrm{J}=1,2$; for quadratic elements, give end nodes)
Loops on I and J are: $[(\mathrm{J}=1,2), \mathrm{I}=1, \mathrm{NBE}]$
Data Card 28 is for viscous fluid flows (ITYPE =1) only.

- Data Card 28

VISCSITY Viscosity of the fluid
PENALTY Value of the penalty parameter
Data Cards 29 and 30 are for plane elasticity problems (ITYPE $=2$) only.

- Data Card 29

LNSTRS Flag for plane stress or plane strain problems
LNSTRS $=0$ Plane strain elastic problems
LNSTRS > 0 Plane stress elastic problems

- Data Card 30

E1 Young's moduli along the global x axis
E2 Young's moduli along the global y axis
ANU12 Poisson's ratio in the $x y$ plane
G12 Shear modulus in the $x y$ plane
THKNS Thickness of the plane elastic body analyzed
Data Card 31 is for plate bending problems (ITYPE $=3$ to 5) only.

- Data Card 31

E1 Young's moduli along the global x axis
E2 Young's moduli along the global y axis
ANU12 Poisson's ratio in the $x y$ plane
G12 Shear modulus in the $x y$ plane
G13 Shear modulus in the $x z$ plane
G23 Shear modulus in the $y z$ plane
THKNS Thickness of the plate analyzed
*** Remaining data cards are for all problem types. ***
Skip card 32 if NEIGN $\neq 0$.

- Data Card 32

F0 Coefficients to define the source term
FX
FY $\quad f(x, y)=F 0+\mathrm{FX}^{*} \mathrm{x}+\mathrm{FY}^{*} \mathrm{y}$
*** Cards 33-37 are for transient analysis (ITEM $\neq 0$) only. ***
Skip card 33 if ITEM $=0$.

- Data Card 33

C0 Coefficients defining the temporal parts of the
CX differential equations, as defined below:
CY

$$
\mathrm{CT}=\mathrm{C} 0+\mathrm{CX} * \mathrm{X}+\mathrm{CY} * \mathrm{Y} \text { when ITYPE }=0 \text { or } 1
$$

$$
\mathrm{CT}=(\mathrm{C} 0+\mathrm{CX} * \mathrm{X}+\mathrm{CY} * \mathrm{Y}) * \mathrm{THKNS} \text { when ITYPE }=2
$$

$$
\mathrm{I} 0=\mathrm{C} 0 * \mathrm{THKNS}, \mathrm{I} 2=\mathrm{C} 0 *(\mathrm{THKNS} * * 3) / 12
$$

$$
\text { and CX and CY are not used (when NEIGH } \leq 1 \text { and ITYPE }=3 \text { to } 5 \text {) }
$$

$$
\text { C0, CX, and CY denote the buckling parameters when ITYPE }=3 \text { and NEIGN }>1
$$

Skip card 34 if ITEM $=0$ or NEIGN $\neq 0$.
(Table 13.4.1 continued)

- Data Card 34

NTIME Number of time steps for the transient solution
NSTP Time step number at which the source is removed
INTVL Time step interval at which to print the solution
INTIAL Indicator for nature of initial conditions INTIAL $=0 \quad$ Zero initial conditions are used INTIAL > 0 Nonzero initial conditions are used
Skip card 35 if ITEM $=0$ or NEIGN $\neq 0$.

- Data Card 35

DT Time step used for the transient solution
ALFA Parameter in the alfa-family of time approximation used for parabolic equations: ALFA $=0 \quad$ The forward difference scheme (C.S. $)^{\dagger}$
ALFA $=0.5 \quad$ The Crank-Nicolson scheme (stable)
ALFA $=2 / 3 \quad$ The Galerkin scheme (stable)
ALFA $=1 \quad$ The backward difference scheme (stable)
\dagger C.S. $=$ conditionally stable; for all schemes with
ALFA <0.5, the time step DT is restricted to
DT $<2 /[$ MAXEGN*(1-2*ALFA)], where MAXEGN is the maximum eigenvalue of the discrete problem
GAMA Parameter in the Newmark time integration scheme used for hyperbolic equations:
GAMA $=0.5$ Constant-average acceleration (stable)
GAMA $=1 / 3$ Linear acceleration scheme (C.S.)
GAMA $=0.0 \quad$ The central difference scheme (C.S.)
ALFA $=0.5$ for all schemes; For schemes for which
ALFA ≤ 0.5 and GAMA $<$ ALFA, DT is restricted to: DT $<2 /$ SQRT[MAXEGN*(ALFA-GAMA)], MAXEGN
being the maximum eigenvalue of the discrete system
EPSLN A small parameter to check if the solution has reached a steady state
Skip card 36 if ITEM or INTIAL $=0$, or NEIGN $\neq 0$.

- Data Card 36

GLU(I) Vector of initial value of the primary variables $(\mathrm{I}=1, \mathrm{NEQ})$, where
NEQ $=$ Number of nodal values in the mesh
Skip card 37 if ITEM ≤ 1, NEIGN $\neq 0$, or INTIAL $=0$.

- Data Card 37

GLV(I) Vector of the initial values of the first derivative of the primary variables (velocity) ($\mathrm{I}=1$, NEQ)

13.4.2 Description of Mesh Generators

A major limitation of the program FEM2D lies in the mesh generation [i.e., the computation of arrays $\operatorname{NOD}(\mathrm{I}, \mathrm{J})$ and $\operatorname{GLXY}(\mathrm{I}, \mathrm{J})$ for arbitrary domains]. For such problems, the user is required to input the mesh information, which can be a tedious job if many elements are used. Of course, the program can be modified to accept other mesh generation subroutines. Here we discuss the input data to the two mesh generators, namely, MESH2DR and MESH2DG.

