
Appendix F

Selected Solutions

F.9 Chapter 9 Solutions

9.1 The most important advantage of doing I/O through a trap routine is the fact that it is not
necessary for the programmer to know the gory low-level details of the specific hardware’s
input/output mechanism. These details include:

• the hardware data registers for the input and output devices

• the hardware status registers for the input and output devices

• the asynchronous nature of the input relative to the executing program

Besides, these details may change from computer to computer. The programmer would have
to know these details for the computer she’s working on in order to be able to do input/output.
Using a trap routine requires no hardware-specific knowledge on part of the programmer and
saves time.

9.3 (a) Some external mechanism is the only way to start the clock (hence, the computer) af-
ter it is halted. The Halt service routine can never return after bit 15 of the machine
control register is cleared because the clock has stopped, which means that instruction
processing has stopped.

(b) STI R0, MCR This instruction clears the most significant bit of the machine control
register, stopping the clock.

(c) LD R1, SaveR1

(d) The RET of the HALT routine will bring program control back to the program that
executed the HALT instruction. The PC will point to the address following the HALT
instruction.

9.5 Note: This problem should be corrected to read as follows:

.ORIG x3000
LEA R0, LABEL

1



2 APPENDIX F. SELECTED SOLUTIONS

STR R1, R0, #3
TRAP x22
TRAP x25

LABEL .STRINGZ "FUNKY"
LABEL2 .STRINGZ "HELLO WORLD"

.END

Answer: FUN

9.7 Note: This problem belongs in chapter 10.

The three errors that arose in the first student’s program are:

1. The stack is left unbalanced.

2. The privilege mode and condition codes are not restored.

3. Since the value in R7 is used for the return address instead of the value that was saved on
the stack, the program will most likely not return to the correct place.

9.9 (a) ST R1, SaveR1
ST R2, SaveR2
AND R0, R0, #0 ;Zero out the

;return value
LDI R1, MBUSY ;Load the

;contents of
;machine busy bit
;pattern into R1

LD R2, MASK ;Load the mask, x00FF
AND R1, R1, R2 ;Mask out bits <7:0>
LD R2, NMASK
ADD R1, R1, R2
BRnp Return ;Branch if bit pattern

;is not x00FF (some
;machines busy)

ADD R0, R0, #1 ;No machines are busy,
;so return 1

Return LD R1, SaveR1
LD R2, SaveR2
RET

SaveR1 .FILL x0000
SaveR2 .FILL x0000
MBUSY .FILL x4001
MASK .FILL x00FF
NMASK .FILL x-00FF

(b)
ST R1, SaveR1
ST R2, SaveR2



F.9. CHAPTER 9 SOLUTIONS 3

AND R0, R0, #0 ;Zero out the
;return value

LDI R1, MBUSY ;Load r1 with the
;contents of the machine
;busy bit

LD R2, MASK ;Load the mask, x00FF
AND R1, R1, R2 ;Mask out bits <7:0>
BRNP Return ;Branch if bit

;pattern is not x0000
;(some machines not busy)

ADD R0, R0, #1 ;All are busy, so
;return 1

Return LD R1, SaveR1
LD R2, SaveR2
RET

SaveR1 .FILL x0000
SaveR2 .FILL x0000
MBUSY .FILL x4001
MASK .FILL x00FF

(c)
ST R1, SaveR1
ST R2, SaveR2
ST R3, SaveR3
ST R4, SaveR4
AND R0, R0, #0 ;Zero out the

;return value
LDI R1, MBUSY ;Load R1 with the

;machine busy bit pattern
LD R2, MASK ;R2 will act as a mask

;to mask out the bit needed
LD R3, COUNT ;R3 will act as the

;iteration counter
Loop AND R4, R1, R2 ;Mask off the bit to

;check if machine is busy
BRp NotBusy ;Branch if machine

;is not busy
ADD R0, R0, #1 ;Increment number

;of busy machines
NotBusy ADD R2, R2, R2 ;Left shift mask to the

;next bit to be checked
ADD R3, R3, #-1 ;Decrement

;iteration counter
BRp Loop ;Branch if counter is not zero

Return LD R1, SaveR1
LD R2, SaveR2



4 APPENDIX F. SELECTED SOLUTIONS

LD R3, SaveR3
LD R4, SaveR4
RET

SaveR1 .FILL x0000
SaveR2 .FILL x0000
SaveR3 .FILL x0000
SaveR4 .FILL x0000
MBUSY .FILL x4001
MASK .FILL x0001
COUNT .FILL #8

(d)
ST R1, SaveR1
ST R2, SaveR2
ST R3, SaveR3
ST R4, SaveR4
AND R0, R0, #0 ;Zero out the

;return value
LDI R1, MBUSY ;Load R1 with the machine

;busy bit pattern
LD R2, MASK ;R2 will act as a mask to

;mask out the bit needed
LD R3, COUNT ;R3 will act as the

;iteration counter
Loop AND R4, R1, R2 ;Mask off the bit to check

;if machine is busy
BRz Busy ;Branch if machine

;is busy
ADD R0, R0, #1 ;Increment number

;of not
;busy machines

Busy ADD R2, R2, R2 ;Left shift mask to the
;next bit to be checked

ADD R3, R3, #-1 ;Decrement
;iteration counter

BRp Loop ;Branch if counter is not zero
Return LD R1, SaveR1

LD R2, SaveR2
LD R3, SaveR3
LD R4, SaveR4
RET

SaveR1 .FILL x0000
SaveR2 .FILL x0000
SaveR3 .FILL x0000
SaveR4 .FILL x0000
MBUSY .FILL x4001



F.9. CHAPTER 9 SOLUTIONS 5

MASK .FILL x0001
COUNT .FILL #8

(e) ST R1, SaveR1
ST R2, SaveR2
ST R3, SaveR3

AND R0, R0, #0 ;Zero out the
;return value

ADD R1, R0, #1
ADD R3, R5, #0
BRz Check
LP1 ADD R1, R1, R1 ; Left-shift R1
ADD R3, R3, #-1
BRnp LP1

LDI R2, MBUSY ;Load R2 with the machine
;busy bit pattern

Check AND R1, R1, R2

BRz NotBusy ;Branch if machine
;is busy

ADD R0, R0, #1
NotBusy LD R1, SaveR1

LD R2, SaveR2
LD R3, SaveR3
RET

SaveR1 .FILL x0000
SaveR2 .FILL x0000
SaveR3 .FILL x0000
MBUSY .FILL x4001

(f) ; This code assumes that at least one machine is free
ST R1, SaveR1
ST R2, SaveR2
ST R3, SaveR3
ST R4, SaveR4
AND R0, R0, #0 ;Zero out the

;return value
LDI R1, MBUSY ;Load R1 with the machine

;busy bit pattern
LD R2, MASK ;R2 will act as a mask to

;mask out the bit needed
LD R3, COUNT ;R3 will act as the

;iteration counter



6 APPENDIX F. SELECTED SOLUTIONS

Loop AND R4, R1, R2 ;Mask off the bit to check
;if machine is busy

BRz Return ;Branch if machine is free

ADD R2, R2, R2 ;Left shift mask to the
;next bit to be checked

ADD R0, R0, #1
ADD R3, R3, #-1
BRp Loop ;Branch if counter is not zero

Return LD R1, SaveR1
LD R2, SaveR2
LD R3, SaveR3
LD R4, SaveR4
RET

SaveR1 .FILL x0000
SaveR2 .FILL x0000
SaveR3 .FILL x0000
SaveR4 .FILL x0000
MBUSY .FILL x4001
MASK .FILL x0001
COUNT .FILL #8

9.11 The label S CHAR cannot be represented in 9-bit signed PC offset for the ST R0, S CHAR
and LEA R6, S CHAR instructions. The range for a PCoffset9 instruction (such as LEA or
ST) is only from -256 to 255 locations. Due to the number of locations that have been set
aside for BUFFER, the location labeled S CHAR falls oustide of this range for the ST and
LEA instructions. This problem can be fixed by switching the lines BUFFER .BLKW 1001
and S CHAR .FILL x0000.

9.13 The linkage for JSR A is destroyed when JSR B is executed.

9.15 (a) TRAP x72

(b) Yes, this routine will work, but whatever value was in R0 before TRAP x72 is executed
will be overwritten during the subroutine.

9.17 (a) LD R3, NEGENTER
(b) STR R0, R1, #0
(c) ADD R1, R1, #1
(d) STR R2, R2, #0

9.19 (a) LD R2, MASK8
(b) JSR HARDDISK
(c) BR END
(d) LD R2, MASK4
(e) JSR ETHERNET



F.9. CHAPTER 9 SOLUTIONS 7

(f) BR END
(g) LD R2, MASK2
(h) JSR PRINTER
(i) BR END
(j) JSR CDROM
(k) HALT


