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Shown is part of a towing tank facility of the Naval Ship Research and Development Center
at Carderock, Maryland. The basin comprises three adjoining sections: (1) A deep water
section 22 feet deep, 50.20 feet wide, and 889 feet long. (2) A shallow water section 10 feet
deep, 50.96 feet wide, and 303 feet long. The depth of water can be varied. A 32 feet by
5 feet fitting out dock is located here. The photograph is taken for the shallow water section.
(3) A turning basin in the form of a J in which self-propelled models can be allowed to
maneuver. The carriage speed can move models up to speeds of 18 knots. In subsequent
chapters, towing tanks will be referred to on a number of occasions.
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CHAPTER

Foundations of Flow Analysis

3.1 THE VELOCITY FIELD

In particle and rigid-body dynamics we are able to describe the motion of each body
in a separate and discrete manner. For instance, the velocity of the nth particle of
an aggregate of particles moving in space can be specified by the scalar equations

(V. =£0)
Vi), = &.(0) [3.1]
(V) = h(0)

Note that the identification of a particle is easily facilitated with the use of a sub-
script. However, in a deformable continuum such as a fluid, there are, for practical
purposes, an infinite number of particles whose motions are to be described, which
makes this approach unmanageable; so we employ spatial coordinates to help iden-
tify particles in a flow. The velocity of all particles in a flow can therefore be ex-
pressed in the following manner:

V.= flx 21
V, =gy 1) [3.2]
V.= hx,y,z1)

Specifying coordinates xyz and the time ¢ and using these values in functions f, g,
and 4 in Eq. 3.2, we can directly determine the velocity components of a fluid ele-
ment at the particular position and time specified. The spatial coordinates thus take
the place of the subscript n of the discrete systems studied in mechanics. This is
called the field approach. If properties and flow characteristics at each position in
space remain constant with time, the flow is called steady flow. A time-dependent
flow, on the other hand, is designated as an unsteady flow. The steady-flow veloc-
ity field would then be given as

V. =f(xy2)
V, = g(x,y.2) [3.3]
V.= h(x,y,z)

123

o



sha72103_ch03

124

7/11/02

09:40 AM Page 124 $

PART 1 Basic Principles of Fluid Mechanics

L]
%%

Figure 3.1
x Unsteady-flow field relative to xy.

Often, a steady flow may be derived from an unsteady-flow field by simply
changing the space reference. To illustrate this, examine the flow pattern created by
a torpedo moving near the free surface through initially undisturbed water at con-
stant speed V, relative to the stationary reference xy, as shown in Fig. 3.1. It can be
seen that this is an unsteady-flow field, as viewed from xyz. Thus, the velocity at
position X, y, in the field, for instance, will at one instant be zero and later, owing
to the oncoming waves and wake of the torpedo, will be subjected to a complicated
time variation. To establish a steady-flow field, we now consider a reference & fixed
to the torpedo. The flow field relative to such a moving reference is shown in Fig. 3.2.
The velocity at fixed position &,7,, as seen from the torpedo, clearly does not change
with respect to time. This must be true since this position is fixed in an unchang-
ing flow pattern as seen from the torpedo. Note from Fig. 3.2 that the water far up-
stream of the torpedo has a velocity relative to the torpedo and thus relative to the
axes &m, which is equal to —V,. You can now see that the transition from an un-
steady flow, relative to reference xy depicted in Fig. 3.1, to a steady flow, relative
to reference xy, could have been accomplished by superimposing a velocity —V,, on
the entire flow field of Fig. 3.1 to arrive at the steady field of Fig. 3.2. This may be
done any time a body is moving with constant speed through an initially undisturbed
Sfluid.

Flows are usually depicted graphically with the aid of streamlines. These lines
are drawn so as to be always tangent to the velocity vectors of the fluid particles in
a flow. This is illustrated in Fig. 3.3. For a steady flow the orientation of the stream-
lines will be fixed. Fluid particles, in this case, will proceed along paths coincident
with the streamlines. In unsteady flow, however, an indicated streamline pattern

Figure 3.2
Steady-flow field relative to &n.
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Section of a
streamtube
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Figure 3.3 Figure 3.4
Streamlines. Streamtube.

yields only an instantaneous flow representation, and for such flow there will no
longer be a simple correspondence between path lines and streamlines.

Streamlines proceeding through the periphery of an infinitesimal area at some
time ¢ will form a tube, which is useful in discussions of fluid phenomena. This is
called the streamtube, which is illustrated in Fig. 3.4. From considerations of the
definition of the streamline, it is obvious that there can be no flow through the lat-
eral surface of the streamtube. In short, the streamtube acts like an impervious con-
tainer of zero wall thickness and infinitesimal cross section. A continuum of adja-
cent streamtubes arranged to form a finite cross section is often called a bundle of
streamtubes.

3.2 TWO VIEWPOINTS

In Sec. 3.1 we discussed various general aspects of the velocity field V(x, y, z, 7).
Two procedures will now be set forth by which the field may be utilized in com-
putations involving the motion of fluid particles making up the flow. For instance,
by stipulating fixed coordinates x,, y,, z; in the velocity-field functions and letting
time pass, we can express the velocity of particles moving by this position at any
time. Mathematically, this may be given by the formulation V(x,, y,, z;, f). Hence,
by this technique we express, at a fixed position in space, the velocities of a con-
tinuous “string” of fluid particles moving by this position. This viewpoint is some-
times called the Eulerian viewpoint.

On the other hand, to study “any one” particle in the flow one must “follow the
particle.” This means that x, y, z in the expression V(x, y, z, f) must not be fixed but
must vary continuously in such a way as always to locate the particle. This approach
is called the Lagrangian viewpoint. For any particular particle, x(¢), y(¢), and z(¢)
become specific time functions which are different, in general, from corresponding
time functions for other particles in the flow. Furthermore, the functions x(z), y(¢),
and z(?) for a particular particle must have particular values x(0), y(0), and z(0) at
time ¢ = O for that particular particle. In most cases, however, we do not identify a
particular particle in our work, so for any one particle, x(f), y(f), and z(¢) are
unspecified time functions which have the capability, nevertheless, when the form

o
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of the time functions and initial positions are chosen, of focusing on any particular
particle. Thus we say in this case that

V. = flx(®), (1), 2(1), t]
Vv, = g[x(2), (1), z(1), 1] [3.4]
V, = h[x(2), y(2), z(t), 1]

In fluid dynamics there is ample occasion to employ both techniques.'

These considerations do not depend on whether the field is steady or unsteady
and should not be confused with the conclusions of Sec. 3.1. You may note that the
Eulerian viewpoint was utilized in that section in the discussion of both the steady
and unsteady flows about the torpedo.

3.3 ACCELERATION OF A FLOW PARTICLE

We will soon use Newton’s law for any one particle in a flow, and we will need the
time rate of change of velocity of any one particle in a flow. In using the velocity
field we will then have to use the Lagrangian viewpoint. Thus, noting that x, y, z
are functions of time, we may establish the acceleration field by employing the chain
rule of differentiation in the following way:

oV dx oV dy ave&> <av>
—— et — |+ | =

3.5
ax dt dy dt dz ot ot 351

a d V( 1) (
= - x? b 9 =
dar ot

Since x, y, z are coordinates of any one particle, it is clear that dx/dt, dy/dt, and
dz/dt must then be the scalar velocity components of any one particle and can be
denoted as V,, V,, and V_, respectively. Hence

oV A% oV oV
a=\V.—+V —+V—|+|— [3.6]
0x 7y Yoz ot

The three scalar equations corresponding to Eq. 3.6 in the three cartesian-coordinate
directions are, taking components of the vector V,

V. v,  av.\ [V,
a =\V, +V, +V +
ax 7 9y ‘oz ot

v, AV,  av,\ [aV,
w=<V+V+V : +( [3.7]
X

=

-

av. AV,  av.\ (V.
a =V —=+V—+v—)+ (=
ox Y dy 0z at

'A simple-minded way of thinking of the two viewpoints is to consider a golf tournament where the
players are the “particles.” If you station yourself as the observer at any particular tee in order to
observe the various players coming by this location, you are using the Eulerian viewpoint. On the
other hand, if you select your favorite player and move around the course with him/her for purposes
of observation, you are using the Lagrangian viewpoint.

o
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Now the acceleration a of any one particle is given in terms of the velocity
field, the partial spatial derivatives, and the partial time derivative of V. But V is a
function of x, y, z, and #. Hence the acceleration a is then given in terms of x, y, z
and ¢ and is thus also a field variable.

The acceleration of fluid particles in a flow field may be imagined as the su-
perposition of two effects:

1. In expressions in the first parentheses on the right-hand sides of Egs. 3.6 and
3.7, the explicit time variable 7 is held constant. Hence, in these expressions at
a given time ¢, the field is assumed to become and remain steady. The particle,
under such circumstances, is in the process of changing position in this steady
field. It is as a result, undergoing a change in velocity because the velocity at
various positions in this field will, in general, be different at any time ¢. This
time rate of change of velocity due to changing position in the field is aptly
called the acceleration of transport, or convective acceleration.

2. The term within the second parentheses in the acceleration equations does
not arise from the change of particle position, but rather from the rate of
change of the velocity field itself at the position occupied by the particle at
time ¢. It is sometimes called the local acceleration.

The differentiation carried out in Eq. 3.6 is called the substantial, or total, de-

rivative. To emphasize the fact that the time derivative is carried out as one follows
the particle, the notation D/Dr is often used in place of d/dt. Hence, the substantial
derivative of the velocity is given by DV/Dt. The increased complexity over that
which we experienced in mechanics of discrete particles is the price we pay for hav-
ing, by necessity, brought in spatial coordinates to identify particles in a deformable
continuous medium. It should be understood that the substantial derivative is by no
means restricted to the velocity field vector. Thus for any vector field H associated
with a flow we can say:
DH < oH oH aH) oH
—=\V.—+V—+V— |+ —
Dt *ox ), © oz at
Note that we have, in effect, two vector fields involved in this equation. There is
first the field H undergoing the substantial derivative, and for any such vector field
H associated with the flow there is always the fluid velocity field V whose com-
ponents in the above equation facilitate following any one particle as one computes
the rate of change of H for the particle. We have offered several problems with dif-
ferent H fields at the end of the chapter.

In many analyses, it is useful to think of a set of streamlines as part of a
coordinate system. In such cases the letter s indicates the position of the particle
along a particular streamline, and accordingly V = V(s, #). Hence, for the acceler-
ation of transport we have (9V/ds)(ds/dr), which gives the acceleration that results
from the action of the particle’s changing position along a streamline. The complete
acceleration is then given as

a=V_—+ — [3.8]
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Let us consider the special case of steady flow, where, as we pointed out earlier,
there is a fixed streamline pattern and where streamlines are the same as path
lines. We can decompose the acceleration of transport vector for such flow into
two scalar components by choosing one component a; tangent to the path and
the other component ay normal to the path in the osculating plane.? You will re-
call from earlier mechanics courses that the acceleration component a; can be
given as

dv._14dv?

ap=V—=—-—+ 39

! ds 2 ds 5]

and, taking the direction foward the center of curvature in the osculating plane as

positive, that the other component of acceleration ay can be given as

V2

ay = — 3.10

v g [3.10]

where R is the radius of curvature. We will have occasion to use acceleration com-
ponents in the ensuing chapters, particularly Chap. 11.

H Problem Statement

To illustrate some of the definitions and ideas of Sec. 3.3, we examine a simple
two-dimensional flow (see Fig. 3.5) with the upper boundary that of a rectan-
gular hyperbola, given by the equation xy = K. Assume that the scalar compo-
nents of the velocity field are known to be

V.= —Ax
V, = Ay A = const [a]
V.=0

(Note that the flow is steady.) Determine the streamline pattern and the accel-
eration field.

W Strategy

We will first determine the streamline equations, by considering the relation be-
tween the streamline slope and the velocity components. This will give us means
of getting the acceleration components via the definition of the substantial de-
rivative of the velocity vector field.

The osculating plane at a particular point on a path is the limiting plane formed by the point and two
additional points, on the path, ahead and behind, as they are brought ever closer to the particular
point. See I. H. Shames, Engineering Mechanics: Statics and Dynamics, 4th ed., Prentice-Hall,
Englewood Cliffs, NJ, Chap. 11.

o
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-zl - -~ Two-dimensional flow
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m Execution

By definition, the streamlines must have the same slope as the velocity vectors
at all points. Equating these slopes, we get

(5) o .
dx/)ge V. X

Separating the variables and integrating, we have
Iny=—Inx+InC

Hence,
xy=0C

Note that the streamlines form a family of rectangular hyperbolas. The wetted
boundaries are part of the family, as is to be expected.

The components of acceleration may now easily be determined. Since this
is steady flow, there will be only the acceleration of transport. Employing Eq. 3.7
under these conditions, we get

a, = (—Ax)(=A) + (Ay)(0) + (0)(0)
a, = (—Ax)(0) + (Ay)(4) + (0)(0) = [c]
a, =0
Hence
a = Axi + AYyj [d]

To give the acceleration of a particle at position x’y" at any time, merely sub-
stitute x’, y' into Eq. d.

129
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B Debriefing

This example should give us a clear picture of a streamline and the fact that
a boundary will always form one of the streamlines. If the flow is inviscid
there generally will be nonzero fluid velocity along such a streamline. If the
flow is viscous, remember that the fluid velocity along this boundary will
have the same velocity as the boundary itself (in this case it would be zero
velocity).

B Problem Statement
Given the velocity field
V(x,y,z,t) = 10x%*i — 20yxj + 100tk m/s

determine the velocity and acceleration of a particle at position x = 1 m, y =
2m,z=5m,andr = 0.1 s.

B Strategy

We will use the definition of a field to get the desired velocity. We will use the
definition of the substantial derivative to get the desired acceleration.

m Execution

The velocity is determined by inserting the proper spatial coordinates and time
into the vector velocity field to get a specific velocity as follows:
V = (10)(1)i — (20)(2)(1)j + (100)(0.1)k = 10i — 40j + 10k m/s

To get the acceleration of any one particle, we must use the Lagrange view-
point to establish the acceleration field. Thus

A% oV oV A%
alx,y,zt) =|\V—+V—+V—|+|—

X at

= [(10x?)(20xi — 20yj) + (—20yx)(—20xj)] + 100k

= 200x%*i + (—200x%y + 400yx?)j + 100k m/s*
For the particle of interest, the acceleration is

a= (200)(13)i + [—200(12)(2) + 400(2)(12)]j + 100k
= 200i + 400j + 100k m/s?

B Debriefing

Note that we used the field approach for both the velocity field and the accel-
eration field emerging from use of the substantial derivative.

o
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3.4 IRROTATIONAL FLOW

Earlier we presented the velocity field V(x, y, z, f), permitting us to give the veloc-
ity of a particle of fluid anywhere in the flow field. We learned in physics that it is
the relative motion between adjacent atoms and molecules that is related to bond-
ing forces between atoms and molecules. Similarly in fluid flow, it is the relative
motion between adjacent flow particles that is related most simply to stresses. We
now examine this relative movement.

We wish to point out first that the word “adjacent” will connote for us particles
infinitesimally apart. Accordingly, we have shown in Fig. 3.6 two adjacent particles
A and B a distance dr = dx i + dy j + dz k apart at time 7. To aid in the consideration
of the relative movement between A and B, we have shown in Fig. 3.7 a rectangular
parallelepiped for which AB is the diagonal. Now if we can effectively describe the
deformation and rotation rates of this rectangular parallelepiped, we can in some
way give the relative motion between A and B in terms of these rates. To accomplish

2/,/—>

/).B/’__>

dr
y
A
x
Figure 3.6
Adjacent particles A and B.

E
dz
B
dy
dx A D Y
C Figure 3.7
Adjacent particles along
x reference axes.
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z
E
B

aV

—Z dx \ J D

0x dx A y

C
Lz
Wy de  ax dx Figure 3.8
x ox Components of (Ve — V,).

this, we have shown three additional particles C, D, and E at corners of the rectan-
gular parallelepiped along axes xyz. If we know the relative motion between C and
A, between D and A, and between E and A, we then know the deformation and ro-
tation rates of the rectangular parallelepiped, and we can then express the relative
motion between B and A in terms of the aforementioned relative motions.

Hence, we start with particle C. The velocity V. of this particle can be given
in terms of the velocity of particle A, namely V,, plus an infinitesimal increment,
since C is a distance dx apart from A. Thus we have

oV
V.=V, +(—)d
c A (ax>x

V.-V —(av*‘>dx'+<avy)d '+(avz)dk
'(C A)_ 0x ! 0x *J ox o

The relative motion between C and A is (Vo — V,). It will be simplest to consider
A as stationary and C as moving. The resulting conclusions will still be general. The
components of (V- — V,) as given by Eq. 3.11 are then shown in Fig. 3.8. We can
set forth motion, respectively, of particles D and E relative to A in the same manner.
In Fig. 3.9 we have shown the velocity components for particles C, D, and E rela-
tive to particle A. Consider now particle C. It is clear in Fig. 3.9 that (V,/dx) dx is
the rate of elongation of line segment AC. And if we express this elongation rate per
unit original length, we have simply 9V /dx.

But from your course in strength of materials you will recall that the elonga-
tion of an infinitesimal line segment in the x direction per unit original length is the
normal strain €,,.> Thus we may conclude that

[3.11]

v,

a X GX)C

3See L. H. Shames and J. Pitarresi Introduction to Solid Mechanics, 3rd ed., Prentice-Hall, Englewood
Cliffs, NJ, Chap. 3.

o
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z
1%
A —=Z dz
0z aVy
av, E 32 dz
—dz >
0z
aV
| —Z2dy
dy
v, A D
—dx 1 — y
ox aV,
C —Ydy
- W, 3
3, ay ¥
FA% a—— dx
x —Z dx x
ox
Figure 3.9

Relative velocity components for adjacent particles C, D, and E.

where the dot represents a time rate of change. Similarly we can say that

v,
v, .
= €,
a 7z el

Thus we have depicted the time rates of elongation per unit original length
(normal strain rates) of the sides of the rectangular parallelepiped. Next, we in-
vestigate the rate of angular change of the sides of the rectangular parallelepiped.
Note in examining Fig. 3.9 that the velocity (9V,/dx) dx divided by dx is the
angular velocity of AC about the z axis. Similarly at D, (—dV,/dy) dy divided by
dy is the angular velocity of AD about the z axis. We can make two conclusions
at this juncture:

1. The average rate of angular rotation about the z axis of the orthogonal line
segments AC and AD is

1oV, v,
—|— - [3.12]
2\ ox dy
2. The rate of change of the angle CAD (a right angle at time 7) becomes
v, v,
=+ [3.13]
ox dy

o
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The second result, you may recall from strength of materials, where we had

u, u
Vi = <y + ax), is the time rate of change of the shear angle v, so that

0x 'y
) . av, oV,
Yo = Ve T\ +g

o v, v,
’yXZ = ’yi',k‘ = +

Similarly,

0z ox

. . a‘/V aVz
»yyz = ’Yzy = az + Ty

Accordingly, we have available to describe the deformation rate of the rectangular
parallelepiped the strain rate terms which we now set forth as follows:*

i . ’y’ﬂ j’xz_
T
j/yx . ’ny .
— €, = strain rate tensor [3.14]
2 - 2
‘j/z,x ‘i/zy .
GZZ
L 2 2 i

Now experience from solid mechanics and intuition indicates that it is the
strain rate tensor part of relative motion that is most simply related to the stress
tensor.

We have thus far described two kinds of relative movement between the adja-
cent particles along coordinate axes. The normal strain rates give the rate of stretch-
ing or shrinking of the sides of the associated rectangular parallelepiped, while the
shear-strain rates give rate of change of angularity of the edges of the rectangular
parallelepiped. What’s left of the relative movement must then be rigid-body rota-

tion. Thus, the expression
2\ dx dy

is actually more than just the average rotation of line segments dx and dy about
the z axis—it represents for a deformable medium what may be considered as the

“A note to the advanced reader: By using /2 instead of v, you may have learned in strength of
materials that the nine strain terms without dots form a symmetric second-order tensor. Taking time
derivatives of each quantity and thereby forming an array of strain rates does not in any way alter the
tensor character of the terms.
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rigid-body angular velocity w, about the z axis.” This is,

= 1(8VV an) [3.15]
“7 2\ ax dy '
Similarly for the other axes we have, by permuting indices,

1[0V, vV,

w, == - [3.16]
2\ dy dz

1 (avx aVZ> 317

) 9z ax 3.17]

1<6VZ avv) 1<avx 8V,> 1<6Vv avx>k 218
0= = — i+ < ——jt+t={—- .

2\ dy 0z 2\ 9z ox ! 2\ ax dy [ ]
Had we used a different coordinate system, we would have arrived at formulations
which have a different form from Eqs. 3.15 to 3.18, but they would all pertain to
the angular motion of fluid elements. Since the angular motion of fluid elements is
a physical action not dependent on man-made coordinate systems, we have devised

a vector operator called the curl® which when operating on a vector field V portrays
twice the angular velocity. Thus Eq. 3.18 becomes

o = 3(curl V) =1V x V [3.19]

Note that Eq. 3.19 alludes to no particular coordinate system. Like the divergence
operator and the gradient operator, the curl operator takes on a particular form when
carried out in a particular coordinate system.” For instance, for cartesian coordinates
we see from Eq. 3.18 that

0A. 0A| dA, 0A, 0A,  0A,
carlA=V X A = -—— i+ - ——j+ - — ]k [3.20]
dy 0z 0z 0x 0x Jdy

The expression given by Eq. 3.15 is the average angular velocity of two orthogonal vanishingly small
line segments dx and dy about the z axis. One can show that it is also the average angular velocity
about the z axis of all line segments in the vanishingly small region dv. The “rigid body”
interpretation obtains from the conclusion that if the fluid element in dv were imagined to become
frozen at time ¢ with the surrounding fluid made to simultaneously disappear, the frozen element
would have the above angular velocity w, about the z axis at time ¢.

®The mathematical definition of the curl operator is given as

curl B = — lim [if B x dA}
Av—ol AV %
where AV is any volume in space and S is the surface enclosing the volume.
"It is to be pointed out that there are straightforward general methods for forming the various vector
operators for orthogonal coordinate systems. These may be found in mathematics books dealing with
vector analysis.
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We will not at this time evaluate the curl operator on other coordinate systems. It
should be pointed out the curl can be used on any continuous vector field, and the
physical interpretation of the resulting curl vector so formed will depend on the par-
ticular field operated on. The physical picture of rotation of an element is thus re-
stricted to the curl of the velocity field, but understanding this particular case will
help you interpret the curl of other fields.

At this time, we define irrotational flows as those for which w = 0 at each
point in the flow. Rotational flows are those where @ # 0 at points in the flow. For
irrotational flow, we require that

av, av,
_ =
dy 0z
av, aV,
-——=0 [3.21]
dz 0x
av, 9V,
y -0
ox ay

From Eq. 3.19 it becomes clear that another criterion for irrotationality, and the
one we will use, is

curl V=0 [3.22]

Finally we point out that 2w is often called the vorticity vector.

3.5 RELATION BETWEEN IRROTATIONAL FLOW
AND VISCOSITY

We now discuss some conditions under which we can expect rotational and
irrotational types of flows. A development of rotation in a fluid particle in an ini-
tially irrotational flow would require shear stress to be present on the particle
surface. It will be recalled that shear stress on a surface may be evaluated for
parallel flows by the relation 7 = w(9V/on). Thus the shear stress in such flows
and in more general flows will depend on the viscosity of the fluid and the man-
ner of spatial variation of velocity (or the so-called velocity gradient) in the
region. For fluids of small viscosity, such as air, irrotational flow will then per-
sist in regions where large velocity gradients are not encountered. This may very
often be over a great part of the flow. For instance, for an airfoil section moving
through initially undisturbed air (Fig. 3.10), the fluid motion relative to the air-
foil is that of an irrotational flow over most of the field. However, it is known
that no matter how small the viscosity, real fluids “stick” to the surface of a solid
body. Thus at point A on the airfoil the fluid velocity must be zero relative to the

o
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A Vo
—_—
—_—
74 Wake
_— A
Figure 3.10
— >~ .
Velocity profile shows large
_— velocity gradients near airfoil.
Separated region
Figure 3.11
Flow separation for airfoil. The angle of
attack is a.

airfoil, and at a comparatively short distance away it is almost equal to the
free-stream velocity V,,. This is illustrated in the velocity profile of the diagram.
Thus one sees that there is a thin region adjacent to the boundary where sizable
velocity gradients must be present. Here, despite low viscosity, shear stresses of
consequential magnitude are present, and the flow becomes rotational. This region
adjacent to the solid boundary is called the boundary layer. 1t is fortunate, how-
ever, that much of the main flow is very often little affected by the flow condi-
tions in the boundary layer, so that irrotational analysis may be carried out over
a large part of the problem.

Another rotational-flow region may be found behind the trailing edge of the
airfoil, where flows of different velocities from the upper and lower surfaces come
into contact. Here again, large velocity gradients are present and consequently a
rotational flow is present over a region behind the airfoil. This region is often called
the wake.

Finally, we examine a condition called sepamtion,8 where the fluid flow can-
not follow the boundary smoothly, as illustrated in Fig. 3.11 in the case of the air-
foil at high angle of attack. Inside the separated regions we can again expect rota-
tional flow.

In the flow shown in Fig. 3.11, it may be that the flow downstream of the sep-
aration point has regions of relatively small velocity gradients (hence small shear
stress), where the flow is rotational. In the complete absence of further viscous ac-
tion this rotation would persist indefinitely, so one may admit with good reason the
theoretical possibility of frictionless rotational flow.

8The boundary layer and the separation process will be discussed at length in Chap. 12.
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3.6 BASIC AND SUBSIDIARY LAWS FOR
CONTINUOUS MEDIA

Now that means for describing fluid properties and flow characteristics have been
established, we turn to the considerations of the interrelations among scalar, vector,
and tensor quantities that we have set forth. Experience dictates that in the range of
engineering interest four basic laws must be satisfied for any continuous medium.
These are:

1. Conservation of matter (continuity equation).

2. Newton’s second law (momentum and moment-of-momentum equations).
3. Conservation of energy (first law of thermodynamics).

4. Second law of thermodynamics.

In addition to these general laws, there are numerous subsidiary laws, some-
times called constitutive relations, that apply to specific types of media. We have
already discussed two subsidiary laws, namely, the equation of state for the perfect
gas and Newton’s viscosity law for certain viscous fluids. Furthermore, for elastic
solids there is the well-known Hooke’s law, which you studied in strength of
materials.

3.7 SYSTEMS AND CONTROL VOLUMES

In employing the basic and subsidiary laws, either one of the following modes of
application may be adopted:

1. The activities of each and every given mass must be such as to satisfy the
basic laws and the pertinent subsidiary laws.

2. The activities in each and every volume in space must be such that the basic
laws and the pertinent subsidiary laws are satisfied.

In the first instance the laws are applied to an identified quantity of matter called
the system. A system may change shape, position, and thermal condition but must
always entail the same matter. For example, one may choose the steam in an engine
cylinder (Fig. 3.12) after the cutoff ° to be the system. As the piston moves, the volume
of the system changes but there is no change in the quantity and identity of mass.

For the second case, a definite volume, called the control volume, is designated
in space, and the boundary of this volume is known as the control surface.'’ The
amount and identity of the matter in the control volume may change with time, but
the shape of the control volume to be used in this text is fixed.!' For instance, to

°No further addition of steam takes place after cutoff during the expansion stroke of the steam engine.

In some thermodynamics texts the term closed system corresponds to our system and open system
corresponds to our control volume.

ISome problems can be solved by employing a control volume of variable shape. However, in this
text the control volume will always have a fixed shape.

o
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Control surface/]

Figure 3.12 Figure 3.13
A system. Control volume for the inside of a nozzle.

study flow through a nozzle, one could choose, as a control volume, the interior of
the nozzle as shown in Fig. 3.13. We note that the control volume and the system
can be infinitesimal.

In rigid-body mechanics it was the system approach (at that time called the free-
body diagram) that was invariably used, since it was easy and direct to identify the
rigid body, or portions thereof, in the problem and to work with each body as a
discrete entity. However, since infinite numbers of particles having complicated
motion relative to each other must be dealt with in fluid mechanics, it will often be
advantageous to use control volumes in certain computations.

3.8 A RELATION BETWEEN THE SYSTEM
APPROACH AND THE CONTROL-VOLUME
APPROACH

In Sec. 3.2 we presented two viewpoints involving vector fields associated with
a velocity field. These viewpoints allow us either to observe particles moving by
a fixed position in space or to follow any one particle. We will now consider
these viewpoints for aggregates of fluid elements constituting a finite mass
where, in following the aggregate as per the Lagrange viewpoint, we are using
the system approach. On the other hand, in stationing ourselves and observing in
a finite region of space as per the Eulerian viewpoint, we are adopting the
control-volume approach. We will now be able to relate the system approach and
the control-volume approach for certain fluid and flow properties which we next
describe.

In thermodynamics one usually makes a distinction between those properties
of a substance whose measure depends on the amount of mass of the substance pres-
ent and those properties whose measure is independent of the amount of mass of
the substance present. The former are called extensive properties; the latter are called
intensive properties. Examples of extensive properties are weight, momentum, vol-
ume, and energy. Clearly, changing the amount of mass directly changes the measure
of these properties, and it is for this reason that we think of extensive properties as
directly associated with the material itself. For each extensive variable such as

o



sha72103_ch03

140

7/11/02

09:41 AM Page 140 $

PART 1 Basic Principles of Fluid Mechanics

Control
volume

System at

time t y  Figure 3.14

/ Simplified view of a

x moving system.

volume V and energy E, one can introduce by distributive measurements the
corresponding intensive properties, namely, volume per unit mass v and energy per
unit mass e, respectively. Thus we have V = [[[ vp dv'* and E = [[[ ep dv. Clearly,
v and e do not depend on the amount of matter present and are hence the intensive
quantities related to the extensive properties V and E by distributive measure. Also,
such quantities are termed specific, i.e., specific volume and specific energy, and are
generally denoted by lowercase letters. Furthermore, such properties as temperature
and pressure are by their mass-independent nature already in the category of the in-
tensive property. Thus any portion of a metal bar at uniform temperature 7, also has
the same temperature 7,. Nor does the pressure of 1 ft* of air in a 10-ft® tank at
uniform pressure p, differ from the pressure of 3 ft* of air in the tank. It is with
extensive properties that we will now relate the system approach with the control-
volume approach.

Consider next an arbitrary flow field V(x, y, z, ) as seen from some reference
xyz wherein we observe a system of fluid of finite mass at times ¢ and ¢ + At, as
shown in a highly idealized manner in Fig. 3.14 by the full line curve and the dashed
line curve, respectively. The streamlines correspond to those at time 7. In addition
to this system, we will consider that the volume in space occupied by the system at
time ¢ is a control volume fixed in position and shape in xyz. Hence, at time ¢ our
system is identical to the fluid inside our control volume, shown by the full line
curve. Let us now consider some arbitrary extensive property N of the fluid for the
purpose of relating the rate of change of this property for the system with the vari-
ations of this property associated with the control volume. The distribution of N per
unit mass will be given as m, such that N = ([ mp dv with dv representing an
element of volume.

To do this, we have divided up the overlapping systems at time ¢ + Az
and at time ¢ into three regions, as you will note in Fig. 3.14, where region II

"In this text we use v to represent specific volume and dv to represent the volume of a fluid
element. Although the same letter is used in both terms, there should be no confusion if the terms
are taken in context.
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is common to the system at both times ¢ and ¢t + Az. Let us compute the rate
of change of N with respect to time for the system by the following limiting
process:

(av) o
dt system Dt

o] (00 [ 000) ([ 0 < [ 0 0)

= A5 il
— Ar—
At

[3.23]

We may use the rule that the sum of the limits equals the limit of the sums to re-
arrange the equation above in the following manner:

(frmwa) ~(frma)

DN = lim
Dt At—0 At [3.24]
(fff np dv) ([/f np dv>
+ lim 111 t+A | lim 1 t
At—0 At At—0 At

Each one of the limiting processes above will now be considered separately. In the
first one, we see on noting that (f//}; mp dv) is a function of time that we have here
by definition a partial time derivative of this function of time. And as At — 0, the
volume II becomes that of the control volume and the subscript II is replaced by
the subscript CV. Also, as Az — 0, the time derivative is taken at time z. Accord-
ingly, we can say that

(frmw) - (gra)

. tl_ 9
Jiy Y “allf e 023

In the next limiting process of Eq. 3.24, we can consider the integral
(/f/y mp dv), 5, to approximate the amount of property N that has crossed part
of the control surface, which we have shown diagrammatically as ARB in
Fig. 3.14 during the time Az, so the ratio (///,; np dv),, »,/At approximates the
average rate of efflux of N across ARB during the interval Az. In the limit as
At — 0, this ratio becomes the exact rate of efflux of N through the control sur-
face. Similarly, in considering the last limiting process of Eq. 3.24, we can con-
sider for flows with continuous-flow characteristics and properties that the inte-
gral (///, mp dv), approximates the amount of N that has passed into the control
volume during Af through the remaining portion of the control surface, which we
have shown diagrammatically in Fig. 3.14 as ALB. In the limit, the ratio
(/f/; mp dv),/ At then becomes the exact rate of influx of N into the control volume
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n
dA o /
\
/——\
Figure 3.15
Interface dA at control
Control surface surface at time .

at time'’7. Hence, the last two integrals of Eq. 3.24 give the net rate of efflux of
N from the control volume at time ¢ as

lim (‘[[f e >t+ At

1T

At—0 Ar
[3.26]
(o)
— lim| ———" | = Net efflux rate of N from CV
At—0 At

We thus see that by these limiting processes, we have equated the rate of change
of N for a system at time ¢ with the sum of two things:

1. The rate of change of N inside the control volume having the shape of the
system at time ¢ (Eq. 3.25).

2. The rate of efflux of N through the control surface at time ¢ (Eq. 3.26).

We will now express Eq. 3.26 in a more compact, useful form. In this regard,
consider Fig. 3.15, where we have a steady-flow velocity field and a portion of a
control surface. An area dA on this surface has been shown. Now this area is also
the interface of fluid that is just touching the control surface at the time ¢ shown in
the diagram. In Fig. 3.16 we have shown that interface of fluid at time ¢ + dt. Note
that the interface has moved a distance V df along a direction tangent to the stream-
line at that point. The volume of fluid dv that occupies the region swept out by dA
in time dt thus forming a streamtube is

dv = (V dr)(dA cosa)

BHence it is minus the efflux of N through ALB.

o
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dA cos o
Vdt )//-'
d/\ )
Figure 3.16
Interface dA at control surface at
time ¢ + dt.

Using the definition of the dot product, this becomes
dv =V -dAdt

It should be apparent that dv is the volume of fluid that has crossed dA of the con-
trol surface in time dr. Multiplying by p and dividing by dt then gives the instanta-
neous rate of mass flow of fluid, pV - dA, leaving the control volume through the
indicated area dA.

The efflux rate of N through the control surface can be given approximately

as14

Efflux rate through CS = [[ n(pV - dA)

ARB

Note next that for fluid entering the control volume (see Fig. 3.17) the expression
pV - dA must be negative because of the dot product. Hence, the influx rate
expression of N through the control surface requires a negative sign to make the re-
sult the positive value that we know must exist. Hence, we have

Influx rate through CS =~ — [f n(pV - dA)

ALB

The approximate net efflux rate of N is then

Net efflux rate = efflux rate on ARB — influx rate on ALB

[ oV - aa) - [— IEOE dA)}

ARB ALB

!4Considering the units of the expression 7(pV * dA), we get

its of N
_’I(umso )pV'dA< r.na?s )
mass unit time

which is the efflux of N per unit time through dA.
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Control volume

Figure 3.17
Control surface showing
Control surface influx of mass.

In the limit as Az — 0, the approximations become exact, so we can express the
right side of the equation above as -5 n(pV - dA), where the integral is a closed
surface integral over the entire control surface. Thus Eq. 3.26 can now be given as

Net efflux rate of N from CV = # n(pV - dA) [3.27]
cs

It is to be pointed out that the development of Eq. 3.27 was made for simplicity for
a steady-flow velocity field. However, it also holds for unsteady flow, since unsteady
effects are of second order for this development. Now using Eqgs. 3.27 and 3.25 for
the various limiting processes, we can go back to Eq. 3.23 and state that

= gB (v - an) + - [[f mp v [3.28]
cs cv

This is called the Reynolds transport equation." This equation permits us to change
from a system approach to a control-volume approach.

You will note in the development that the velocity field was measured relative
to some reference xyz and the control volume was fixed in this reference. This makes
it clear that the fluid velocity V in the equation above is in effect measured relative
to the control volume. Furthermore, you will recall from mechanics that the time

'SAlthough the Reynolds transport equation has been carefully developed from a mathematical point of
view, it does have a rather straightforward physical interpretation. We can illustrate this most simply
by considering your classroom as the control volume and the system consisting of all the students in
the classroom at any time ¢. Let N be the mass of the system. After the bell has rung for the end of the
class period, there will be, at time ¢, an efflux rate of mass through the doorways (part of the control
surface) with a resulting rate of change of mass inside the classroom. The Reynolds transport equation
requires that dN/dr = 0 at any time 7 since we are not destroying students nor are we creating
students. Thus, the efflux rate of mass plus the rate of change of mass inside at this time 7 clearly
should be zero. (Would you have it any other way?)

o
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rate of change of a vector quantity depends on the reference from which the change
is observed. This is an important consideration for us here, since N (and 7)) can be
a vector quantity (as, for example, momentum). Since the system moves in accor-
dance with the velocity field given relative to xyz in our development, we see that
the time rate of change of NV is observed also from the xyz reference. Or, a more im-
portant conclusion, the time rate of change of N is in effect observed from the con-
trol volume. Thus all velocities and time rates of change of Eq. 3.28 are those seen
from the control volume. Since we could have used a reference xyz having any
arbitrary motion in the development above, it means that our control volume can
have any motion whatever. Equation 3.28 will then instantaneously be correct if we
measure the time derivatives and velocities relative to the control volume, no mat-
ter what the motion of the control volume may be. Finally, it can be shown that for
an infinitesimal control volume, and an infinitesimal system, Eq. 3.28 reduces to an
identity. This will explain why the system and control-volume equations as devel-
oped in subsequent chapters become redundant for infinitesimal considerations.

In Chaps. 4 and 5 we formulate the control-volume approach for the basic laws
mentioned earlier by starting in each case with the familiar system formulation and ex-
tending it with the aid of the Reynolds transport equation to the control-volume for-
mulation. As you do this several times in the next Chap. 4, you will develop a greater
physical feel for the Reynolds transport equation, which may seem at this time “artifi-
cial.” Perhaps the realization that all human efforts to explain nature analytically are
artificial may be of some comfort. Two additional “artificialities” will now be presented
to permit us to use the basic laws, soon to be developed, with greater effect.

3.9 ONE- AND TWO-DIMENSIONAL FLOWS

In every analysis a hypothetical substance or process is set forth which lends itself
to mathematical treatment while still yielding results of practical value. We have
already discussed the continuum concept. Now, simplified flows are set forth, which,
when used with discretion, will permit the use of highly developed theory on prob-
lems of engineering interest.

One-dimensional flow is a simplification where all properties and flow charac-
teristics are assumed to be expressible as functions of one space coordinate and
time. The position is usually the location along some path or conduit. For instance,
a one-dimensional flow in the pipe shown in Fig. 3.18 would require that the ve-
locity, pressure, and so forth be constant over any given cross section at any given
time, and vary only with s at this time .

W

Figure 3.18
One-dimensional (1-D) flow.

W
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Figure 3.19
Comparison of 1-D flow and

One-dimensional Actual profile
profile actual flow.

In reality, flow in pipes and conduits is never truly one dimensional, since the
velocity will vary over the cross section. Shown in Fig. 3.19 are the respective ve-
locity profiles of a truly one-dimensional flow and that of an actual case. Never-
theless, if the departure is not too great or if average effects at a cross section are
of interest, one-dimensional flow may be assumed to exist. For instance, in pipes
and ducts this assumption is often acceptable where

1. Variation of cross section of the container is not too excessive.
2. Curvature of the streamlines is not excessive.
3. Velocity profile is known not to change appreciably along the duct.

Two-dimensional flow is distinguished by the condition that all properties and
flow characteristics are functions of two cartesian coordinates, say, x, y, and time,
and hence do not change along the z direction at a given instant. All planes normal
to the z direction will, at the given instant, have the same streamline pattern. The
flow past an airfoil of infinite aspect ratio'® or the flow over a dam of infinite length
and uniform cross section are mathematical examples of two-dimensional flows. Ac-
tually, in a real problem a two-dimensional flow is often assumed over most of the
airfoil or dam, and “end corrections” are made to modify the results properly.

H Problem Statement

Consider a viscous, steady flow through a pipe (Fig. 3.20). We will learn in Chap. 11
that the velocity profile forms a paraboloid about the pipe centerline, given as

V= —C(r2 - D2> m/s [a]
4

where C is a constant.

DM
a. What is the flow rate of mass Dr through the left end of the control
surface, shown dashed?
. — DKE
b. What is the flow rate of kinetic energy D through the left end of

the control surface? Assume that the velocity profile does not change
along the pipe.

1A wing of constant cross section and infinite length.
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Control volume

—~ R

Left control
surface

Figure 3.20
Steady viscous flow in a pipe.

B Strategy

We shall consider in the cross section of the pipe a concentric ring of infini-
tesimal thickness. Because the velocity depends only on the variable r, the ve-
locity will be constant through the ring. The integration of the mass flow through
the rings covering the cross section will now be simple.

Next, using the intensive property for kinetic energy, and then including it
in the integral for the mass flow, we will get on integration the kinetic energy
flow rate in the pipe.

m Execution

In Fig. 3.21, we have shown a cross section of the pipe. Using infinitesimal circular
rings, we can say, noting that V and dA are colinear but of opposite sense,

%fopV-dA proD/2C<r2 —T)Zﬂ'rdr

DM {r‘l D? rzr/z

= = 2moC| — — =——

D PYla T 42,

DM pCmD*

A K b
Dr 3 keb [b]

We now turn to the flow of kinetic energy through the left end of the control
surface. The kinetic energy for an element of fluid is 3dmV?. This corresponds
to an infinitesimal amount of an extensive property. To get 7, the correspond-
ing intensive property, we divide by dm and use v for V to get

1 = 30’ [c]

We accordingly wish to compute

S oV - da) = [f GuPpV - dA}

o
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Figure 3.21
Cross section of pipe with infinitesimal ring
of fluid.

Employing Eq. a for V, and noting again that V and dA are collinear but of op-
posite sense, we get

2 a1 e s

DKE . o2( , DY
—pCﬂTj(; (r 4>rdr

Dr
DKE _ pC’wD* N-m/ ]
D 2048 ms

where we could have facilitated the integration by making a change of
2

D
variable for <r2 - 4) to a single variable—say &.

B Debriefing

We have demonstrated the setting up of integrals for computing two flow rates
of extensive properties to get DM/Dt and D(KE)/Dt through what could be part
of a control surface. We will be making similar calculations starting with Chap. 4
and continuing through the book for integrals stemming from the Reynolds
transport equation.

| —
EXAMPLE 3.4 H Problem Statement

For Example 3.3, assume a one-dimensional model with the same mass flow.
Compute the kinetic energy flow through a section of the pipe for this flow.

B Strategy

Using a constant axial velocity component V,, times the cross section area, we will
get, on including the mass density, the mass flow rate for this axial velocity for a
one-dimensional flow. Setting the mass flow rate developed in Example 3.3 for an
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actual velocity profile, equal to that of the one-dimensional case, we will determine
the proper value of the aforementioned constant velocity required for the one-
dimensional simplification. Using this constant velocity, we will determine by or-
dinary multiplication the flow rate of kinetic energy for the one-dimensional model.

m Execution

We first proceed to compute the constant velocity needed to achieve a mass
flow rate in a one-dimensional flow in the pipe equal to the actual mass flow
rate in the pipe as developed in Example 3.3 (see Eq. b). Thus, equating these
mass flow rates,

~w) pmD? _ pCD*rr
v 4 32
) [a]
CD
WV = g m/s

The kinetic energy flow for the one-dimensional model is then

oo - AN

[b]

We now define the kinetic-energy correction factor « as the ratio of the actual
flow of kinetic energy through a cross section to the flow of kinetic energy for
a one-dimensional model for the same mass flow. That is

_ KEflow for section (€]
« KE flow for 1-D model ¢

For the case at hand, we have from Eq. b of this example and Eq. d of
Example 3.3

B —pC3mD?/2048 B

= P AR d
—pC3mD?¥/4096 Ld]

The factor o exceeds unity, so there is an underestimation of kinetic energy
flow for a one-dimensional model. We will have more to say about this point
later in the text.

B Debriefing

This example gives us the opportunity to assess the degree of error incurred us-
ing the one-dimensional model for the single case of kinetic energy flow. Clearly,
this kind of error must at times be taken into account for other variables when
modeling flows for the purpose of simplifying calculations of problems.

o
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HIGHLIGHTS

When we are dealing with a finite set of particles, we can identify any one
particle by using a subscript. Then, incorporating this into a time function, we
can easily describe the velocity of any one particle. This is exactly what we did
in your dynamics course where we used such notation as, for example, (V(?)),.
In the case of a fluid, where countless particles are involved, it is clear that a
different approach must be used. Here, instead of using a subscript to identify
any one particle, we use the spatial coordinates and the time to identify any one
particle. And we incorporate these coordinates into a function to give the velocity
for any one particle. Thus, we use the notation V(x, y, z, f) where the position
of any one particle as well as the velocity of this particle can be specified. This
is called the field approach.

We demonstrated that the field approach can be used very creatively.
First, in V(x, y, z, ) we can pick fixed coordinates which we denote as (x,
Yo 20> ¢) and allow ¢ to progress. The resulting velocity formulation V(x,, ¥,
2o, 1) then conveys the velocity as time progresses of a string of particles as
they pass by the chosen fixed point. This very useful approach is called the
Eulerian viewpoint. On the other hand, we can imagine following any one
particle in the flow as time progresses. For this use, the spatial coordinates
must vary with time in such a way as to always locate the chosen particle at
any time ¢. This is called the Lagrangian viewpoint. Why is this useful? In
the dynamics of a single particle, Newton’s law applies to this particle as it
is followed. We are doing the same thing here for a fluid wherein we are in
the presence of countless particles requiring the use of a field approach to
manage this.

Let us then straightway go to Newton’s law for a fluid. We must use the
Lagrangian viewpoint to focus on any one particle in the flow. We treat the spa-
tial coordinates as certain time functions varying in such a manner as to follow
any one particle. However, we shall not specify the time functions but realize
that at any later time they could be specified for any particular particle. We
are thus keeping the discussion open-ended at this point. We will need the
acceleration of any one particle. We thus take the time derivative of V using
the familiar chain rule of differential calculus. We get

dv (av de aVdy 9V dz) oV
a=-—=|-+—+—,4+—

dt ox at  dy dt  Jz dt ot
It should be clear that to follow any one particle we require

dx \% dy Vv % V_, namely the velocity components of the particle
— =V, —=V, —=V, veloci .
dt o dt Y dt : y Y P P




sha72103_ch03

7/11/02 09:41 AM Page 151 j\%

CHAPTER 3 Foundations of Flow Analysis

The resulting formulation, called the substantial derivative or the total
derivative, has the notation D replacing d,

_DV_( oV v 8V> oV

a=—=(V—+V,—+V—|+—
Dt

T ox )Y ‘oz ot

The first bracketed expression gives the acceleration resulting from the particle
being in the process of changing position in a velocity field. This velocity field
is mathematically held constant by virtue of the fact that we are holding ¢ con-
stant. During the computation, we are allowing the particle to be in the process
of moving. We are thus in the process of changing the position of the particle
in this steady flow field. Because the velocity is a varied function of position
(albeit a steady velocity field), the particle is hence in the process of acceler-
ating. This acceleration is aptly called the acceleration of transport. For the
last expression, we are mathematically holding the spatial coordinates station-
ary and are getting the acceleration contribution by virtue of our allowing the
velocity field to be in the process of varying with time.

To apply the preceding concept, we will remind you of two simple defini-
tions. The system is an identified aggregate of matter whose mass is constant
but whose shape may be changing arbitrarily. A control volume is an identi-
fied fixed volume in space wherein there may be flow through the boundary,
called the control surface, and where the amount of mass inside can be chang-
ing. Also, we define an extensive property N for a body as one which depends
for its value on the amount of mass of the body. We then presented an extremely
useful equation in this chapter called the Reynolds transport equation that we
will use in Chapters 4 and 5. Noting that n is N per unit volume, we have

= fPnlov - an) + ;{[fn(p v)

In essence, this theorem relates the time derivative of N of a system at time ¢, as
one follows it (much like you did in dynamics), with the time rate of change of
N determined by focusing on a control volume corresponding to the volume oc-
cupied by the system at time ¢. That is, we are relating a Lagrangian viewpoint
for a system with an Eulerian viewpoint using the control volume, which is the
boundary of the system at time z. How is the latter step, which perhaps is the least
familiar to you, accomplished? At time ¢ we have the rate of flow of N passing
through the control surface, and we add to this the rate of change of NV inside. In
this way, we account for the total rate of change of N as we look at the control
volume. Since the system has the identical volume as the control volume at time
¢ and since the control volume entails identically the same matter as the system
at time 7, one would intuitively expect the same rates of change of N from both
viewpoints at time 7. However, since we proved the relation earlier we do not have
to depend on intuition, although it is nice when it can be applied.
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3.10 CLOSURE

In this chapter we have laid the foundation for the handling of fluid flow. Specifi-
cally, we have presented (1) kinematical procedures and concepts which enable us
to describe the motion of fluids including the concept of irrotationality; (2) the four
basic laws which will form the basis for our calculating the motion and flow char-
acteristics of fluids; (3) the system and control-volume viewpoints by which we can
apply these laws effectively to physical problems, and (4) the Reynolds transport
equation relating the system approach to the control-volume approach or, in other
words, relating the Eulerian and the Lagrangian viewpoints. In Chapters 4 and 5,
we will develop these basic laws for both finite systems and finite-control volumes
in a very general form. And, in solving problems in those chapters, we will make
liberal usage of the one-and two-dimensional flow models.

*3.11 COMPUTER EXAMPLE

COMPUTER EXAMPLE 3.1

H Computer Problem Statement

You are making plans for a sailing regatta. The starting point is at A (see Fig.
C3.1). You plan to make only one tack to get to the buoy at B as shown in the
diagram. The speed of the boat depends on the orientation of the sail and the
wind velocity, the latter as seen from the boat. We shall assume that the skip-
per has set the sail to achieve the maximum speed for any velocity direction of
the sailboat as measured by the angle @ shown in the diagram. We will esti-
mate that the velocity of the boat is given as

V.=6.3 — 0.055«; knots with ¢, in degrees

VHHHHHH#HHH

f Destination N

e

S

30 km/hr

Tack point

Figure C3.1
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The range of each «; is from 10 degrees to 45 degrees. Write an interactive pro-
gram for the skipper for the time of passage from A to B asking for

What distance in feet is the starting point south of the destination?
What distance in feet is the starting point east of the destination?
How far north of the starting point is the buoy you have to go around?

Using the command [a, b] = min find the minimum value of “a” from
each column, and “b” will then be the corresponding row for the matrix. This
gives minimum time. Do the same for the “c, d” matrix. This will get the min-
imum time, the angle «;, and the distance before tacking to win the race.

Use the program for the following data:
Starting point is 2900 ft south of destination.
Starting point is 800 ft east of destination.
Buoy is 1000 ft north of starting point.
Buoy is 500 ft east of starting point.

B Strategy

We will use matrices to store values of every possible combination of distance
before tacking (1lenl) and angle of departure (al). Since we have every pos-
sible combination, we can use these to determine which combination of initial
angle and distance to tack makes for the fastest time to the finish, based on the
starting and ending point locations and the location of the buoy, b (which we must
go around). Once the minimum time is pinpointed in the total time matrix, its
location can be used to determine which “lenl” and “al” were used in de-
termining it. These two values will tell us all we need to know to win the race!

m Execution

clear all;
%$Putting this at the beginning of the program ensures
$values don’t overlap from previous programs.

con=pi./180;
$This is the constant for converting from degrees to
%radians.

len=input (‘What distance in feet is the starting
point south of the destination?\n’);

%$This is the total distance the starting point (a) is
$south of the ending point (d).

dist=input (‘What distance in feet 1is the starting
point east of the destination?\n’);

%$This is the total distance the starting point (a) is
%east of the ending point (d).

153
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1 buoy=input (‘How far north of the starting point is
the buoy you have to go around?\n’);
d_buoy=input (‘How far east of the starting point is
the buoy you have to go around?\n’);

11 vector=linspace(sqgrt(1l_buoy.*2+d _buoy.*2), 2.*(sqrt
(1_buoy.*2+d_buoy.*2)));

%We choose our tack to be after the buoy (obviously)
%but before twice the distance, ab, to the buoy.

al_vector=linspace(atan(d_buoy./1_buoy).*(180./pi), 89
,length(11l_vector));

%$The initial angle must be chosen to at least clear
%the buoy. We also want the size of this array to be
%the same size as the vector “11_vector”.

for i=l:length(1ll_vector);
for j=1l:1length(al_vector);

lenl (i, j)=11_vector (i):;
%$This makes a matrix out of a vector by making rows
%0of each value in the vector “11_vector”.

al (i,j)=al_vector(j):
%$This makes a matrix out of a vector by making
%columns of each value in the vector “al_vector”.

end
end

a2=(atan((dist+lenl.*sin(al.*con))./(len-
lenl.*cos(al.*con)))).*(180./pi);

%$This is the equation solving for alpha2 (in
$degrees) .

len2=sqrt((dist+lenl.*sin(al.*con)).*2+(len-
lenl.*cos(al.*con)).*2);

%$This is the equation for the distance between the
$tack and the ending point.

vl=6.3-.055.%al;
%This is the equation for the velocity in knots
%$between the beginning point and the tack.

tl=lenl./(v1.*1.6878);
%Since we know the velocity and the distance of
%travel we can determine the time it takes. The

o
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%$1.6878 is to convert the velocity from knots to
$ft/sec.

v2=6.3-.055.%a2;
%$This is the equation for the velocity in knots
%$between the tack and the ending point.

t2=len2./(v2.*1.6878);
%This is the time between the tack and the ending
$point.

time=t1l+t2;

%0Once we add “tl” and “t2” then we can find the
gminimum value for the total time and find the “al”
%$and “11” that correspond to this minimum time.

[a,b]l=min(time);

%$When executed, “a” will be the minimum value from
$each column of matrix “time” and “b” will be the
$corresponding row of the matrix that the wvalue was
%$found in.

[c,d]l=min(a);

%When executed, “c” will be the minimum value of the
%$row vector created immediately above and “d” will be
%the corresponding column that it was found in.

fprintf ('\nThe minimum amount of travel time is:
%4 .2f minutes.\n\n’,c./60);

fprintf (‘The value of al that will give us the
minimum time is: %4.2f\n\n’, al(b(d),d)):

fprintf (*The value of lenl that will give us the
minimum time is: %4.2f\n\n’,lenl(b(d),d)):
fprintf (*Therefore, continue a course of %4.2f
degrees for %4.2f feet before

tacking. \n\n’,al(b(d),d), lenl (b(d),d)):;

xl=linspace(dist,dist+lenl(b(d),d).*sin(al(b(d),d).*c
on));

yl=tan((90-al(b(d),d)).*con).*xl-tan((90-
al(b(d),d)).*con).*dist;
x2=linspace(0,len2(b(d),d).*sin(a2(b(d),d).*con));
y2=-tan((90-a2(b(d),d)).*con) .*x2+len;
axis([0(dist+lenl(b(d),d).*sin(al(b(d),d).*con))
+1000 0 len]);

plot(xl,yl1,'b’,x2,y2,'g’);

hold on;

plot (x1(1)+d_buoy,yl(1l)+1_buoy,’o’);

o
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grid;

title (‘'The Best Course To Take To Win The Race!!’);
text (x1(1)+100,y1(1)+100, Point A: The starting
point’) ;

text (x1(100),y1(100), “Tacking!”');

text (x2(1),y2(1)-100, Point C: The ending point’);
text (x1(1)+d_buoy-500,y1(1)+1_buoy, Buoy’);

%A1l this just gives us a plot of the course we must
take to win the race and labels things appropriately
(see Fig. C3.2).

B Debriefing

In MATLAB, matrices of values can be easily manipulated without the need of
loop iteration. The only reason we even used loops in this problem was to gen-
erate the matrices. Once you have matrices they can be added, subtracted, and
multiplied very easily without loops. If you want random values, MATLAB has
an intrinsic function “rand” and “randn” which will generate an x n
matrix as easily as “rand (n, n)” and there is no limit on “*n”!

In world class 30 m racing more careful computations are made in decid-
ing the racing strategy. The initial direction that the yacht takes is very impor-
tant for determining the route to take and where to take the tacks.

B Computer Output

EDU>> mplda

What distance in feet is the starting point south of the
destination?

2900

What distance in feet is the starting point east of the
destination?

800

How far north of the starting point is the buoy you have
to go around?

1000

How far east of the starting point is the buoy you have
to go around?

500

The minimum amount of travel time is: 7.44 minutes.

The wvalue of al that will give us the minimum time is:
26.57

The value of lenl that will give us the minimum time is:
1118.03

Therefore, continue a course of 26.57 degrees for

1118.03 feet before tacking.

EDU>>
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The Best Course To Take To Win The Race!!
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PROBLEMS

Problem Categories
Velocity fields 3.1-3.3
Substantial derivatives 3.4-3.8
Streamlines 3.9-3.13
Noninertial references 3.14-3.15

Velocity field with cylindrical coordinates 3.16
Rotation and strain rates 3.17-3.20

Gradients 3.21-3.22

Rotationality and irrotationality 3.23-3.24
Basic laws 3.25-3.27

One-dimensional flows 3.28-3.30

Kinetic energy in flows 3.31-3.32

Computer problems 3.33-3.34

31

3.2

A flow field is given as
V =6xi+ 6yj — 7tk m/s

What is the velocity at position x = 10 m and
y = 6 m when ¢ = 10 s? What is the slope of
the streamlines for this flow at + = 0 s? What
is the equation of the streamlines att = 0 s
up to an arbitrary constant? Finally, sketch
streamlines at = 0 s.

We will later learn that the two-dimensional
flow around an infinite stationary cylinder is
given as follows, using cylindrical

coordinates:
cosf
V.= V,cos0 — X >
’
. X sinf
Vy = —V,sinf — 2

where V;, and x are constants. (Note that there
is no flow in the z direction.) What is the
slope (dy/dx) of a streamline at » = 2 m and
0 = 30°? Take V, = 5 m/s and y = 3m/s.
Show that at » = V x/V, (i.e., on the
boundary of the cylinder) the streamline must
be tangent to the cylinder wall. Hint: What
does this imply about normal component Vy
at the boundary?

o

3.3

34

3.5

3.6

3.7

Figure P3.2

Given the following unsteady-flow field,

V =3(x — 2t)(y — 3t)i
+ (6 + z + 41)j + 25k ft/s

can you specify by inspection a reference
x'y'z’ moving at constant speed relative to xyz
so that V relative to x'y'z’ is steady? What is
V for this reference? What is the speed of
translation of x'y’z’" relative to xyz? Hint: For
the last step, imagine a point fixed in x'y'z’.
How must x'y’z’ then move relative to xyz to
get correct relations between x' and x, y" and
v, and 7" and z?

Using data from Prob. 3.1, determine the
acceleration field for the flow. What is the
acceleration of the particle at the position and
time designated in Prob. 3.1?

Given the velocity field

V =10i + (x* + y»)j — 2yxk  ft/s
what is the acceleration of a particle at
position (3, 1, 0) ft?
Given the velocity field

V= (6+2xy+ )i — (xp* + 100)j
+ 25k m/s

what is the acceleration of a particle at
(3,0,2) mat time t = 1 s?

A flow of charged particles (a plasma) is
moving through an electric field E given as

E = (x* + 30)i + y2°j + (x> + 22k N/C
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The velocity field of the particles is given as
V = 10x% + (5t + Vy)j + £’k m/s

If the charge per particle is 107> C, what is
the time rate of change of force on any one
particle as it moves through the field?

The force F on a particle with electric charge
g moving through a magnetic field B is given
as

F=gVxB

Consider a flow of charged particles moving
through a magnetic field B given as

B=(10+ )i+ (zZ+y)k W/m?
where the velocity field is given as

V = (20x + 2)i + (18 + zy)j m/s

What is the time rate of change of F for a
flow particle with charge 107> C? Do not take
time to multiply out terms in final
computation.

The equation for streamlines corresponding to
a two-dimensional doublet (to be studied in
Chap. 11) is given in meters as

2 2 X —
XAy =0 [a]

where y is a constant for the flow and C is a
constant for a streamline. What is the
direction of the velocity of a particle at
positionx = Smandy = 10m?If V., =5
m/s, what is V, at the point of interest?
In Prob. 3.9, it should be apparent from
analytic geometry that the streamlines
represent circles. For a given value of y and
for different values of C, along what axis do
the centers of the aforementioned circles lie?
Show that all circles go through the origin.
Sketch a system of streamlines.

In Example 3.1, what is the equation of the
streamline passing through position x = 2,
y = 47 Remembering that the radius of
curvature of a curve is

[+ (dy/dx)?
S JdYy/ax?

—p—

3.12

3.13

3.14

159

determine the acceleration of a particle in a
direction normal to the streamline and toward
the center of curvature at the aforementioned
position.

We are given the following family of curves
representing streamlines for a two-dimensional
source (Chap. 11):

y==Cx ey

where C is a constant for each streamline.
Also we know that

__kKk
Vi + y2
where K is a constant for the flow. What is

the velocity field V(x, y, z) for the flow? That
is, show that

VI = 2

Kx Ky

V.= V, =
T4y V242

Suggestion: Start by showing that

sz Vy y
V= v () i Do
V. V. X

A path line is the curve traversed by any one
particle in the flow and corresponds to the
trajectory as employed in your earlier course
in particle mechanics. Given the velocity field

V = (6x)i + (16y + 10)j + (20t)k m/s

what is the path line of a particle which is at
(2,4, 6) m at time t = 2 s? Suggestion: Form
dx/dt, dy/dt, and dz/dt. Integrate: solve for
constants of integration; then eliminate the
time ¢ to relate xyz in a single equation.
Consider a velocity field V(x, y, z, 7) as
measured from reference xyz. The reference
xyz is moving relative to another reference
XYZ with an angular velocity w and a
translational velocity R and has, in addition,
an angular acceleration o and a translational
acceleration R. From your earlier dynamics
course, you may have learned that the
acceleration of a particle relative to XYZ (that
is, ayy,) is given as

aXYZ:axyz+R+2wXnyz+(;L)xp
+ o X (0 X p)
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where a,, and V,,, are taken relative to xyz.

We have the following data at an instant:

V = 10xi + 30xyj + (3x’z + 10)k m/s
o = 10i rad/s

R=0 m/s

R =16k m/s

® = Sk rad/s?

What is the acceleration relative to xyz and
XYZ, respectively, of a particle at

p=3i+3k m

at the instant of interest?

Figure P3.14

3.15

3.16

Think up and discuss a few situations where
the formulations developed in Prob. 3.14
would be of use.

Consider a steady two-dimensional inviscid
flow about a cylinder of radius a. Using
cylindrical coordinates, we can express the
velocity field of a nonviscous incompressible
flow in the following manner,

a’v,
V(r,0) = —| Vycos6 — ——cosf Je,

r

a*v,
5—sinf |e,
r

where V) is a constant and €, and €, are unit
vectors in the radial and transverse directions,
respectively, as shown in the diagram. What is
the acceleration of a fluid particle at § = 6, at
the boundary of the cylinder whose radius is

+ (VO sinf +

o

Figure P3.16
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3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

a? Suggestion: Use path coordinates. Hint:
What must V, be at the boundary?

Given the following velocity field
V = 10x%i + 20(yz + x)j + 13k m/s

what is the strain rate tensor at (6, 1, 2) m?

In Prob. 3.17, what is the total angular
velocity of a fluid particle at (1, 4, 3) m?
Given the velocity field

V = 5x%yi — (3x — 3z)j + 10’k m/s

compute the angular velocity field w(x, y, 2).
A flow has the following velocity field:

V = (10t + x)i + yzj + 5’k ft/s

What is the angular velocity of a fluid
element at x = 10 ft, y = 3 ft, and z = 5 ft?
Along what surface is the flow always
irrotational?

Show that any velocity field V expressible as
the gradient of a scalar ¢» must be an
irrotational field.

If V = grad ¢, what irrotational flow is
associated with the function

¢ = 3x%y — 3x + 3y* + 1682 + 12zt

Read Prob. 3.21 before proceeding.
Is the following flow field irrotational or not?

V = 6x%i + 2x% + 10k ft/s
Explain why in a capillary tube the flow is

virtually always rotational.

What were the basic laws and subsidiary laws
that you used in your course in strength of
materials?
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In the studies of rigid-body mechanics, how 3.32
was conservation of mass ensured? Also, was
conservation of energy a law independent and
apart from Newton’s laws? Explain the reason
for your answer.

Have we placed any restrictions on the motion
of a control volume? Can it have material
other than fluid inside or passing through?

A fluid is moving along a curved circular pipe
such that the pressure, velocity, and so forth
are uniform at each section of the pipe and
are functions of the position s along the
centerline of the pipe and time. How would
we classify this flow in the light of our
discussion in this chapter? If the flow
properties were also functions at a section of
the radial distance r from the centerline in
addition to s and ¢, would this then be a two-
dimensional flow? Why?

In Example 3.3, compute the linear
momentum flow through a cross section of
the control volume. Recall that the linear
momentum of a particle is mV.

In Prob. 3.29 find a momentum correction
factor which would be the ratio for the actual
momentum flow to that of the one-
dimensional model of the flow for the same
mass flow. In the previous problem, we got
the result

JJ vipV - dA) = -

Do not consult Example 3.3 while doing this
problem.

In Example 3.3, compute the kinetic energy
flow through one face of the control surface if
it is moving to the left at a speed of V,,
relative to the ground.

3.33

pC*mwD®
192

3.34

In Chap. 11, we discuss the simple vortex
where in cylindrical coordinates

V.=0 V.,=0
V. = A
O 2mr

A is a constant called the strength of the
vortex. Draw the streamlines for the simple
vortex. What is the mass flow and kinetic
energy flow through the surface shown in the
diagram?

Surface

Figure P3.32

Z Given the following velocity field parallel
to the xy plane

V = (323 + t2)i + (Iny)(t¥?)j ft/sec

with ¢ in seconds, plot the path of a fluid
particle starting from (2, 5) ft at time r = 0.
Observe the particle for 20 seconds, one
second at a time.

Z In Problem 3.9, plot the streamlines for a
two-dimensional doublet for which y = 10 m
for different constant values of C (which
identifies the contour lines of the velocity
field). Use the values of C equal to 2, 5, 8§,
and 12.
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