
Discussion The time required for momentum to diffuse into the fluid seems
much longer than we would expect based on our intuition. This is because
the solution presented here is valid only for laminar flow. It turns out that if
the plate’s speed is large enough, or if there are significant vibrations in the
plate or disturbances in the fluid, the flow will become turbulent. In a turbu-
lent flow, large eddies mix rapidly moving fluid near the wall with slowly
moving fluid away from the wall. This mixing process occurs rather quickly,
so that turbulent diffusion is usually orders of magnitude faster than laminar
diffusion.

Examples 9–15 through 9–19 are for incompressible laminar flow. The
same set of differential equations (incompressible continuity and Navier–
Stokes) is valid for incompressible turbulent flow. However, turbulent flow
solutions are much more complicated because the flow contains random,
unsteady, three-dimensional eddies that mix the fluid. Furthermore, these
eddies may range in size over several orders of magnitude. In a turbulent
flow field, none of the terms in the equations can be ignored (with the
exception of the gravity term in some cases), and thus our only hope of
obtaining a solution is through numerical computations on a computer.
Computational fluid dynamics (CFD) is discussed in Chap. 15.
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CHAPTER 9

SUMMARY

In this chapter we derive the differential forms of conserva-
tion of mass (the continuity equation) and conservation of
linear momentum (the Navier–Stokes equation). For incom-
pressible flow of a Newtonian fluid with constant properties,
the continuity equation is

and the Navier–Stokes equation is

For incompressible two-dimensional flow, we also define the
stream function c. In Cartesian coordinates,

We show that the difference in the value of c from one
streamline to another is equal to the volume flow rate per unit

u �
�c

�y
  v � �

�c

�x

r 
DV

→

Dt
� �§

→
P � rg

→
� m§2V

→

§
→

� V
→

� 0

width between the two streamlines and that curves of con-
stant c are streamlines of the flow.

We provide several examples showing how the differential
equations of fluid motion are used to generate an expression
for the pressure field for a given velocity field and to gener-
ate expressions for both velocity and pressure fields for a
flow with specified geometry and boundary conditions. The
solution procedure learned here can be extended to much
more complicated flows whose solutions require the aid of a
computer.

The Navier–Stokes equation is the cornerstone of fluid
mechanics. Although we have the necessary differential equa-
tions that describe fluid flow (continuity and Navier–Stokes),
it is another matter to solve them. For some simple (usually
infinite) geometries, the equations reduce to equations that
we can solve analytically. For more complicated geometries,
the equations are nonlinear, coupled, second-order, partial
differential equations that cannot be solved with pencil and
paper. We must then resort to either approximate solutions
(Chap. 10) or numerical solutions (Chap. 15).
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FIGURE 9–78
Normalized velocity profile of

Example 9–19: laminar flow of a
viscous fluid above an impulsively

started infinite plate.
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