
plate, and the influence of the plate extends tens of plate lengths beyond the
plate in all directions. For example, at ReL � 10�1, u does not reach 99 per-
cent of U until y � 320 m—more than 300 plate lengths above the plate! At
moderate values of the Reynolds number (ReL between about 101 and 104),
the displacement effect is significant, and inertial terms are no longer negli-
gible. Hence, fluid is able to accelerate around the plate and the velocity
overshoot is significant. For example, the maximum velocity overshoot is
about 5 percent at ReL � 102. At very high values of the Reynolds number
(ReL � 105), inertial terms dominate viscous terms, and the boundary layer
is so thin that the displacement effect is almost negligible. The small dis-
placement effect leads to very small velocity overshoot. For example, at ReL
� 106 the maximum velocity overshoot is only about 0.4 percent. Beyond
ReL � 106, laminar flow is no longer physically realistic, and the CFD cal-
culations would need to include the effects of turbulence.
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FIGURE 10–136
CFD calculations of steady,

incompressible, two-dimensional
laminar flow over a flat plate of

infinitesimal thickness: nondimensional
x velocity component u/U is plotted

against vertical distance from the
plate, y. Prominent velocity overshoot

is observed at moderate Reynolds
numbers, but disappears at very low

and very high values of ReL.

SUMMARY

The Navier–Stokes equation is difficult to solve, and there-
fore approximations are often used for practical engineering
analyses. As with any approximation, however, we must be
sure that the approximation is appropriate in the region of
flow being analyzed. In this chapter we examine several
approximations and show examples of flow situations in
which they are useful. First we nondimensionalize the
Navier–Stokes equation, yielding several nondimensional
parameters: the Strouhal number (St), Froude number (Fr),
Euler number (Eu), and Reynolds number (Re). Furthermore,

for flows without free-surface effects, the hydrostatic pres-
sure component due to gravity can be incorporated into a
modified pressure P�, effectively eliminating the gravity term
(and the Froude number) from the Navier–Stokes equation.
The nondimensionalized Navier–Stokes equation with modi-
fied pressure is

[St] 
�V

→
*

�t*
� (V

→
* � §

→
*)V

→
* � �[Eu]§

→
*P�* � c 1

Re
d§*2 V

→
*
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When the nondimensional variables (indicated by *) are of
order of magnitude unity, the relative importance of each
term in the equation depends on the relative magnitude of the
nondimensional parameters.

For regions of flow in which the Reynolds number is very
small, the last term in the equation dominates the terms on
the left side, and hence pressure forces must balance viscous
forces. If we ignore inertial forces completely, we make the
creeping flow approximation, and the Navier–Stokes equation
reduces to

Creeping flow is foreign to our everyday observations since
our bodies, our automobiles, etc., move about at relatively
high Reynolds numbers. The lack of inertia in the creeping
flow approximation leads to some very interesting peculiari-
ties, as discussed in this chapter.

We define inviscid regions of flow as regions where the vis-
cous terms are negligible compared to the inertial terms
(opposite of creeping flow). In such regions of flow the
Navier–Stokes equation reduces to the Euler equation,

In inviscid regions of flow, the Euler equation can be manip-
ulated to derive the Bernoulli equation, valid along stream-
lines of the flow.

Regions of flow in which individual fluid particles do not
rotate are called irrotational regions of flow. In such regions,
the vorticity of fluid particles is negligibly small, and the vis-
cous terms in the Navier–Stokes equation can be neglected,
leaving us again with the Euler equation. In addition, the
Bernoulli equation becomes less restrictive, since the
Bernoulli constant is the same everywhere, not just along
streamlines. A nice feature of irrotational flow is that elemen-
tary flow solutions (building block flows) can be added
together to generate more complicated flow solutions, a
process known as superposition.

Since the Euler equation cannot support the no-slip bound-
ary condition at solid walls, the boundary layer approxima-
tion is useful as a bridge between an Euler equation approxi-

ra�V
→

�t
� (V

→
� §

→
)V

→b � �§
→

P�

§
→

P� � m§2V
→

mation and a full Navier–Stokes solution. We assume that an
inviscid and/or irrotational outer flow exists everywhere
except in very thin regions close to solid walls or within
wakes, jets, and mixing layers. The boundary layer approxi-
mation is appropriate for high Reynolds number flows. How-
ever, we recognize that no matter how large the Reynolds
number, viscous terms in the Navier–Stokes equations are
still important within the thin boundary layer, where the flow
is rotational and viscous. The boundary layer equations for
steady, incompressible, two-dimensional, laminar flow are

We define several measures of boundary layer thickness,
including the 99 percent thickness d, the displacement thick-
ness d*, and the momentum thickness u. These quantities can
be calculated exactly for a laminar boundary layer growing
along a flat plate, under conditions of zero pressure gradient.
As the Reynolds number increases down the plate, the
boundary layer transitions to turbulence; semi-empirical
expressions are given in this chapter for a turbulent flat plate
boundary layer.

The Kármán integral equation is valid for both laminar
and turbulent boundary layers exposed to arbitrary nonzero
pressure gradients,

This equation is useful for “back of the envelope” estimations
of gross boundary layer properties such as boundary layer
thickness and skin friction.

The approximations presented in this chapter are applied to
many practical problems in engineering. Potential flow analy-
sis is useful for calculation of airfoil lift (Chap. 11). We uti-
lize the inviscid approximation in the analysis of compress-
ible flow (Chap. 12), open-channel flow (Chap. 13), and
turbomachinery (Chap. 14). In cases where these approxima-
tions are not justified, or where more precise calculations are
required, the Navier–Stokes equations are solved numerically
using CFD (Chap. 15).
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