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FLUID MECHANICS

i . Lagrangian concepts to Eulerian interpretations of those concepts. While the
Lagrangian | D __, | Eulerian R 1d h deal ith fini . | 1 d th
At D et eynolds transport theorem deals with finite-size control volumes and the

material derivative deals with infinitesimal fluid particles, the same funda-
mental physical interpretation applies to both (Fig. 4-63). In fact, the
Reynolds transport theorem can be thought of as the integral counterpart of
the material derivative. In either case, the total rate of change of some prop-
System Control erty following an identified portion of fluid consists of two parts: There is a
analysis RTT ;’r?;;l;?fs local or unsteady part that accounts for changes in the flow field with time

(compare the first term on the right-hand side of Eq. 4-12 to that of Eq. 4-
45). There is also an advective part that accounts for the movement of fluid
from one region of the flow to another (compare the second term on the
right-hand sides of Eqgs. 4-12 and 4-45).

Just as the material derivative can be applied to any fluid property, scalar
or vector, the Reynolds transport theorem can be applied to any scalar or
vector property as well. In Chaps. 5 and 6, we apply the Reynolds transport
theorem to conservation of mass, energy, momentum, and angular momen-
tum by choosing parameter B to be mass, energy, momentum, and angular
momentum, respectively. In this fashion we can easily convert from the fun-
damental system conservation laws (Lagrangian viewpoint) to forms that are
valid and useful in a control volume analysis (Eulerian viewpoint).

FIGURE 4-63

The Reynolds transport theorem for
finite volumes (integral analysis) is
analogous to the material derivative
for infinitesimal volumes (differential
analysis). In both cases, we transform
from a Lagrangian or system viewpoint
to an Eulerian or control volume
viewpoint.

SUMMARY

Fluid kinematics is concerned with describing fluid motion,
without necessarily analyzing the forces responsible for such
motion. There are two fundamental descriptions of fluid
motion—Lagrangian and Eulerian. In a Lagrangian descrip-
tion, we follow individual fluid particles or collections of
fluid particles, while in the Eulerian description, we define a
control volume through which fluid flows in and out. We
transform equations of motion from Lagrangian to Eulerian
through use of the material derivative for infinitesimal fluid
particles and through use of the Reynolds transport theorem
(RTT) for systems of finite volume. For some extensive prop-
erty B or its corresponding intensive property b,
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In both equations, the total change of the property following a
fluid particle or following a system is composed of two parts:
a local (unsteady) part and an advective (movement) part.
There are various ways to visualize and analyze flow
fields—streamlines, streaklines, pathlines, timelines, surface

imaging, shadowgraphy, schlieren imaging, profile plots, vec-
tor plots, and contour plots. We define each of these and pro-
vide examples in this chapter. In general unsteady flow,
streamlines, streaklines, and pathlines differ, but in steady
flow, streamlines, streaklines, and pathlines are coincident.
Four fundamental rates of motion (deformation rates) are
required to fully describe the kinematics of a fluid flow: veloc-
ity (rate of translation), angular velocity (rate of rotation), lin-
ear strain rate, and shear strain rate. Vorticity is a property of
fluid flows that indicates the rotationality of fluid particles.

Vorticity vector: Z“ =V X V=curl(V) = 26

A region of flow is irrotational if the vorticity is zero in that
region.

The concepts learned in this chapter are used repeatedly
throughout the rest of the book. We use the RTT to transform
the conservation laws from closed systems to control vol-
umes in Chaps. 5 and 6, and again in Chap. 9 in the deriva-
tion of the differential equations of fluid motion. The role of
vorticity and irrotationality is revisited in greater detail in
Chap. 10 where we show that the irrotationality approxima-
tion leads to greatly reduced complexity in the solution of
fluid flows. Finally, we use various types of flow visualiza-
tion and data plots to describe the kinematics of example
flow fields in nearly every chapter of this book.
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