Appendix F

Selected Solutions

F.5 Chapter 5 Solutions

5.1 (a) ADD
- operate
- register addressing for destination and source 1
- register or immediate addressing for source 2
(b) JIMP
- control
- register addressing
(c) LEA
- data movement
- immediate addressing
(d) NOT
- operate
- register addressing
5.3 Sentinel. It is a special element which is not part of the set of allowable inputs and indicates
the end of data.
5.5 (a) Addressing mode: mechanism for specifying where an operand is located.
(b) Aninstruction’s operands are located as an immediate value, in a register, or in memory.

(c) The 5 are: immediate, register, direct memory address, indirect memory address, base
+ offset address. An immediate operand is located in the instruction. A register operand
is located in a register (RO - R7). A direct memory address, indirect memory address
and base + offset address all refer to operands locate in memory.

(d) Add R2, RO, R1 => register addressing mode.

5.7
59

5.11

5.13

5.15

5.17

5.19
5.21

5.23

APPENDIX F. SELECTED SOLUTIONS

01111 (decimal 15)

(a) Add R1, R1, #0 => differs from a NOP in that it sets the CC’s.
(b) BRnzp #1 => Unconditionally branches to one after the next address in the PC. There-
fore no, this instruction is not the same as NOP.

(c) Branch that is never taken. Yes same as NOP.

No. We cannot do it in a single instruction as the smallest representable integer with the 5 bits
available for the immediate field in the ADD instruction is -16. However this could be done
in two instructions.

(a) 0001 011 010 1 00000 (ADD R3,R2, #0)

(b) 1001 011 011 111111 (NOT R3, R3)
0001 011 011 1 00001 (ADD R3, R3, #1)
0001 001 010 0 00011 (ADD R1, R2, R3)

(c) 0001 001 001 1 00000 (ADD R1, R1, #0)
or
0101 001 001 1 11111 (AND R1, R1, #-1)

(d) Can’t happen. The condition where N=1, Z=1 and P=0 would require the contents of a
register to be both negative and zero.

(e) 0101 010 010 1 00000 (AND R2, R2, #0)

1110 001 000100000 (LEA R1, 0x20) Rl <= 0x3121
0010 010 000100000 (LD R2, 0x20) R2 <- Mem[0x3122] = 0x4566
1010 011 000100001 (LDI R3, 0x20) R3 <— Mem[Mem[0x3123]] = Oxabcd
0110 100 010 000001 (LDR R4, R2, 0Oxl) R4 <- Mem[R2 + 0x1] = Oxabcd
()

1111 0000 0010 0101 TRAp 0x25

(a) LD: two, once to fetch the instruction, once to fetch the data.

(b) LDI: three, once to fetch the instruction, once to fetch the data address, and once to fetch
the data.

(c) LEA: once, only to fetch the instruction.
PC-64 to PC+63. The PC value used here is the incremented PC value.

The Trap instruction provides 8 bits for a trap vector. That means there could be 28 = 256 trap
routines.

x30ff 1110 0010 0000 0001 (LEA R1, #1) R1 <- 0x3101
x3100 0110 010 001 00 0010 (LDR R2, R1l, #2) R2 <- 0x1482
x3101 1111 0000 0010 0101 (TRAP 0x25)

%3102 0001 0100 0100 0O0OO1

x3103 0001 0100 1000 0010

E5. CHAPTER 5 SOLUTIONS 3

5.25 1001 100 011 111111 ; (NOT R4, R3)
0001 100 100 1 00001 ; (ADD R4, R4, #1)
0001 001 100 O 00 010 ; (ADD R1l, R4, R2)
0000 010 000000101 ; (BRz Done)
0000 100 O000OOOOCOO1 ; (BRn Reg3)
0000 001 000000010 ; (BRp Reg2)
0001 001 011 1 00000 ; (Reg3 ADD R1, R3, #0)
0000 111 O000O0OOOOO1 ; (BRnzp Done)
0101 001 010 1 00000 ; (Reg2 ADD R1, R2, #0)
1111 0000 0010 0101 ; (Done TRAP 0x25)

5.27 Four different values: xAAAA, x30F4, x0000, x0005

5.29 (a) LDR R2, R1, #0 ;load R2 with contents of location pointed to by R1
STR R2, RO, #0 ;store those contents into location pointed to by RO

(b) The constituent micro-ops are:

MAR < — SR
MDR < — Mem[MAR]
MAR < — DR

Mem[MAR] < — MDR
5.31 0x1000: 0001 101 000 1 11000
5.33 It can be inferred that RS has exactly 5 of the lower 8 bits = 1.

5.35 The IR, SEXT unit, SR2ZMUX, Reg File and ALU implement the ADD instruction, alongwith
NZP and the logic which goes with it.

5.37 Memory, MDR, MAR, IR, PC, Reg File, the SEXT unit connected to IR[8:0], ADDR2MUX,
ADDRIMUX set to PC, alongwith the ADDER they connect to, and MAXMUX and
GateMARMUX implement the LDI instruction, alongwith NZP and the logic which goes
with it.

5.39 IR, PC, Reg File, the SEXT unit connected to IR[8:0], ADDR2MUX, ADDRIMUX set to
PC, alongwith the ADDER they connect to, and MAXMUX and GateMARMUX implement
the LEA instruction, alongwith NZP and the logic which goes with it.

5.41 (a) Y is the P Condition code.

(b) Yes. The error is that the logic should not have the logic gate A. X should be one whever
the opcode field of the IR matches the opcodes which change the condition code registers.
The problem is that X is 1 for the BR opcode (0000) in the given logic.

