Appendix F Selected Solutions

F. 3 Chapter 3 Solutions

3.1

	N-Type	P-Type
Gate $=1$	closed	open
Gate $=0$	open	closed

3.3 There can be 16 different two input logic functions.
3.5

A	B	C	OUT
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

3.7 There is short circuit (path from Power to Ground) when either $\mathrm{A}=1$ and $\mathrm{B}=0$ or $\mathrm{A}=0$ and $\mathrm{B}=1$.
3.9

A	B	NOT(NOT(A) OR NOT(B))
0	0	0
0	1	0
1	0	0
1	1	1

AND gate has the same truth table.
3.11 a. Three input And-Gate

Three input OR-Gate

b. (1) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=0$.

OR Gate

b. (2) $\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0$

AND Gate

OR Gate

b. (3) $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1$

AND Gate

OR Gate

3.13 A five input decoder will have 32 output lines.
3.15

$\mathrm{C}_{\text {in }}$	1	1	1	0
A	0	1	1	1
B	1	0	1	1
S	0	0	1	0
$\mathrm{C}_{\text {out }}$	1	1	1	1

$\mathrm{A}=7, \mathrm{~B}=11, \mathrm{~A}+\mathrm{B}=18$.
In the above calculation, the result (S) is 2 !! This is because 18 is too large a number to be represented in 4 bits. Hence there is an overflow - Cout[3] $=1$.
3.17 (a) The truth table will have 16 rows. Here is the truth table for $\mathrm{Z}=\mathrm{XOR}$ (A, B, C, D). Any circuit with at least seven input combinations generating 1 s at the output will work.

A	B	C	D	Z
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$
\mathrm{Z}=\mathrm{XOR}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})
$$

(b)

3.19 Figure 3.36 is a simple combinational circuit. The output value depends ONLY on the input values as they currently exist. Figure 3.37 is an R-S Latch. This is an example of a logic circuit that can store information. That is, if A, B are both 1 , the value of D depends on which of the two (A or B) was 0 most recently.
$3.212 * 2^{14}=2^{15}=32768$ nibbles
3.23

A	B	C	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

3.25 (a) 3 gate delays
3.25 (b) 3 gate delays
3.25 (c) $3 * 4=12$ gate delays
3.25 (d) $3 * 32=96$ gate delays
3.27(a) When $\mathrm{S}=0, \mathrm{Z}=\mathrm{A}$
3.27(b) When $\mathrm{S}=1$, Z retains its previous value.
3.27(c) Yes; the circuit is a storage element.
3.29 No. The original value cannot be recovered once a new value is written into a register.
3.31. $8 *\left(2^{\wedge} 3\right)=64$ bytes
3.33.(a) To read the 4th memory location, $\mathrm{A}[1,0]=11, \mathrm{WE}=0$
3.33.(b) A total of 6 address lines are required for a memory with 60 locations. The addressability of the memory will remain unchanged.
3.33.(c) A program counter of width 6 can address $2^{\wedge} 6=64$ locations. So without changing the width of the program counter, $64-60=4$ more locations can be added to the memory.
3.35 Total bits of storage $=2^{\wedge} 22 * 3=12582912$
3.37 There are a total of four possible states in this lock. Any other state can be expressed as one of states A, B, C or D. For example, the state performed one correct followed by one incorrect operation is nothing but state A as the incorrect operation reset the lock.
3.39 No. An arc is needed between the two states.
(a) Game in Progress:

Texas* Oklahoma
Fouls:4
73
Fouls: 4
68
First Half
7:38
Shot Clock: 14
(b) Texas Win:

Texas*
Oklahoma
Fouls:10
Fouls: 10
85
70
Second Half 0:00
Shot Clock : 0
(c) Oklahoma Win:

Texas *
Oklahoma
Fouls:10
Fouls: 10
81
90
First Half
7:38
Shot Clock : 0
3.41

3.43
a)

S1	S0	X		D1	D0			
0	0	0		0	0			
0	0	1		0	0			
0	1	0		0	0			
0	1	1		1	0			
1	0	0		1	1			
1	0	1		1	1			
1	1	0	1	0	1			
1	1	1		1	0	$	$	1
:---								

b)

