Chapter 27: Water, Electrolytes, and Acid-Base Balance

I. Body Fluids

A.	Int	rac	ellular Fluid Compartment					
	1.	. The intracellular fluid compartment includes all the fluid in						
	2.	Th	ne intracellular fluid from all cells has a composition					
	3.	Int	racellular fluid accounts for how much of the total body weight?					
В.	Ex	tra	cellular Fluid Compartment					
	The extracellular fluid compartment includes all of the fluid							
			and constitutes about of total body weight					
	2.	Th	ne extracellular fluid compartment is subdivided into					
		a.	The two major subcompartments are:					
			1					
			2					
		b.	Other subcompartments include:					
			1					
			2					
			3					
	3.	W	here is interstitial fluid found?					
	4.	W	here is plasma found?					
	5.	All	the other subcompartments constitute relatively					
C.	Mc	Movement Between Subcompartments						
	1.	Н	ow does the composition of extracellular fluid compare in different					
		su	bcompartments?					
	2.	Mo	ovement does occur between subcompartments:					
		a.	Water					
			Small molecules and ions					
		C.	Large molecules					

II. Regulation of Body Fluid Concentration and Volume

A.	Re	egulation of Water Content							
	1.	he total volume of the water in the body							
		a. Volume of water taken into body equals							
	2.	Changes in the water volume in the body fluids alter:							
		a. Osmolality							
		b. Blood							
		c. Interstitial							
	3.	About 90% of the water entering the body comes from							
		and some comes from							
	4.	About 10% of the water entering the body comes from							
	5.	The movement of water across the wall of the gastrointestinal tract depends							
		on							
	6.	The volume of water entering the body depends on							
		a. If a large volume of dilute liquid is consumed							
		b. If a small volume of concentrated liquid is consumed							
	7.	The sensation of thirst results from:							
		a. Increase in the							
		b. Reduction in							
		1. Detected by cells in the within							
		Initiate activity in neural circuits that results in							
		c. When do baroreceptors influence the sensation of thirst?							
		<u> </u>							
	8.	Angiotensin II opposes a decrease in blood pressure by:							
		a. Acting on the brain to							
		b. Acting on the adrenal cortex							
		c. Acting on blood vessels							

9.	When dehydrated people drink, they do not usually drink large volumes of						
	water all at once but drink						
	a.	This is because the thirst sensation is temporarily interrupted by: 1. Wetting of the oral mucosa causes sensory neurons to					
		1. Wetting of the oral mucosa causes sensory heurons to					
		2. Stretch of the gastrointestinal wall:					
		a. Initiates					
		b. Sensory neurons					
		c. Temporarily					
	b.	Since water absorption from the gastrointestinal tract takes					
		temporarily suppressing thirst prevents					
	C.	When osmolality and blood pressure are within normal ranges					
10.	Wa	Water loss from the body occurs through three major routes:					
	a.	61% is lost through					
	b.	35% of water loss occurs through from:					
		1					
		2. Water that					
		3					
	C.	4% is lost in the					
11.	Th	e volume of water lost through the respiratory system depends on:					
	a.	& of the air					
	b.	Body					
	C.	Volume					
12.		nat is insensible perspiration?					
	a.	It plays a role in					
	b.	How much water is lost for each degree of body temperature?					
13.	Sv	veat or sensible perspiration is secreted by the					
	an	d contains					
		The composition of sweat resembles					

b.	So	plutes in the sweat include:	
	1.	3	
	2.	4	
		a. The major solute component is	
W	hat	determines the volume of sweat produced?	
	-		
a.	Th	ne volume produced increases substantially under:	
	1.	Conditions of	
	2.	Elevated or	
	3.		
Th	e lo	oss of a large volume of hyposmotic sweat causes:	
a.	De	ecrease in	
b.	Inc	crease in	
C.	FΙι	uid volume is lost primarily from	_ leads to
	1.	Increased	
	2.	Reduction in	
	3.	Increase in	
d.	Dι	uring severe dehydration this can cause blood viscosity to	
	a.		
		This causes the heart to have an	
W	hy i	s little water lost from the gastrointestinal tract?	
a.	ΑI	large volume of fluid loss can occur due to severe	
	an	nd	
W	hat	are the primary organs for regulating the composition and volur	me of
bo	dy 1	fluids?	
egul	atio	on of Extracellular Fluid Osmolality	
Th	ео	smolality, or concentration of a solution, is changed by:	
a.	Ad	dding water	
b.	Re	emoving water	
	W — a. Th a. b. c. d. W — a. bo egul Th a.	What a. The loa b. Inc. c. Fl. 2. 3. d. Do a. Why inc. a. A what body egulation a. A a.	What determines the volume of sweat produced? a. The volume produced increases substantially under: 1. Conditions of or 2. Elevated or 3 The loss of a large volume of hyposmotic sweat causes: a. Decrease in b. Increase in c. Fluid volume is lost primarily from 1. Increased 2. Reduction in 3. Increase in d. During severe dehydration this can cause blood viscosity to a

В

	2.	An increase in the osmolality of the extracellular fluid triggers						
		and secretion						
		a.	W	ater that is consumed, as a result of thirst, is				
				and enters				
		b.	ΑĽ	OH acts on the and				
			to	fro	m			
				Both mechanisms result in increased water entering fluid that causes a	the extracellular			
		C.	Th	ne ADH and thirst mechanisms are sensitive to				
		d.	La	rger increases in extracellular fluid osmolality results i	n			
	3.	A decrease in extracellular fluid osmolality inhibits and secretion						
				ess water is				
				ess water is from				
				Therefore, more water is lost as a				
				Result is an in osmolality o				
C.	Re	gul		on of Extracellular Fluid Volume				
	1.	Εv	en	if the osmolality of the extracellular fluid is within a nai	row range of			
		va	lue	s, the extracellular fluid volume can o	r			
	2.			type of receptors are important in regulation of extrace	ellular fluid			
		a.	Th	nese receptors include:				
			1.	Carotid sinus and aortic arch	monitor			
			2.	Juxtaglomerular apparatuses monitor				
			3.	Receptors in the walls of the atria and large veins ar	e sensitive to			
	3.	Th	ese	receptors activate	and			
			lular fluid volume					

a.	Ne	eura	Il Mechanisms						
	1.	What do neural mechanisms change?							
	2.	W	nen baroreceptors detect ar	n baroreceptors detect an increase in arterial & venous pressure:					
		a.	Frequency of action potent	ials					
		b.	Afferent arterioles						
		C.	Increases						
		d.	Resulting in an						
		e.	Increase in	volume					
		f.	Increase in	volume					
	3.	W	hen baroreceptors detect a	decrease in arterial & ve	enous pressure:				
		a.	Frequency of action potent	ials					
		b.	Afferent arterioles						
		C.	Decreases,	volume, and	volume				
b.	Re	nin	-Angiotensin-Aldosterone M	lechanism					
	1.	Th	is mechanism responds to						
	2.	When juxtaglomerular cells detect increases in blood pressure:							
		a.	Decrease the rate of	sec	retion				
		b.	Results in decreased conv	ersion of	to				
		C.	Reduced	ca	uses				
		d.	Decrease in rate of	secretion fro	m adrenal cortex				
		e.	Decreased	levels reduce	the rate of				
			reabsorption						
			1. Primarily in the	&					
		f.	Therefore more	remains in the filtrate					
		g.	This increases the	of the fil	trate and reduces				
			the ability of the kidney to		 				
		h.	The remains	with the excess	in the filtrate				
		i.	Volume of urine produced		_ and the				
			extracellular fluid volume _		_				

		j.	Reestablishing homeosta	ısis					
	3.	W	hen juxtaglomerular cells o	detect decreases in	blood pressure:				
		a.	The increase in	secretion					
		b.	Results in increased con-	version of	to				
		C.	Increased		causes an				
		d.	Increase in rate of	secretion f	rom the adrenal cortex				
		e.	Increased	 					
		f.	Increases the rate of	reabsorpti	on				
			Primarily from the	8	k				
		g.	Therefore, less	remains in the fi	Itrate				
		h.	Decreases the	of th	ne filtrate				
			Increases the ability of th						
			to increase						
		j.	The volume of urine prod	uced	and the				
			extracellular fluid volume	and blood pressure					
Э.	At	rial	Natriuretic Hormone (ANH) Mechanism					
	1.	М	ost important in responding	g to	 				
	2.	Ar	n increase in atrial blood pressure usually results from an increase in						
		— а.	Stimulates secretion of _						
		b.	Decreases		in the				
				&					
		C.	Increases the rate of						
			Therefore increased ANF						
	3	ΑN	NH does not respond stron	alv to					
			decrease in atrial blood pro						
	••		Decreases the inhibition						
		۵.							
		b.	Rate of &						
					·				

			C.	Which is consistent with		urine volume and
				·	_ extracellular fluid volume	•
	C.	Ar	ntidi	uretic Hormone (ADH) Me	echanism	
		1.	Pla	ays an important role in re	egulating	
			in	response to		 -
		2.	An	increase in blood pressu	re results in:	
			a.	Decrease in	_ secretion	
			b.	Reabsorption of	decreases in th	e
				&		
			C.	Results in a	volume of	urine
			d.	Response helps decreas	se	&
		3.	A	decrease in blood pressur	re results in:	
			a.	Increase in	secretion	
			b.	Reabsorption of	increases in the	e
					_ &	
			C.	Resulting in a	volume of	urine
			d.	Response helps increase	e	_ &
II. Regu	ılati	on (of Ir	ntracellular Fluid Compo	osition	
A. P	lasn	na N	/lem	nbrane .		
1.	. Pla	asm	na n	nembranes are		
				vely impermeable to		
					& _	
2	. М	ost	larg	e molecules synthesized	within cells remain	
3	. Sc	ome	sul	bstances are	across the pla	asma membrane
	a.	Th	eir	concentrations in the intra	acellular fluid are determin	ed by:
		1.			&	
		2.			difference across the p	lasma membrane

B.	W	ater
	1.	What controls water movement across the plasma membrane?
	2.	Net movement of water is affected by changes in the
		of in the &fluids
	3.	As dehydration develops:
		a. Concentration of solutes in extracellular fluid
		b. Results in water movement by osmosis from to
		If enough water moves the cells may function
	4.	After dehydration, when water intake increases:
		a. Concentration of solutes in extracellular fluid
		b. Results in water movement
V. Re	egu	ation of Specific Electrolytes in Extracellular Fluid
W	hat	are electrolytes?
A.	Re	gulation of Sodium Ions
	1.	Sodium ions are the cations
		Because of their abundance they exert
		a. How much of extracellular osmotic pressure is due to Na ⁺ and associated
		anions?
	3.	The kidneys are the major route for Na ⁺
		a. Na ⁺ readily passes through the filtration membrane so its concentration in
		the filtrate is the in the plasma
		b. The concentration of Na ⁺ excreted in the urine is determined by
		c. The rate of Na ⁺ transport in the proximal tubule is
		d. Na ⁺ transport mechanisms of the &
		are under hormonal control
		When aldosterone is present
		2. When aldosterone is absent

4.	Na ⁺ is also excreted from the body in							
	a. Normally only a							
	b. The amount increases during conditions of in a							
	c. As the body temperature increases:							
	Thermoreceptor neurons within the							
	Respond by increasing the							
	As the rate of sweat production increases							
	decreases to keep							
5.	The primary mechanisms that regulate Na ⁺ concentration in the extracellular							
fluid are sensitive to changes in:								
	a. Extracellular							
	b. Blood							
6.	If the quantity of Na ⁺ increases the osmolality of extracellular fluid							
	a. Stimulates secretion							
	b. Increases the by the kidney							
	c. Causes a volume of urine to be produced							
	d. It also increases the							
	e. There is an volume							
7.	If the quantity of Na ⁺ decreases the osmolality of extracellular fluid							
	a. Inhibits secretion							
	b. Stimulates a volume of urine to be produced							
	c the sensation of thirst							
	d. Extracellular fluid volume							
8.	By regulating extracellular fluid osmolality and extracellular fluid volume the							
	concentration of							
9.	Elevated blood pressure under resting conditions							
10.	If blood pressure is low							

	a.	Me	echanisms such a	as the				
		are	e activated					
		1.	Increase			&		
		2.	Water		in the		· · · · · · · · · · · · · · · · · · ·	_
11.	Αl	NH i	s secreted in res	ponse to		withir	the right atri	ım
	a.	A١	NH acts on the ki	dneys to		urine p	roduction by	
				the re	absorption of _			
	b.	A١	NH also inhibits _		secretion and t	he effect of _		n
		the	e	&		i	n the kidneys	
12.	W	hat	is hypernatremia	?				
13.	W	hat	is hyponatremia?	?				
B. R	egu	latio	n of Chloride Ion	IS				
1.	Th	ne e	lectrical attraction	n of anions a	nd cations ma	kes it difficul	t to	
	_					_		
2.			fore, the mechar		=			
	ex	trac	ellular fluid also					
3.	Tr	ne m	nechanisms that	regulate	,, and	d leve	ls in the body	
	ar	e im	portant in influer	ncing				
C. R	egu	latio	on of Potassium I	ons				
1.	Tr	ne c	oncentration grad	dient of K⁺ ac	cross the plasn	na membran	e has a major	•
	inf	fluer	nce on the					
	a.	WI	hat cells are high	ly sensitive t	o changes in t	his concentra	ation gradient	?
2.	Ar	n inc	crease in extrace	 llular K⁺ lead	s to			<u> </u>
3.	Α	dec	rease in extracel	lular K ⁺ leads	s to			_
4.	W	hat	is hyperkalemia?	·				
5.	W	hat	is hypokalemia?					_
6.	In	the	kidney:					
	a.			throuç	gh the filtration	membrane		
	b.	Th	ey are		in the prox	imal tubules		
	C.	Th	ey are		in the dista	al tubules & d	collecting duct	s

			1.	Se	ecretion in t	he distal	tubules	and collecting ducts is	
				_		an	ıd primaı	rily responsible for controlling the	
	7.					=	_	gulating K ⁺ concentration in the	
		a.	1. 2. Ele	dos Ele Inc eva	terone sectorevated creased ted aldoste	retion fro	m the ad	drenal cortex is stimulated by: e circulatory system:	_
	8.	Ciı	2.	Lo	wering			e extracellular K ⁺ to be more	
			Th sti	ne lo imul	ow blood pr late the	essure a	ssociate	from the adrenal cortex with circulatory system shock will mechanism which a	also
		C.	Но 1.	ome 	eostasis is r and	reestablis	shed as: incre reabs	eases sorption results in an increase in	
			3.	Blo a.	ood pressu Water	re		that dilutes the toward normal as	
D.	1. 2.	WI WI De	hat hat ecre	on o is h is h	of Calcium In Interest of Calcium Interest of	ons lia? nia? eases in	the extra	acellular concentration of Ca ²⁺ marked	 lly
								permeability of plasma membranes to N	√a

		 This results in nerve and muscle tissues 	
	b.	Hypercalcemia the permeability of	plasma membranes to Na ⁺
		Preventing normal	
4.	Hi	gh extracellular Ca ²⁺ levels cause the	
	in	soft tissues, resulting in	
5.	W	hat structures are important in maintaining extra	acellular Ca ²⁺ levels?
	a.		
	b.		
	C.		
6.	Ho	ow much of the total body calcium is contained i	n bone?
	a.	Therefore part of extracellular Ca ²⁺ regulation	involves regulation of:
		1 into	bone
		2 from	bone
7.		ng-term regulation of Ca2+ levels depends on a	
	a.		in the intestinal tract
	b.	by the k	idneys
8.		inctionally parathyroid hormone:	
		Increases	_
	b.	Reduces	_
9.		e rate of parathyroid secretion is regulated by _	
		Elevated Ca ²⁺ levels	
		Reduced Ca ²⁺ levels	secretion
10.		tions of parathyroid hormone include:	
	a.	Increased	
		of bone and the rele	ase of and
		into body fluids	
		Increases the rate of	
		Increases the concentration of	
	d.	Increases the rate of Vitamin D conversion to	

Αl	ack of parathyroid hormone secretion results in	
	that is caused b	y:
a.	Reduction in	
b.	Increased	&
C.	Reduced	
d.	Could result in death because of	
Vit	amin D	
a.	Can be obtained from or from	
b.	Why does lack of exposure to sunlight decrease vit	tamin D biosynthesis?
C.	Without vitamin D, the transport of	
	the intestinal tract is	
	1. Leads to inadequate	even though the diet
	may contain large amounts	
d.	Normal Ca ²⁺ absorption depends on both:	
	1. Consumption of	&
	2. Presence of	
Th	e hormone calcitonin	levels
a.	Calcitonin is most effective when	
b.	Calcitonin has its major effect on	by:
	1. Inhibit	&
	2. Prolong	_
C.	By these actions calcitonin:	
	1. Decreases bone	
	2. Increases bone	
d.	Calcitonin secretion is:	
	1. Stimulated by	
	2. Inhibited by	

		e.	In	creased secretion of calcitonin	of Ca ²⁺ but it is			
					levels as			
E.	Re	gu	latio	on of Magnesium Ions				
	1.	Mo	ost	of the magnesium in the body is $_{ extstyle }$	or in the			
	2.	—		much magnesium is found in the	extracellular fluid?			
		a.	At	oout one-half of these are	and one-half are			
	3.	M	g ²⁺	are cofactors for	such as the			
				involved in				
	4.	In	the	kidneys:				
		a.	M	g ²⁺ passes through the	into the filtrate			
		b.	Н	ow much of these ions are reabso	orbed?			
		C.	W	here is most of the Mg ²⁺ reabsort	oed in the kidney?			
		orb Mg ²⁺ is						
			1.	If the level of free Mg ²⁺ increase	s in the extracellular fluid there is an			
		2. If the level of free Mg ²⁺ decreases in the extracellular fluid there is						
	e. Decreased extracellular concentration of Mg ²⁺ causes a							
					in the nephron			
F.	Re	Regulation of Phosphate Ions						
	1.	. About 85% of phosphate is in the form of						
		in bone () and teeth						
	2.	Most of the remaining phosphate is						
		a.	Ma	any phosphate ions are covalently	y bound to			
		b.	Pł	nosphate ions are important comp	onents of,, &			
		C.	Pł	nosphates also play important role	es in regulation of			
		d.	Pr	nosphate ions dissolved in the intr	racellular fluid act as			
	3.	Th	ne c	apacity of the kidneys to reabsorl	o phosphate ions is			
		a.	Th	nerefore if the level of phosphate i	ions increases in the extracellular fluid			
			1.	Excess	in the filtrate			

		2. Increase in the rate of	in the urine
	4.	Over time a low phosphate intake	can
		a. Most of the phosphate that en	ters the filtrate
	5.	Parathyroid hormone can play a _	
		a. Promotes bone	
		b. Large amounts of	_ & are released
			from renal tubules
		so that a	is lost in urine
	6.		llular fluid increase above normal levels, in soft tissues
V. R	egu	lation of Acid-Base Balance	
Α	. Hy	ydrogen Ions	
	1.	H ⁺ affect the activity of	& interact with
	2.	Most chemical reactions are	
	3.	The major mechanisms that regul	ate H⁺ concentration are:
		a	C
		b	
В	. Ac	cids and Bases	
	1.	What are acids?	
	2.	What are bases?	
		a. Many bases release	which react with
		to form	
	3.	Strong acids and bases complete	ly
	4.	Weak acids dissociate but most _	
		a. The proportion of weak acid m	nolecules that release H ⁺ into solution is
		1. Very	& is
		2. Influenced by	
	5.	Weak acids are:	
		a. Common in	

		b.	Play important roles in		
C.	Вι	ıffeı	Systems		
	1.	Вι	ıffers resist	of a solution	n
	2.	Вι	uffers within body fluids _	by chemical	ly
		a.	Binding to	when they are	_ to a solutior
		b.	Releasing		_ begins to fal
	3.	Ca	arbonic Acid/Bicarbonate	Buffer System	
		a.	Is carbonic acid a stror	ng or weak acid?	
		b.	The carbonic acid/bica	rbonate buffer system depends on the	e equilibrium
			that is	between:	
			1		
			2	&	
			3		
		C.	Adding a small amount	of a strong acid to a solution contain	ing H ₂ CO ₃
			increases H ⁺		
			1. In response a large	binds to	
			to form	_ and only a small	
			a. A large	is resisted by the b	uffer system
		d.	Adding a small amount	of a strong base to a solution contain	ning H ₂ CO ₃
			removes H ⁺		
			1. Many of the	form and	
			a. A large	is resisted by the bu	uffer system
		e.		rbonate buffer system quickly respond	
			1. During exercise the	addition of substances such as	&
			-		
			2. Increased	& product	ion
			3. Consumption of larg	ge amounts of	
		f.	rbonate buffer system plays an essen	itial role in the	
			control of body pH by b	ooth the & th	ne
	4.	Pr	otein Buffer System		

		a.	What protein molecules act as buffer molecules?			
			1			
			2			
		b.	How much buffer capacity is provided by protein molecules?			
		C.	Important intracellular proteins that act as buffers include:			
			1 in red blood cells			
			2 associated with nucleic acids			
		d.	The capacity to act like buffers is due to functional groups such as:			
			1			
			2			
		e.	Protein functional groups act like weak acids:			
			1. As the H ⁺ concentration increases			
			2. When the H ⁺ concentration decreases			
	5.		osphate Buffer System			
		a.	Phosphate is an important buffer system			
		b.	Phosphate containing molecules such as,, as			
			well as ions in solution act as buffers			
		C.	Phosphate ions act as			
D.	Me	echa	anisms of Acid-Base Balance Regulation			
	1.	Me	echanisms of acid-base regulation depend on the regulation of			
			and function			
		a.	Which system responds more quickly?			
		b.	Which system has a greater capacity to respond?			
	2.	Re	espiratory Regulation of Acid-Base Balance			
	a. The respiratory system regulates acid-base balance by influer					
		b.	Carbon dioxide reacts with to form carbonic acid which			
			dissociates to form and			
			The chemical reaction is written as:			

C.	Th	e reaction is in	bu	t shifts in response to					
	ch	anges in	levels						
	1.	Increases in carbon dioxid	le:						
		a. Cause CO ₂ to join with	and	d form more					
		b. The then	dissociates to	&					
	2.	Decreases in carbon diox	de cause the equ	illibrium to shift					
		a and		to form					
		b. Which then forms							
٨	۱۸/۱								
u.	VVI	nat is the function of carbon	iic ariirydrase :						
e.	W	here is carbonic anhydrase	located?						
f.	Decreases in body fluid pH:								
	1.	Stimulate neurons in the _							
	2.	Cause the rate and depth	of ventilation to _						
	3.	This eliminates		at a greater rate					
	4.	The concentration of	dec	reases in					
	5.	As CO ₂ levels decline the	carbonic acid/bic	arbonate buffer system:					
		a combine with _	to form	m					
		b. The then	forms	&					
	6.	This results in concentrati	on of	(pH increases)					
		toward its normal range a	S	exits the lungs					
g.	Increases in body fluid pH:								
	1.	Inhibit neurons in the	· · · · · · · · · · · · · · · · · · ·						
	2.	. Cause the rate and depth of ventilation to							
	3.	Causes less	to be	e eliminated					
	4.	As	increases due	to metabolism					
	5.	Body fluid concentration of	f	also increases					
	6.	As the increased		dissociates the					
		concentration of H ⁺ increa	ses and the pH						

3.	Re	enal Regulation of Acid-Base Balance			
	a.	Cells of the kidney tubules directly regulate acid-base balance by			
		increasing or decreasing the rate of:			
		1 into the filtrate			
		2 from the filtrate			
	b.	Carbonic anhydrase is present in the nephron cells and catalyzes the			
		formation of from and			
		The carbonic acid molecules dissociate to &			
		2. A countertransport system on the apical membrane then exchanges			
		for			
		a. Secreting into the filtrate			
		b. Reabsorbing from the filtrate			
		3. The and are cotransported across the			
		basal membrane and then diffuse into			
	C.	The reabsorbed combine with excess in the			
		extracellular fluid to form			
		1. This removes and increases			
	d.	The rate of secretion and reabsorption increases			
		when pH and slows			
		when pH			
	e.	Some of the H ⁺ secreted into the filtrate combines with HCO ₃ ⁻ to form			
		(The bicarbonate entered the filtrate			
		in the form of through the filtration membrane)			
		1. The H ₂ CO ₃ then dissociates to form and			
		2. The then diffuses from the into the tubule cells			
		3. Inside the tubule cells it reacts with to form			
		4. The H ₂ CO ₃ subsequently dissociates into and			
		a. The is transported into the filtrate in exchange for			
		b. And the enter the extracellular fluid			
		5. Therefore, many of the HCO ₃ entering the filtrate through glomerular			
		filtration reenter the			

t.	H' secreted into the nephron normally exceed the amount of	
	that enter through the filtration membrane	
	1. Almost all of the HCO ₃ are	
	2. Few HCO ₃ are lost in the urine unless	
g.	If the pH of the body fluids increases:	
	1. The rate of H ⁺ secretion into the filtrate	
	2. The rate of HCO ₃ ⁻ reabsorption into the extracellular fluid	
	 a. As a result, the amount of bicarbonate filtered into the kidney 	
	tubules exceeds	
	b. The excess pass into the urine	
	c. Diminishing the amount of in the	fluid
	Allows extracellular to increase and	
	2. pH of body fluids toward normal	range
h.	If pH of the filtrate drops below 4.5 it inhibits	
	Buffers in the filtrate combine with	_
	2. What substances in the filtrate act as buffers?	
	a	
	b	
	C	
i.	NH ₃ is produced in the cells of the nephron when amino acids like are	
	1. NH ₃ diffuses from the nephron cells into	
	and combines with to form	
	2. The rate of NH ₃ production increases when	
	days	
	3. The elevated ammonia production:	
	a. Increases filtrate	
		ine