Chapter 14

14.

14.

14.

14.

14.

14.

1.

11

The function main() is the place in a C program where execution
begins. A program without a function main() has no starting point.

a. The function declaration informs the compiler about the return
type, input parameters, and function name for a given function. This
information is required so that the compiler can generate code for a
function call to this function if it appears in the source code prior
to the function definition.

b. A function prototype is the same as function definition.

c. A function definition contains the source code for a function.
d. An argument is an input value for a callee function.

e. A parameter is a value provided by the caller function for at

callee function.

The output of the program is "2 2". The variable 'z' in the function
MyFunc () 1s declared within the local scope of the function. The
value of 'z' from main() is passed to MyFunc (), but all operations on
'z' in MyProc affect only the local copy and not the one in main().

Activation Record Description Writer
int a local variable Bump
dynamic link address of data Bump
return address address of instruction Bump
return value other Bump
int x argument -——=

The parameters are placed onto the stack before the JSR is called.
This is necessary because once the callee is called, the original
data values in the caller are unavailable. The caller's data is out
of scope once the JSR is called.

.a. a =3 b = ??? (b is an unknown value)

b. The local variable z is uninitialized and therefore can have
any arbitrary value. However, since the position of the activation
record for function Unit() on the run-time stack corresponds to the
position of the function Init (), which was called previously, the
value of local variable z will correspond to the value 2 (in other
words, variable z reuses the location allocated to variable y in
function Init).

14.13.
#include <stdio>
void PrintBase4 (int x);
int main ()

{

int a, b;

printf ("First Number: ");
scanf ("%d", &a);
printf ("Second Number: ");

scanf ("%d", &b);

PrintBased (a) ;

PrintBase4 (b) ;

PrintBased (a + b);
}

void PrintBased (int x)
{
int 1i;
int digits = -1;
int temp = x;

/* find out how many digits in the number */
if (x > 0)
while (temp)
{
temp = temp / 4;
digits++;

}

else
digits = 0;

/* print out digits from highest down to lowest */
for (digits = digits; digits >= 0; digits--)
{

temp = 1;

for (1 = 0; i < digits; i++)
temp = temp * 4;

temp = (x / temp) % 4;

printf ("%d", temp) ;
}
printf ("\n")

14.15.

Run-time Stack

16 (int x1)

dynamic link for main
%3103 (return addr to main)
0 (return value from f)
third arg to f)

second arg to f)

first arg to f)

int c)

int b)

SO oY oY O]

(
(
(
(
(
(i

14.17.
int Multiplex (int inputO,
{

int

switch (sele

{

case 0

case 1

case 2

case 3

defaul

}

int Alu(int inputO
{

switch

{

(sele

inputl, int input2, int input3,
ct)

return inputO;
break;

return inputl;
break;

return input2;
break;

return input3;
break;

t:

return 0;
break;

, int inputl, int select)

ct)

case ALU ADD:

return
break;

(input0 + inputl);

case ALU AND:

return
break;

(input0 & inputl);

case ALU NOT:

return
break;
default:
return
break;

14.19. The
The
The

The

variable
variable
variable
variable

QW
N N N N

(~inputO) ;

0;

equals
equals
equals
equals

0 01 W

int select)

Questions in the text denoted by the question mark icon:

Page 385: As discussed later in the chapter, an activation record for a
function is allocated on the run-time stack.

Page 397: The following is a straightforward technique to calculate
Pythagorean Triples more efficiently than the code in Figure 14.11. Why is
this technique more efficient? Notice the loop bounds on the nested for
loops. There techniques for making the code even more efficient than this
using an algebraic reduction on the Pythagorean relationship.

#include <stdio.h>
int Squared(int x);

int main ()

{
int sideA;
int sideB;
int sideC;
int maxC;

printf ("Enter the maximum length of hypotenuse: ");
scanf ("%d", &maxC);

for (sideC = 1; sideC <= maxC; sideC++) {
for (sideB = 1; sideB <= sideC; sideB++) {
for (sideA = 1; sideA <= sideB; sidelA++) {
if (Squared(sideC) == Squared(sideA) + Squared(sideB))
printf ("$d %d %d\n", sideA, sideB, sideC);

}

/* Calculate the square of a number */
int Squared(int x)
{

return x * x;

}

