Chapter 23: Respiratory System

I. Functions of the Respiratory System
 A. List and describe the five major functions of the respiratory system:
 1. __
 __
 __
 __
 __
 2. __
 __
 3. __
 __
 4. __
 __
 5. __
 __

II. Anatomy and Histology of the Respiratory System
 A. Nose
 1. Consists of ____________________ and the ____________________
 2. External Nose
 a. The largest part is composed of ______________________________
 b. What bones make the bridge of the nose? ______________________ &
 extensions of the ____________________ and ____________________
 4. Nasal Cavity
 a. Extends from the ____________________ to the ____________________
 1. What are the nares? ______________________________
 2. What are the choanae? ______________________________
 b. What is the vestibule? ______________________________
c. What forms the floor of the nasal cavity and separates it from the oral cavity?

d. The nasal septum is composed of:
 1. Anterior part is ____________________
 2. Posterior part consists of:
 a. ____________________ bone
 b. Perpendicular ______________________________

e. What are the conchae? ________________________________
 1. Where are they located in the nasal cavity? __________________

f. What is a meatus? ________________________________

g. The paranasal sinuses open into ________________________________

h. The nasolacrimal duct opens into ________________________________

i. Functionally the nasal cavity:
 1. Passageway ________________________________
 2. Cleans ________________________________
 3. Humidifies and ________________________________
 4. Sensory organ for ________________________________ located _______________
 5. Resonating ________________________________

B. Pharynx

1. Common opening for both ____________________ & __________________

2. Inferiorly connected to:
 a. Respiratory system at the ________________________________
 b. Digestive system at the ________________________________

3. Nasopharynx
 a. Superior part of the pharynx and extends from ____________________ to ____________________
 b. What is the uvula attached to? ________________________________
 c. Functionally the soft palate prevents ________________________________
 d. Mucus containing trapped particles from the nasal cavity moves through the nasopharynx and is ____________________
e. The auditory tubes from ________________ open into the nasopharynx
 a. They function to __

f. Where is the pharyngeal tonsil or adenoid located? ________________

4. Oropharynx
 a. Extends from ________________ to the ________________
 b. The opening to the oral cavity is called the ____________________
 c. What two sets of tonsils are located near the opening to the oral cavity?
 1. ____________________
 2. ____________________

5. Laryngopharynx
 a. Extends from the ________________ to the ________________
 b. Passes posterior to the ____________________

C. Larynx
 1. Consists of an outer casing of ________________ that are connected to
 one another by ________________ & ________________
 2. What is the largest unpaired cartilage? ____________________
 3. What cartilage forms the base of the larynx? ____________________
 4. Which cartilage projects as a free flap toward the tongue? ________________
 a. This cartilage is composed of ____________________
 b. During swallowing it covers ____________________
 5. The paired cartilages:
 a. Where are the arytenoid cartilages? ________________
 b. Where are the corniculate cartilages? ________________
 c. Where are the cuneiform cartilages? ________________
 6. Two pairs of ligaments extend from ________________ to ________________
 a. The superior pair is called ____________________
 1. Functionally when they come together ____________________
 b. The inferior pair is called ____________________
c. What is the glottis? ___
d. What is laryngitis? __

7. Functionally the larynx:
 a. Maintain an open ___
 b. Prevent __
 c. Primary source of __
 1. Higher pitched tones are produced when ______________________
 2. Progressively lower tones ________________________________
 3. Why do males have lower-pitched voices? ______________________
 4. Movement of the cartilages is controlled by _____________________
 5. Movement of arytenoid cartilages:
 a. Lateral rotation ___
 b. Medial rotation ___
 c. Anterior/posterior movement ______________________________

D. Trachea
 1. Describe the structure of the trachea: ___________________________

 2. Functionally the C-shaped cartilage ____________________________ the trachea and
 ___ for air
 3. The posterior wall of the trachea is ___________________________ but contains:
 a. Elastic __
 b. Bundles of ______________________________ called ____________
 4. What does the smooth muscle do during coughing? ________________
 5. Describe the structure of the mucous membrane: ________________

 a. What functional role do the cilia play? ______________________
 6. At the level of the fifth thoracic vertebrae the trachea divides into __________

 7. What is the carina? ___

E. Tracheobronchial Tree
 1. What does the term tracheobronchial tree refer to? ________________
2. Conducting Zone
 a. Extends from the ________________ to ________________
 b. How many generations of branching are present? ________________
 c. Functionally the conducting zone is a ________________ & contains epithelial tissue that helps ________________
 d. The trachea divides into the __________ & __________________________
 1. Compared to the left primary bronchus, the right primary bronchus is:
 a. ________________
 b. ________________
 c. ________________
 e. The primary bronchi divide into ______________________________
 1. How many in the left lung? ________________
 2. How many in the right lung? ________________
 f. The secondary bronchi divide into ______________________________
 g. The bronchi continue to branch giving rise to ______________________
 h. Several more subdivisions finally become _______________________
 i. As the tubes divide the amount of cartilage and smooth muscle changes:
 1. Primary bronchi have ______________________________
 2. Secondary bronchi have ______________________________
 3. Terminal bronchioles have ______________________________
 j. Diameter of the air passageways is changed by _______________________

 k. What happens to the air passageways in an asthma attack? ________________

3. Respiratory Zone
 a. Extends from the ________________ to ________________ called ________________ which are sites of ______________________
 b. How many generations of branching are present? ________________
 c. The terminal bronchioles divide to form _______________________
 1. Have a few attached alveoli so have a limited ability ________________
d. As respiratory bronchioles divide into smaller branches the number of attached alveoli ______________________

e. The respiratory bronchioles finally form _____________________ ducts
 1. The alveolar duct wall is little more than _________________________
 2. The alveolar duct ends as ____________________________

f. The tissue surrounding the alveoli contains __________________________
 1. This allows the alveoli to:
 a. Expand ______________________________
 b. Recoil ______________________________

g. Structurally the walls of respiratory bronchioles consists of:
 a. ____________________ and ____________________________ with
 b. Bundles of ______________________________
 c. Epithelium is a ____________________________

h. Structurally the alveolar ducts and alveoli consist of ____________________

i. Debris in the respiratory zone is removed by _________________________
 1. Where does the debris end up? ____________________________ or

j. Alveolar walls are composed of two cell types:
 1. Type I pneumocytes are _____________________________ that form

 2. Type II pneumocytes are ________________________________ that
 produce ____________________ which ________________________
 3. Most gas exchange occurs through which cells? _________________

k. What is the respiratory membrane? _____________________________

l. Why does the respiratory membrane need to be thin? ________________

m. List the elements of the respiratory membrane:
 1. ___
 2. ___
 3. ___
F. Lungs

1. What is the shape of a lung? ________________________________

2. What is the hilum? ________________________________

3. What is the root of the lung? ________________________________

4. How many lobes does each lung have?
 a. Right lung has __________________
 b. Left lung has __________________

5. What separates the lobes of the lung? ________________________________

6. Internally each lobe is supplied by a ____________________ bronchus

7. The lobes are subdivided into ________________________________ which are
 supplied by ________________________________

8. Bronchopulmonary segments are subdivided into ________________________________
 that are supplied by ________________________________

G. Thoracic Wall and Muscles of Respiration

1. The thoracic wall consists of the:
 a. ________________________________
 b. ________________________________
 c. ________________________________
 d. ________________________________
 e. ________________________________

2. How is the thoracic cavity defined? ________________________________
 __

3. The associated muscles are responsible for ________________________________

4. The muscles of inspiration include:
 a. ________________________________
 b. ________________________________
 c. ________________________________
 d. ________________________________
5. Which muscle is responsible for two-thirds of the thoracic cavity volume increase? ______________________________

6. Which muscles elevate the ribs to increase thoracic cavity volume? __

7. The muscles of expiration that compress the ribs and sternum include:
 a. ______________________________
 b. ______________________________

8. How is inward collapse of the thoracic cage prevented during inspiration? __

9. Describe the shape of the diaphragm: ______________________________
 a. The base is attached to __
 b. What is the central tendon? ______________________________________

10. What happens to the diaphragm during normal quiet breathing? ___________

11. When breathing deeper what happens to the diaphragm? ___________

12. When the ribs are elevated the costal cartilage allows ___________________

13. During quiet breathing expiration occurs when _______________________ &
 __________________________ relax and the __________________________
 cause a __
 a. Contraction of the abdominal muscles __________________________

H. Pleura

1. Each lung is contained inside a ______________________________

2. What is the mediastinum? ______________________________

3. What does the parietal pleura cover? ______________________________

4. What does the visceral pleura cover? ______________________________

5. The pleural cavity is filled with ______________________________

6. Functionally the pleural fluid:
 a. Acts as a ______________________________
b. Helps hold ________________________________

I. Blood Supply

1. What is oxygenated blood? ________________________________
2. What is deoxygenated blood? ________________________________
3. The major blood flow route:
 a. Brings deoxygenated blood from the heart through ________________
 b. Flows through pulmonary capillaries where it is ________________
 c. Then flows back to the heart through ____________________________
4. The smaller blood flow route:
 a. Brings oxygenated blood from the ______________________________
 b. Passes through ________________ to ________________ where oxygen is released
 c. The now deoxygenated blood from the proximal part of the bronchi returns
to the heart through _________ veins and the ______________________
 d. The now deoxygenated blood from the distal part of the bronchi returns to
the heart through the __________________________ containing ____________

J. Lymphatic Supply

1. Where are the superficial lymphatic vessels located? ________________
 a. Functionally they drain lymph from ______________________________

2. Where are the deep lymphatic vessels located? ________________
 a. Functionally they drain lymph from ______________________________

3. The lymphatic vessels exit the lungs at the ________________

III. Ventilation

A. Pressure Differences and Airflow

1. What is ventilation? ________________________________
2. Airflow into the lungs requires ________________________________
3. Airflow out of the lungs requires ________________________________
B. Pressure and Volume
 1. The general gas law reveals that air pressure is _______________________
 ______________________ to ______________________________
 a. As volume increases ______________________________
 b. As volume decreases ______________________________

C. Airflow into and out of Alveoli
 1. Barometric air pressure is defined to be equal to ________________
 2. What is alveolar pressure? ________________________________
 a. This pressure is usually expressed in terms of ________________
 3. During the process of ventilation:
 a. At the End of Expiration:
 1. No air is moving because ______________________________
 b. During Inspiration
 1. Contraction of ______________________________
 2. ____________________ thoracic volume
 3. Results in ____________________ of the lungs and an

 4. Causes a ____________________ in alveolar pressure
 5. Air flows ____________________ because ____________________
 is ______________________________
 c. End of Inspiration
 1. Thorax and alveoli ______________________________
 2. Alveolar pressure becomes ______________________________
 3. No further movement of air because ______________________________
 d. During Expiration
 1. Diaphragm ______________________________
 2. ____________________ thoracic volume
 3. Thorax and lungs ______________________________
 4. Decreased thoracic volume results in ________________ alveolar
 volume and ____________________ alveolar pressure
5. Air flows ________________ because ________________
 is __

6. As expiration ends:
 a. ________________ in thoracic volume stops
 b. Alveoli ______________________________

D. Changing Alveolar Volume

1. Lung Recoil
 a. What does lung recoil cause? ________________
 b. Lung recoil is the result of:
 1. Elastic ___
 2. Surface ___
 c. Surfactant composed of ______________________________
 d. How does surfactant reduce the tendency of the lungs to collapse?
 __

2. Pleural Pressure
 a. Pleural pressure is the pressure in the ____________________________
 b. Normally the alveoli are expanded because ________________________
 c. When pleural pressure is lower than alveolar pressure ______________
 __
 d. This expansion is opposed by the tendency of the lungs to ____________
 e. What happens if the pleural pressure is sufficiently low? ______________
 __
 f. What happens if the pleural pressure is not low enough to overcome lung
 recoil? ______________________________

3. Pressure Changes During Inspiration and Expiration
 a. At the end of a normal expiration:
 1. Pleural pressure is ______________________________
 2. Alveolar pressure is ______________________________
 b. During normal quiet inspiration:
 1. Pleural pressure ______________________ to ______________________
 2. Alveolar volume ______________________________
3. Alveolar pressure _________________________________
4. Air flows _________________________________
5. As air flows into the lungs, alveolar pressure _______________________________
 and _________________________________ at the end of inspiration
6. The tendency for the lungs to recoil increases as _______________________________
 ______________________________ similar to _________________________________
c. During expiration:
 1. Thoracic volume _______________________________
 2. Pleural pressure _______________________________
 3. Alveolar volume _______________________________
 4. Alveolar pressure _______________________________
 5. Air flows _________________________________
 6. As air flows out of the lungs, alveolar pressure _______________________________
 and _________________________________ at the end of expiration

IV. Measuring Lung Function
A. Compliance of the Lungs and the Thorax
 1. What is compliance a measure of? _________________________________

 2. Compliance of the lungs and thorax is the ________________ by which they
 ________________ for each unit of ___________________ in ________________
 3. The greater the compliance _________________________________

 4. A higher than normal compliance means the lungs will expand ________________
 5. A lower than normal compliance means that ________________________________
B. Pulmonary Volumes and Capacities
 1. What is spirometry? _________________________________
 2. What is a spirometer? _________________________________
 3. List and describe the pulmonary volumes:
 a. _________________________________

4. List and describe the pulmonary capacities:
 a. ___

 b. ___

 c. ___

 d. ___

5. List factors that cause variations in pulmonary volumes and capacities:
 __

6. Do males or females have a larger vital capacity? ______________________

7. The vital capacity is usually highest at what age? ______________________

8. What is the forced expiratory vital capacity? __________________________
 __

C. Minute Ventilation and Alveolar Ventilation
 1. Define minute ventilation: ________________________________

 2. Minute ventilation is equal to ________________________________
 3. The anatomic dead space is the part of the respiratory system where gas
 exchange ________________________________
 4. What structures make up the anatomic dead space? ________________,
 __________, __________, __________, __________, & __________
 5. What is physiologic dead space? ________________________________
6. Alveolar ventilation is the volume of air _______________________________
 per ______________________________

V. Physical Principles of Gas Exchange

A. Partial Pressure
 1. What is atmospheric pressure at sea level? ______________________________
 2. What does Dalton's law say about pressures in a mixture of gases?
 __
 __
 3. What is a partial pressure? __
 4. How do you calculate a partial pressure? _____________________________
 __
 5. What is water vapor pressure? _____________________________________

B. Diffusion of Gases Through Liquids
 1. The amount of gas that will dissolve in a liquid is determined by:
 a. Partial ______________________________
 b. Solubility ______________________________
 1. This is described by ______________________________________
 2. What is the solubility coefficient? ______________________________
 3. The calculated partial pressure of a gas in a liquid is a measure of

C. Diffusion of Gases Through the Respiratory Membrane
 1. Respiratory Membrane Thickness
 a. Increasing the thickness of the respiratory membrane ________________
 __
 b. How thick is the respiratory membrane normally? ________________
 c. What happens if the thickness increases two or three times? _________
 __
 d. What is the most common cause of an increase in the thickness of the
 respiratory membrane? ______________________________
e. List a few examples of conditions that can cause such fluid accumulation:

2. Diffusion Coefficient
 a. What is the diffusion coefficient? ________________________________
 1. This takes into account:
 a. Solubility ________________________________
 b. Size ________________________________
 b. Does oxygen or carbon dioxide diffuse more easily? _________________
 c. Damage to the respiratory membrane interferes with the diffusion of
 ________________ more than the diffusion of ________________
 d. Extensive oxygen therapy can result in large blood increases of ______

3. Surface Area
 a. What is the normal surface area of the respiratory membrane of a healthy
 adult? ______________________________
 b. What diseases might decrease surface area? ______________________
 c. Small decreases in surface area affect the ability to exchange gases
 during ______________________________
 d. The ability to exchange gases becomes a problem even under resting
 conditions when the surface area is decreased by ________________
 e. List examples of how surface area for gas exchange can be reduced:

4. Partial Pressure Difference
 a. Define partial pressure difference: ________________________________
 __
 __
 b. Net diffusion occurs from the ________________ partial pressure to
 ________________ partial pressure
 c. Normally the partial pressure of oxygen (P\textsubscript{O\textsubscript{2}}) is higher in ________________
 than the ________________
 d. Normally the partial pressure of carbon dioxide (P\textsubscript{CO\textsubscript{2}}) is higher in
 ________________ than the ________________
e. How can the partial pressure difference for oxygen and carbon dioxide be raised?

f. A lower than normal partial pressure difference is caused by:

D. Relationship Between Ventilation and Pulmonary Capillary Blood Flow
1. Regular ventilation of the alveoli and normal blood flow through pulmonary capillaries allows effective ______________ between air and blood
2. During exercise effective gas exchange is maintained because:
 a. Ventilation ______________
 b. Cardiac output ______________
3. The normal relationship can be disrupted in two ways:
 a. Cardiac output is ______________ and therefore not enough blood flows to the lungs to pick up the available oxygen
 b. Ventilation is ______________ to provide enough oxygen for the blood flowing through the pulmonary capillaries
4. What is shunted blood? ________________________________
5. What is the anatomic shunt? ________________________________
6. What is the physiologic shunt? ________________________________
7. When a person is standing blood flow and ventilation in the lungs is effected by ________________________________
8. When a person is standing most gas exchange occurs at ________________
9. There is decreased pressure at the ____________________ of the lungs
10. During exercise, cardiac output and ventilation ________________
 a. This ________________ pulmonary blood pressure throughout the lung
 b. Blood flow ______________ most at the ____________________
 c. Effectiveness of gas exchange increases ________________ because of ____________________
11. If there is a low Po₂ in one portion of the lung:
 a. Causes arterioles to ________________ blood flow
 b. This reroutes blood ____________________
c. This reduces the effect on gas exchange by rerouting the blood to

VI. Oxygen and Carbon Dioxide Transport in the Blood

A. Oxygen Diffusion Gradients
1. The \(P_{O2} \) within the alveoli averages approximately ________________
2. The \(P_{O2} \) of the blood as it flows into pulmonary capillaries is ________________
 a. Therefore, oxygen diffuses from ________________ into ________________
3. Does the blood \(P_{O2} \) ever reach equilibrium with the alveoli \(P_{O2} \)? ____________
4. Blood leaving the pulmonary capillaries has a \(P_{O2} \) of ________________
 but blood leaving the lungs in the pulmonary veins has a \(P_{O2} \) of ___________
 a. What causes this decrease in \(P_{O2} \)? ______________________________

5. The \(P_{O2} \) of blood entering tissue capillaries is approximately ____________
6. The \(P_{O2} \) of the interstitial spaces is close to ____________________
7. The \(P_{O2} \) inside the cells is probably near ________________
 a. Therefore, oxygen diffuses from ________________ into ________________ &
 from the ________________ into ________________
 b. A constant diffusion gradient exists because ___________________

B. Carbon Dioxide Diffusion Gradients
1. Carbon dioxide is continually produced as a by-product of ________________
 a. This establishes a diffusion gradient for carbon dioxide from the ________________
 to the ________________
 1. The intracellular \(P_{CO2} \) is approximately ________________
 2. The interstitial fluid \(P_{CO2} \) is approximately ________________
 3. The blood entering the tissue capillaries has a \(P_{CO2} \) of ________________
 a. Therefore, carbon dioxide diffuses from ________________
 to ______________________________
 c. As the blood leaves the tissue capillaries it has a \(P_{CO2} \) of ___________
2. At the lungs:
 a. The \(P_{CO2} \) of blood entering the pulmonary capillaries is ________________
b. The P\textsubscript{CO}_2 of the alveoli is approximately ______________
 1. Therefore, carbon dioxide diffuses from ______________ into

 c. The P\textsubscript{CO}_2 of blood leaving the pulmonary capillaries has decreased to

C. Hemoglobin and Oxygen Transport

1. How much of the oxygen transported in blood is in combination with
 hemoglobin? ______________

2. The combination of oxygen with hemoglobin is ______________
 a. In the pulmonary capillaries ______________
 b. In the tissue capillaries ______________

3. Effect of P\textsubscript{O}_2
 a. What is the oxygen-hemoglobin dissociation curve? ______________
 b. When is hemoglobin saturated with oxygen? ______________
 c. At any P\textsubscript{O}_2 above 80 mm Hg the hemoglobin is about ______
 saturated
 d. At the P\textsubscript{O}_2 of 104 mm Hg the hemoglobin is ________
 saturated
 e. In the skeletal muscle of a resting person:
 1. The blood leaving the muscle has a P\textsubscript{O}_2 of ______________
 1. Therefore the hemoglobin released ________
 of the oxygen
 f. During vigorous exercise the blood P\textsubscript{O}_2 can decline to ________
 1. At this level approximately ________ of the hemoglobin is saturated
 and ______________ of the bound oxygen is released
 g. When the oxygen needs of the tissue ______________, blood P\textsubscript{O}_2
 ______________ and ______________

4. Effect of pH, P\textsubscript{CO}_2, and Temperature
 a. pH
 1. As the pH of the blood declines ______________

2. This occurs because decreased pH is caused by _________________

3. Hydrogen ions combine with ________________________________
 & change __
 a. This results in a decrease in the ability _________________

4. As the pH of the blood increases ______________________________
 __

5. The effect of pH on the oxygen-hemoglobin dissociation curve is called

b. P\textsubscript{CO\textsubscript{2}}
 1. An increase in P\textsubscript{CO\textsubscript{2}} _________________ the ability of hemoglobin
 to bind oxygen because carbon dioxide effects __________
 2. What is carbonic anhydrase? ______________________________
 3. What is the chemical reaction carbonic anhydrase is involved in?
 __

4. When carbon dioxide levels increase more ______________________

5. When carbon dioxide levels decline there is a decrease in _________
 ________________________________ and an increase in _________

6. As blood passes through tissue capillaries:
 a. Carbon dioxide ________________________________
 b. Blood carbon dioxide levels _________________________
 c. Hemoglobin has _________________________________
 d. Greater amount of ______________________________________
 __

7. As blood passes through the lungs:
 a. Carbon dioxide ______________________ & _____________________
 b. Carbon dioxide levels in the pulmonary capillaries ____________
 c. Affinity __

 c. Temperature
 1. What effect does an increase in temperature have on the tendency of
 hemoglobin to bind to oxygen? ______________________
 2. Tissues with increased metabolism have higher temperature and
therefore _________________ oxygen is released from hemoglobin
3. Less active tissues have a lower temperature and _________________
oxygen is released

d. During exercise what happens to the following in the tissues:

1. Carbon dioxide levels _________________
2. Acidic substances _________________ so the pH __________
3. Temperature _________________
 a. These conditions cause how much of the oxygen to be released
 from the hemoglobin? _________________
 1. This is due to the oxygen-hemoglobin curve shifting _________
6. In the lungs the hemoglobin becomes easily saturated because:

1. Carbon dioxide levels _________________
2. Temperature _________________
3. Lactic acid levels _________________

5. Effect of BPG (2,3-biphosphoglycerate)

a. BPG is formed as red blood cells _________________
b. What does BPG do when it binds to hemoglobin? _________________
c. When BPG levels increase _________________
d. When BPG levels decrease _________________
e. What happens to BPG levels at high altitudes? _________________
f. What happens to BPG levels in stored blood? _________________
 1. Why does stored blood become unsuitable for transfusion? _________
 __

f. What happens to BPG levels in stored blood? _________________

6. Fetal Hemoglobin

a. Fetal blood is very efficient at picking up oxygen because:

1. Concentration of fetal hemoglobin is ___________________________
 __
2. Fetal hemoglobin has an oxygen-hemoglobin dissociation curve that is
to the _________ of the maternal curve. This means that fetal
 hemoglobin can ___________________________
 __
3. BPG has _________________ on fetal hemoglobin.
4. Of the double Bohr effect. Describe what happens in the double Bohr effect: __
__
__

D. Transport of Carbon Dioxide
1. Carbon dioxide is transported in the blood in three major ways:
 a. 7% __
 b. 23% __
 c. 70% __
2. Carbon dioxide binds in a reversible fashion to the ____________________
of the ______________________________
3. What is the Haldane effect? ______________________________________
 __
 a. In the tissues __
 b. In the lungs ___
4. Chloride Shift
 a. At the tissues:
 1. Carbon dioxide diffuses into ______________________________
 2. Some of the carbon dioxide binds to ________________________
 3. Most of the carbon dioxide reacts with ____________________ to
 form ______________________________
 a. This reaction is catalyzed by the enzyme ____________________
 4. The carbonic acid then dissociates into:
 a. ______________________________
 b. ______________________________
 5. In the chloride shift carrier molecules move:
 a. Bicarbonate ions ______________________________
 b. Chloride ions ______________________________
 1. This exchange maintains ______________________________
 6. Hemoglobin binds to ______________________________
 a. In this fashion hemoglobin functions as a ____________________
b. At the lungs:
 1. Carbon dioxide ______________________________
 2. Carbonic acid is converted to ______________________________
 3. Bicarbonate ions join _________________ to form _______________
 4. Bicarbonate ions _______ the red blood cell in exchange for ________
 5. Hemoglobin releases ______________________________

5. Carbon Dioxide and Blood pH
 a. Blood pH refers to _________________ not _________________
 b. Carbonic anhydrase is found on _________________________________
 c. So in plasma carbon dioxide joins with _________________ to form
g______________ which dissociates to form__________________ and ________________
 d. As carbon dioxide increases, hydrogen ions __________ & pH _________
 e. The respiratory system regulates blood pH by ______________________

VII. Rhythmic Ventilation
 A. Respiratory Areas in the Brainstem
 1. The medullary respiratory center consists of:
 a. Two __
 b. Two __
 1. Communication exists between ______________________________
 2. Communication also exists between __________________________
 2. The dorsal respiratory groups are primarily responsible for ______________
 __
 a. The input they receive allows ______________________________
 3. The ventral respiratory group is a collection of neurons that are active during
 ____________________ & ____________________
 a. The neurons of the ventral respiratory group primarily stimulate:
 1. ____________________
 2. ____________________
 3. ____________________
4. Functionally the pontine respiratory group has:
 a. Some of the neurons ________________________________
 b. Some of the neurons ________________________________
 c. Some of the neurons ________________________________
 1. Appears to play a role in ____________________________

B. Generation of Rhythmic Ventilation
1. Starting inspiration:
 a. Neurons that promote inspiration are ____________________________
 b. The medullary respiratory center constantly receives input related to:
 1. Blood __________________________
 2. Blood __________________________
 3. Movements of ____________________ & ____________________
 c. The medullary respiratory center can also receive input from:
 1. Parts of brain concerned with ____________________________ &

 d. Inspiration starts when the combined input from all sources causes the
 production of ____________________________
2. Increasing inspiration:
 a. What happens once inspiration begins? ____________________________

 b. What does this do to the stimulation of respiratory muscles? _________
 ____________________________ lasts for ________________
3. Stopping inspiration:
 a. Neurons in the medullary respiratory center that are responsible for
 stopping inspiration:
 1. Are ____________________________ that stimulate the inspiratory muscles
 2. Also receive input from:
 a. Pontine ____________________________
 b. Stretch ____________________________ & probably other sources
 b. When these inhibitory neurons are activated, they inhibit _____________

c. Relaxation of respiratory muscles results in ____________________ that lasts __

VIII. Modification of Ventilation

A. Cerebral and Limbic System Control

1. A person can consciously increase or decrease the rate and depth of respiratory movements through the ____________________

2. Apnea is __

3. When a person holds their breath they eventually develop an urge to breathe:
 a. This is associated with ______________________________________
 b. Finally P_{CO_2} is high enough that _____________________________

4. If a person is able to hold their breath until they pass out due to lack of oxygen then ___

5. What causes the feeling of dizziness when a person hyperventilates?

6. Emotions affect the respiratory system through the _______________ system

7. What kind of affects can strong emotions have on respiratory movements?

B. Chemical Control of Ventilation

1. Chemoreceptors
 a. What are chemoreceptors? _________________________________
 b. The chemoreceptors involved in respiration respond to changes in:
 1. ______________________________ OR
 2. ______________________________ or both
 c. Where are the central chemoreceptors located? _________________

 d. Where are the peripheral chemoreceptors located? _________________

2. Effect of pH
 a. Cerebrospinal fluid bathes the ______________________________
 1. The cerebrospinal fluid pH is altered by changes in ______________
 2. Therefore the __________________ is indirectly sensitive to blood pH
 b. The carotid and aortic bodies are directly sensitive to ______________

 c. If blood pH decreases:
 1. Respiratory center is ______________
 2. Results in ______________________________ &
 3. ______________ in blood pH back to normal
 d. If blood pH increases:
 1. Respiratory rate ______________
 2. Carbon dioxide levels ______________
 3. Causing blood pH to ______________________________
3. Effect of Carbon Dioxide
 a. Blood carbon dioxide levels are a ______________________________
 b. Even a small increase in carbon dioxide triggers __________________

 c. What is hypercapnia? ______________
 d. What is hypocapnia? ______________
 e. Carbon dioxide exerts its effect on the chemosensitive area by

 f. If blood carbon dioxide levels increase:
 1. Carbon dioxide diffuses ______________________________
 2. Carbon dioxide joins with water to form _________________________
 which then dissociates into:
 a. ______________________________
 b. ______________________________
 3. The increased concentration of ______________________________ pH
 and stimulates the ______________________________ which then
 stimulates the ______________________________
4. Resulting in __

5. This eliminates __________________ from the body

g. The carotid and aortic bodies also respond to changes in carbon dioxide
 because of ________________________________

h. Which is most important for regulating P\textsubscript{CO}_2 and pH? ______________
i. During intense exercise which responds fastest? ________________

4. Effect of Oxygen
 a. What is hypoxia? ________________________________
 b. The effect of oxygen on the regulation of respiration is _______________
 c. Arterial P\textsubscript{O}_2 must decrease to approximately ________________
 to have a large stimulatory effect on respiratory movements
 d. Why is a small change in P\textsubscript{O}_2 not a problem? ________________
 e. The carotid and aortic body chemoreceptors respond to decreased P\textsubscript{O}_2 by

C. Hering-Breuer Reflex
 1. What does the Hering-Breuer reflex accomplish? ______________________
 __
 2. The reflex depends on stretch receptors in the ______________________
 3. Action potentials are initiated in the stretch receptors when ______________
 __
 4. The action potentials reach the medulla via the____________________
 5. The action potentials have an ______________________ on the respiratory
 center and result in ______________________________
 6. With expiration the stretch receptors are _____________________________
 7. The decreased inhibitory effect on the respiratory center allows
 __

IX. Respiratory Adaptations to Exercise
A. In response to training:
 1. Vital capacity ________________________________
2. Residual volume ______________________________
3. At rest tidal volume ______________________________
4. At maximal exercise tidal volume ______________________________
5. At rest respiratory rate is ______________________________
6. At maximal exercise respiratory rate is ______________________________
7. Minute ventilation at rest is ______________________________
8. Minute ventilation at maximal exercise is ______________________________
9. Blood flow through the lungs is ___________ especially in the _____________

X. Effects of Aging on the Respiratory System

A. Vital capacity decreases with age because of a:
 1. Decreased ability to ______________________________ &
 2. Decreased ability to ______________________________
 a. As a result maximum minute ventilation rates ______________________________
 3. The changes are related to:
 a. Weakening ______________________________
 b. Decreased ______________________________ caused by ______________________________

B. Residual volume increases with age as the ______________________________ and many ______________________________ in diameter
 1. This ______________________________ the dead space
 a. Which ______________________________ the amount of air available for gas exchange

C. Gas exchange across the respiratory membrane is reduced because:
 1. Parts of the ______________________________ which decreases the ______________________________
 2. The remaining walls ______________________________, which decreases ______________________________

D. Elderly are more susceptible to respiratory infections and bronchitis because:
 1. Mucus ______________________________
 2. The mucus-cilia escalator is less able to move the mucus because:
 a. The mucus ______________________________
b. The number ______________________________ & their rate of
