
Chapter Objectives
• Learn VBA history

• Understand why to use VBA

• Understand programming concepts

• Use the Word VBA IDE

• Use the Excel VBA IDE

• Record macros

• Manipulate macros

• Implement macros

• Create programming solutions using VBA

VBA and You:
How Can You Get the
Most Out of Microsoft
Office?

oneC H A P T E R

1
rea36164_ch01.qxd 6/23/04 10:23 PM Page 1

VBA 1.2

chapter case

Daggitt Development
During her summer internship, Maggie, a junior at

the university, wants to learn more about using

computer applications in business. Luckily, she

gets an internship at Daggitt Development (DD for

short), a local consulting company that develops

software applications for small businesses. DD

provides customized software to businesses for

new payroll applications, electronic appointment

books, or any other type of office tool.

Cody, a senior programmer, tells Maggie that

DD’s most demanded service is the creation of

macro programs for businesses to use within

Microsoft Office. To do this, DD uses Visual Basic

for Applications, or VBA. Using VBA, DD can tailor

Microsoft Word, Excel, Access, PowerPoint, and

Outlook to meet a customer’s needs. Cody notes

that DD transforms aspects of horizontal software

into vertical software. Although Maggie is not sure

what this means, Cody assures her she will learn

soon enough.

Because Maggie has experience with

Microsoft Office applications, Cody is ready to

start her on her first project. Maggie will develop a

customized macro in Microsoft Office for a local

business, Bob’s Baklava. This macro is similar to

the one DD uses to create the heading on its

Weekly Development Project Report (see Figure

1.1). Cody tells her not to worry that she hasn’t

used VBA before. He knows that she can learn

how to use VBA as she works on her project.

Maggie’s first tasks are to learn about VBA and

programming concepts, become familiar with the

VBA Integrated Development Environment (IDE),

and learn how to record, edit, and run VBA

macros. This chapter will help both you and

Maggie become better prepared to customize ap-

plications and get the most out of Microsoft

Office.

Introduction

Chapter 1 introduces you to VBA programming and why people use it to cus-
tomize applications. You’ll also learn some of the history behind VBA and how to
think and write like a programmer. We’ll spend time touring the VBA IDE so that
you are familiar with this programming environment. Finally, you’ll learn how to
record, manipulate, and implement VBA macros to customize Microsoft Word and
Excel.

rea36164_ch01.qxd 6/25/04 10:54 PM Page 2

VISUAL BASIC FOR APPLICATIONS

VBA 1.3

SESSION 1.1 INTRODUCTION TO VBA
PROGRAMMING

Like Maggie, you may think you don’t have the necessary programming knowledge
and skills to create customized Microsoft Office applications. However, many compa-
nies use VBA because it’s easy to learn and use, yet powerful enough to solve compli-
cated problems. VBA, or Visual Basic for Applications, is a programming language
that works within certain software applications. A programming language contains
specific rules and words that explain the logical steps to solve a problem. Although
VBA works within many software applications, it’s primarily used in Microsoft Office
applications: Access, Excel, Outlook, PowerPoint, and Word. VBA is the programming
language of choice for end user development of Microsoft Office applications. End
user development is when computer users (such as you) develop and maintain com-
puter applications with little or no help from technical specialists. However, you still
need some programming knowledge and skills to work with VBA. The more program-
ming knowledge and skills you have, the more you’ll be able to accomplish using VBA.

In this section we’ll explain where VBA came from, share some general characteris-
tics of programming languages, and finally explain why we need VBA in Microsoft Office.

Where Did VBA Come From?

Before VBA was a programming language called BASIC. BASIC stands for Beginner’s
All-purpose Symbolic Instruction Code. Two professors from Dartmouth College—
John Kemeny and Thomas Kurtz—created BASIC in 1964 so that students would have
a simple language to learn how to program computers. BASIC’s popularity grew and
before long (in 1969) an eighth grader named Bill Gates started using it. Of course,
this is the same Bill Gates who started a company called Micro-Soft with his friend
Paul Allen in 1975. You can only imagine what happened after that.

BASIC Evolution

During the 1970s, BASIC took on various forms as Gates and Allen applied—or
ported—it to many different computer systems, such as Altair, Apple, Commodore,
and Atari. A computer language is portable when it has the ability to work on a variety

CHAPTER
OUTLINE

1.1 Introduction to
VBA Programming
VBA 1.3

1.2 Using the VBA
Integrated
Development
Environment (IDE)
VBA 1.8

1.3 Recording and
Manipulating
Macros VBA 1.23

1.4 Summary VBA 1.35

F I G U R E 1.1
Daggitt Development’s
Weekly Development
Project Report

rea36164_ch01.qxd 6/28/04 8:50 AM Page 3

VBA 1.4 CHAPTER 1 VBA 1.1 Introduction to VBA Programming

of computers. Microsoft next developed an operating system called MS-DOS for IBM’s
first personal computer. It included a programming language called GW-BASIC.
Microsoft was well on its way to becoming the powerful company it is today.

BASIC has many forms, but the most popular is probably Visual Basic. Visual
Basic or VB is a graphical event-driven programming language. An event-driven pro-
gramming language relies on actions and events to run. For example, an action or
event occurs when you click on an icon or type a word. Visual Basic relies on a graphi-
cal user interface, such as Windows. A graphical user interface, or GUI, is a graphic-
or icon-driven interface on which you point and click with your mouse to use
software. Figure 1.2 is a comparison of the GW-BASIC programming environment
with the VB integrated development environment (IDE). An integrated development

F I G U R E 1.2
Comparison of GW-BASIC
and the VB IDE

rea36164_ch01.qxd 6/23/04 10:23 PM Page 4

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.5

VISUAL BASIC FOR APPLICATIONS

environment, or IDE, is an application that provides programming tools to create,
debug, and manage software programs. Notice how many options are available to the
VB programmer as compared to the GW-BASIC programmer. More importantly,
which one would you rather look at? Remember, these languages have the same
source—BASIC—even though they’re different.

The Birth of VBA

Microsoft introduced Visual Basic in 1992. Programmers use VB to create software
programs. A programmer is a specialist who writes software to meet users’ needs. Also
in 1992, Microsoft released its first version of the popular Microsoft Office productiv-
ity suite. But it wasn’t until 1997, when Microsoft released Office 97, that Microsoft in-
cluded VBA in nearly all of the Office applications: Access, Excel, PowerPoint, and
Word. Finally, in Office 2000, Microsoft included VBA in Outlook. Microsoft Office
XP and Microsoft Office 2003 include even more VBA functionality.

What Is VBA?

When you program in Visual Basic, you’re using a programming language to develop a
complete software program that will run by itself. For example, you might create a
game or accounting software. By contrast, when you use VBA, you’re using a program-
ming language that will create customized solutions within a software application,
such as Microsoft Word. More specifically, VBA is a scripting language. A scripting
language is a programming language that works within another application to per-
form tasks.

Maybe you want to allow users to customize how their Word documents will
look. Or perhaps you want users to be able to track dinner reservations in an Excel
spreadsheet without having to know how to use Excel. Or maybe you want to send
formatted e-mail messages from a list of e-mail addresses in Access. With VBA, you
can do all of this.

Why Use VBA?

You know that most businesses use Microsoft Office because it meets many of their
everyday business needs. Business users need to type letters and memos (Microsoft
Word), manage budgets and figures (Microsoft Excel), send and receive e-mail
(Microsoft Outlook), and give presentations (Microsoft PowerPoint). Some business
users also need to keep track of inventories or other data (Microsoft Access). Microsoft
Office can meet all of these needs for the majority of users because it’s horizontal mar-
ket software. Horizontal market software is general business software that has appli-
cations in many industries.

Although Microsoft Office does meet most business needs, a business often re-
quires more specialized applications. One solution is to hire a consulting company to
write a new software program. But many times a business can use VBA instead simply
to customize Microsoft Office applications and solve the problem. VBA allows a busi-
ness to create vertical market software out of a Microsoft Office application. Vertical
market software is software that is unique to a particular industry. A business that
uses VBA to customize an existing Microsoft Office application such as Excel, instead
of hiring a consultant, saves a great deal of money.

General Programming Concepts

Now you know VBA’s history and why you should use it. You probably are eager to
learn how to use VBA effectively. But first you’ll need to understand some basic pro-
gramming concepts as well as how programmers solve business problems so you can
understand how to apply VBA to a business requirement.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 5

VBA 1.6 CHAPTER 1 VBA 1.1 Introduction to VBA Programming

Thinking Like a Programmer

As a programmer, your first priority is to know
what a business needs. In this text, we’ll help you
pinpoint these needs. Figuring out a business
problem takes practice, and you first must learn
how to program to solve problems. Don’t worry,
though; we include some exercises that allow you
to tackle this step on your own.

Once programmers understand the problem—
such as a company’s need for a payroll program to
automatically print weekly paychecks—they map
out the necessary steps to solve it. Programmers
map out the problem in pseudocode. Pseudocode
uses English statements to create an outline of the
steps necessary for a piece of software to operate.
Programmers call these steps an algorithm. An al-
gorithm is a set of specific steps that solve a prob-
lem or carry out a task. An algorithm is like a

dessert recipe, in that a recipe lists all the steps necessary to create a scrumptious
dessert. In programming, the sweet reward is a working piece of software.

You’ll see examples of pseudocode throughout this text. We use it to describe each
programming problem we approach. Figure 1.3 is an example of pseudocode Maggie
wrote to help solve her first programming assignment in VBA. Notice that Maggie
didn’t type her pseudocode. Some programmers type pseudocode and some write it.
We’ll put this pseudocode to work for us later in the chapter.

Programmers also use program flowcharts to plot out the algorithm. A program
flowchart is a graphical depiction of the detailed steps that a piece of software will
perform. We’ll use program flowcharts later in the text as we solve programming
problems.

Once programmers write their algorithm in pseudocode or a program flowchart,
they test it to make sure there are no logic errors. A logic error is a mistake in the way
an algorithm solves a problem. For example, a payroll program is supposed to calcu-
late overtime for anyone working more than 40 hours a week. If the program doesn’t
calculate overtime for someone working 50 hours a week, for example, it’s a logic
error.

Writing Like a Programmer

Now that you’re familiar with how programmers think, let’s look at how they write.
Programmers call the process of writing software coding. Coding is when you trans-
late your algorithm into a programming language. Coding looks different depending
on what type of programming language you’re using. This is because each program-
ming language has a specific syntax. Syntax is a set of rules to follow. We’ll focus only
on VBA syntax in this text. Figure 1.4 shows an example of VBA code.

Notice that some words appear in blue. These are reserved words. Reserved words
are words that a programming language has set aside for its own use. In Figure 1.4,
you’ll notice Dim is colored blue. Dim is a reserved word VBA uses to create a variable.
We’ll discuss variables in detail in Chapter 2. Notice also that many lines start with a
single apostrophe and are a different color (green). Programmers call these explana-
tions comments. Comments tell other programmers what’s happening in software
code. The computer ignores comment lines when it runs code.

tip: Although our figures are not in color, note these colors as you work in your code
throughout the book.

F I G U R E 1.3
Maggie’s pseudocode. Start Program

Open Word

Save Word Document

Start Macro Recorder
Open New Document
Insert Date
Insert Spaces
Insert Report Heading
Make Heading Bold
Align Heading Center
Make Font color red

Stop Macro Recorder

Stop Program

rea36164_ch01.qxd 6/23/04 10:23 PM Page 6

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.7

VISUAL BASIC FOR APPLICATIONS

F I G U R E 1.4
Notice how the VBA
reserved words and
comments are colored.

Working Like a Programmer

You’ll spend most of this text learning how to code in VBA, so we’ll save the discussion
of how to code until later. After programmers have coded a program, they spend some
time debugging their code. Debugging is the process of finding errors in software
code. Bugs are a common name for software errors. When you debug your code, you
look for syntax and run-time errors.

Syntax errors are mistakes in a software code’s grammar. Just as misspelling a
word is a mistake when writing, misspelling a word or forgetting to mark a comment
correctly will cause a syntax error. If you’re supposed to use a semicolon (;) but you
use a colon (:) instead, you’ve made a syntax error. Run-time errors are mistakes that
occur when you run the software code. Software not displaying a window correctly is a
run-time error.

VBA’s Role in Microsoft Office

You are an experienced Microsoft Office user. Using Office applications to solve busi-
ness problems comes easily to you. Why then do you need VBA to help you with
Microsoft Office? The answer is simple: you can do more in a shorter period of time.

We’ve discussed how VBA can make a horizontal market application into a verti-
cal market application. In the next session, we’ll show you how you can tailor your
Office applications using the macro recorder. A macro is a scripting language program
that performs a task or a series of tasks. However, using VBA you can go beyond
macros and create VBA programs that add functionality and features to Office appli-
cations. In this text you’ll learn how to create these VBA programs.

Ultimately with Microsoft Office and VBA you can achieve the following:

• Use the existing power of Microsoft Office When you begin with an already
powerful suite of software applications, you have a distinct advantage over pro-
grammers who must program every part of their software application.

• Add features and functionality to applications quickly Using VBA you can
customize an existing application or create a new application by combining ex-
isting Office applications. For example, you can create “Employee of the
Month” certificates in Word using data stored in Excel.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 7

VBA 1.8 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

• Create portable software solutions Once you create a VBA program that works
with a certain Office application, you can make minor changes and apply the
same program to a similar business need. For example, once Daggitt
Development creates a payroll application that works with Excel, it uses the same
code as a starting point for its next customer who needs a payroll application.

• Decrease development time and costs Because code can be reused, program-
mers don’t lose time creating software applications from scratch. Less time
spent means less cost per program.

• Increase end user involvement Since business users are already familiar with
Microsoft Office, they can help design solutions to their problems. Users will
know what they need Excel to do because they can’t do it easily with the current
application.

If you’d like to learn more about VBA, check out msdn.microsoft.com/vba.

SESSION 1.2 USING THE VBA INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

With your new knowledge you’re almost ready to start programming in VBA. Before
you start coding, let’s explore the application you’ll work in—the VBA Integrated
Development Environment (IDE). Remember, an IDE is an application that provides
programming tools to create, debug, and manage software programs. You’ll also hear
this IDE called the VBA Editor. VBA Editor is simply another name for the VBA IDE.
Newer versions of Microsoft VBA documentation refer to the VBA IDE. In this text
we’ll stick to the preferred term, VBA IDE, because it better describes what you can do
with VBA development.

In this section you’ll take a tour of the VBA IDE in Microsoft Word and Microsoft
Excel. These are the application programs we’ll use throughout the book as we develop
VBA programs. In order to access the VBA IDE, we’ll need to set macro security levels
in Microsoft Office. Once we get into the VBA IDE, you’ll learn how to use some of its
features and functions. Then you’ll record a macro and see how to manipulate and
customize the macro code. Let’s get started.

Securing Microsoft Office

Before you work with the VBA IDE, we need to discuss macro security levels to protect
your system against macro viruses. A macro virus is a computer virus hidden in macro
code within a file or template. Once the security level is set for an Office application,
such as Microsoft Word, all of the Word files on your computer system have the same

S E S S I O N 1.1 making the grade

1. is a programming language that works within certain software
applications.

2. A(n) is an application that provides programming tools to cre-
ate, debug, and manage software programs.

3. A(n) is a programming language that works within another ap-
plication to perform tasks.

4. is the process of finding errors in software code.

5. A(n) is a scripting language program that performs a task or a
series of tasks.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 8

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.9

VISUAL BASIC FOR APPLICATIONS

security level. You’ll need to set the security level for each Office application. Because
we’ll use Microsoft Excel in this chapter, you should set its security level as well.

To reduce the risk of macro infection in Office files, your system may have the
macro security level set to High or Medium. The High level prohibits macros from
running with no notification, but if the security level is set to High, you’ll not be able
to run macros. The Medium level displays a dialog box each time a macro should run
asking if you want to run the macros attached to the document. Set your security level
to Medium so you can run our examples and your own macros. We do not recom-
mend you set your macro level to Low because macro viruses regularly arrive at com-
puter systems through infected files and cause many problems on your computer.

Setting the Macro Security Level in Word:

1. Click the taskbar Start button to display the Start menu

2. Select All Programs to display the Programs menu

3. Select Microsoft Word on the Programs menu

4. Click on Microsoft Word

5. Click Tools on the menu bar

6. Select Macro

7. Click on Security

8. Select the Security level tab

9. Click the radio button at Medium level

10. Click OK

11. Close Microsoft Word

Setting the Macro Security Level in Excel:

1. Click the taskbar Start button to display the Start menu

2. Select All Programs to display the Programs menu

3. Select Microsoft Excel on the Programs menu

task reference

• Open Microsoft Word

• Select Security in the Tools menu under Macro

task reference

• Open Microsoft Excel

• Select Security in the Tools menu under Macro

rea36164_ch01.qxd 6/23/04 10:23 PM Page 9

VBA 1.10 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

4. Click on Microsoft Excel

5. Click Tools on the menu bar

6. Select Macro

7. Click on Security

8. Select the Security level tab

9. Click the radio button at Medium level

10. Click OK

11. Close Microsoft Excel

Opening the VBA IDE

In order to use the VBA IDE, you need to start a Microsoft Office application. You can
run more than one VBA IDE at a time because each links to its application. Let’s start
with Microsoft Word.

Opening the Word VBA IDE:

1. Click the taskbar Start button to display the Start menu, then
point to All Programs to display the Programs menu

2. Point to Microsoft Word on the Programs menu and then click Microsoft

Word

tip: Make sure you have a single new blank document open. The title bar should read
Document1—Microsoft Word

3. Click Tools on the menu bar and then select Macro. Click on Visual Basic

Editor to start the VBA IDE

4. Check the title area. The title bar should read Microsoft Visual Basic—

Document1

5. Close any open windows within the VBA IDE window by clicking the
Close Window button

6. Compare your screen to Figure 1.5. Your screen should now look similar
to Figure 1.5

tip: Your screen might not look exactly the same. Make sure that you don’t have any other
Word documents open except for Document1. Also, make sure that you have closed all win-
dows within the VBA IDE and have only the main window open

tip: To use the Visual Basic toolbar, click View on the menu bar and then click Toolbars.
Select Visual Basic

anotherway
. . . to Open the

VBA IDE

Press Alt�F11

OR

Click the Visual Basic

Editor button on
the Visual Basic
toolbar.

task reference

• Open Microsoft Word

• Select the Visual Basic Editor in the Tools menu under Macro

rea36164_ch01.qxd 6/23/04 10:23 PM Page 10

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.11

VISUAL BASIC FOR APPLICATIONS

F I G U R E 1.5
VBA IDE with no open
windows

Touring the VBA IDE

Now that you’re in the VBA IDE, let’s get acquainted with some of its features. We
won’t cover everything right now, but we’ll show you enough to get started. In this sec-
tion you’ll look at the main windows you’ll use in the VBA IDE: the Project Explorer,
the Properties Window, and the Code Window.

Before we look at the windows, look at the VBA Help Menu. The Help Menu is
the most useful feature for learning VBA. Whenever you have a question or wonder
why something isn’t working in VBA, select the problem item and run Help.

Opening the VBA IDE Help Menu:

1. Click Help on the VBA IDE menu bar

2. Click Microsoft Visual Basic Help

tip: You should now see the Office Assistant appear and allow you to search for help. It’s
OK if you get a window labeled Microsoft Visual Basic Help. It contains the same help
information

anotherway
. . . to Use Help in

the VBA IDE

Press F1

task reference

• Click on Help

• Select Microsoft Visual Basic Help

rea36164_ch01.qxd 6/23/04 10:23 PM Page 11

VBA 1.12 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

Project Explorer

Now that we’re in the VBA IDE, let’s look at one of the windows you’ll use when you
code VBA programs—the Project Explorer. The Project Explorer window lists all ob-
jects associated with a VBA project. An object is an item that contains distinct infor-
mation. In Chapter 2 we’ll discuss objects and how they work within Office and VBA.
You can access the Project Explorer with the click of a button.

Opening the VBA IDE Project Explorer:

1. Click on the Project Explorer button on the toolbar

2. Compare your screen with Figure 1.6.

If your screen doesn’t look exactly like Figure 1.6, that’s OK. VBA programmers
can arrange windows within the VBA IDE in various ways. Check that the Project
Explorer window contains the Normal and Project (Document1) objects as in Figure
1.6. Take a moment to explore the Project Explorer. Notice that the expand button
and the collapse button work just like Windows Explorer.

anotherway
. . . to Open the

Project Explorer

Select View and
then click on Project

Explorer

OR

Press Ctrl�R

task reference

• Open the Project Explorer

F I G U R E 1.6
VBA IDE with Project
Explorer Directories
Unexpanded

task reference

• Open the Project Explorer

• Click on the expand button next to the folders

rea36164_ch01.qxd 6/23/04 10:23 PM Page 12

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.13

VISUAL BASIC FOR APPLICATIONS

Viewing Objects in the VBA IDE:

1. Click on the expand button next to Project (Document1)

tip: If the collapse button is already showing next to Project (Document1), you don’t
need to click on it

2. Click on the expand button next to Microsoft Word Objects

3. Click on the expand button next to References

4. Compare your screen with Figure 1.7

Let’s briefly discuss what you see. You’ll work with many of these items as you go
through the text. You may have first noticed the Project (Document1) heading. Of
course, this is the actual Word document we opened. Because we haven’t saved it yet,
it’s still called Document1. What do you think would happen if we saved our Word
document? Let’s try it and see.

Saving Objects in the VBA IDE:

1. Click on the Word button on the toolbar

2. Press Ctrl�S

3. Save the file as MyFirstMacro

F I G U R E 1.7
VBA IDE with Project
Explorer Directories
Expanded

task reference

• Click on the Word button on the toolbar

• Press Ctrl�S

rea36164_ch01.qxd 6/23/04 10:23 PM Page 13

VBA 1.14 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

F I G U R E 1.8
VBA IDE with renamed
project called
MyFirstMacro

Your Project (Document1) has become Project (MyFirstMacro), and your Word
application is the current project. You’ve actually changed a property within Microsoft
Word. An object property is a characteristic of an object.

Under Microsoft Word Object you also see ThisDocument. Now that you know
the Project contains your Word document, do you have any idea what ThisDocument
is? It’s your Word document. Since your Word document contains distinct informa-
tion, it’s an object. You’ll work extensively on this object.

We won’t do much with the Normal Project. You see another ThisDocument in
the Microsoft Word Object here as well. However, you should know this is your de-
fault document template. This object is what determines your Microsoft Word set-
tings (font type, size, page layout, etc.) for each new document you create. Notice
that your Project (MyFirstMacro) is connected to the document template in the
References area.

tip: To see everything included in the Normal template, click the expand button next
to Normal

Properties Window

You can change many object properties in VBA. One way to do this is through the
Properties Window. The Properties Window lists properties for each object in the
VBA project. Let’s take a look.

4. Press Alt�F11

5. Compare your screen with Figure 1.8

rea36164_ch01.qxd 6/23/04 10:23 PM Page 14

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.15

VISUAL BASIC FOR APPLICATIONS

task reference

• Open the VBA IDE Properties Window

• Click on the object in the Project Explorer

• Change select properties in the Properties Window

Changing Object Properties in the VBA IDE:

1. Click View on the menu bar

2. Click Properties Window

3. Click on ThisDocument under Project

4. Compare your screen with Figure 1.9

tip: You’ll need to resize the Properties Window to see most of the properties at once

anotherway
. . . to Open the

Properties Window

Click the Properties

Window button

OR

Press F4

F I G U R E 1.9
VBA IDE with
ThisDocument in Project
Explorer and Properties
Window

tip: It’s OK if your screen doesn’t exactly match Figure 1.9. Just make sure you have both
the Project Explorer and the Properties Window visible

In the Properties Window you see the name of the object (ThisDocument) and
the type of object (Document). You can also see the many properties associated with
the ThisDocument document object. You can arrange them alphabetically or categor-
ically. Most programmers choose the arrangement that best fits what they’re doing.
You’ll learn which one works better for you. For now, click on any of the properties in
the left-hand column and press F1. You’ll see detailed information on the selected
property. Figure 1.10 on page 1.16 shows the Help information for the Name Property
and how you use it in a VBA program.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 15

VBA 1.16 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

F I G U R E 1.10
VBA IDE with Name
Property Help

You also see many VBA code examples in the Help area. You’ll find these examples
useful as we code VBA programs. For now, let’s use the Properties Window to change
the name of our project and our Word document object.

Changing Object Properties in the VBA IDE:

1. Click on Project (MyFirstMacro) in the Project Explorer

2. Find the (Name) property in the Properties Window

3. Double-click on Project in the Properties Window

4. Type MyFirstProject

5. Press the Enter key

6. Find the MyFirstProject (MyFirstMacro) object in the Project Explorer

7. Click on ThisDocument under the Microsoft Word Objects

8. Find the (Name) property in the Properties Window

9. Double-click on ThisDocument in the Properties Window

10. Type MyDocument

11. Press the Enter key

task reference

• Open the VBA IDE Properties Window

• Click on the object in the Project Explorer

• Change select properties in the Properties Window

rea36164_ch01.qxd 6/23/04 10:23 PM Page 16

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.17

VISUAL BASIC FOR APPLICATIONS

12. Press Ctrl�S

13. Compare your screen with Figure 1.11

tip: Make sure you don’t use spaces in your property names

Code Window

Now that you’ve navigated the Project Explorer and are familiar with the Properties
Window, let’s look at the Code Window. The Code Window contains the VBA pro-
gram code. You’ll focus much of your attention in the Code Window as you work in
VBA programs.

F I G U R E 1.11
VBA IDE with changed
name properties

task reference

• Open the VBA IDE Code Window

Opening the Code Window in the VBA IDE:

1. Click on MyDocument in the Project Explorer

2. Click View on the menu bar

3. Select Code

4. Compare your screen with Figure 1.12 on page 1.18

tip: Your Code Window may not appear in the same area on the screen depending on
how your VBA IDE is configured. However, you should see the Code Window

rea36164_ch01.qxd 6/23/04 10:23 PM Page 17

VBA 1.18 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

Notice that the title bar in the Code Window reads MyFirstMacro—MyDocument
(Code). If you maximize the Code Window, this information will show in the VBA IDE
title bar instead. If you see the words Option Explicit in the Code Window, that’s
OK. We’ll discuss this in Chapter 2.

Customizing the VBA IDE Windows

Before we work with some code in the Code Window, let’s look at how you can cus-
tomize your VBA IDE. Throughout the VBA IDE tour, your screen either looked like
the figures in the text or it didn’t. If your screen looked like our VBA IDE, that’s be-
cause your VBA IDE was set with the default settings. However, you can change them
if you want.

Docking and Undocking Windows

In all of our figures, you noticed that VBA IDE always placed the Project Explorer and
the Properties Window in the same place every time we opened them. However, you
can dock or undock VBA IDE windows. A docked window is attached to the side of
the VBA IDE. An undocked window floats inside the VBA IDE and is positioned any-
where. Programmers also call undocked windows floating windows. Just think of it in
terms of a boat. When you anchor a boat to shore, it’s docked. If you remove the an-
chor, it floats away.

Let’s undock the Project Explorer and Properties Window.

anotherway
. . . to Open the

Code Window

Double-click
MyDocument in the
Project Explorer

OR

Single-click
MyDocument in the
Project Explorer and
then press F7

F I G U R E 1.12
VBA IDE with all three
main windows docked

task reference

• Right-click on either the Properties Window, Project Explorer, or Code

Window

• Click on Dockable

rea36164_ch01.qxd 6/23/04 10:23 PM Page 18

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.19

VISUAL BASIC FOR APPLICATIONS

Docking and Undocking Windows in the VBA IDE:

1. Right-click on the Project Explorer title bar

2. Click on Dockable

3. Right-click on the Properties Window title bar

4. Click on Dockable

5. Compare your screen with Figure 1.13

tip: Once you undock windows you can minimize , maximize , or restore

each window to your own preferences. Make sure to keep track of where each window is.
Many times one is simply behind the other in your VBA IDE

Let’s dock the Project Explorer and Properties Window.

Docking and Undocking Windows in the VBA IDE:

1. Click on Tools on the menu bar

2. Click on Options

3. Select the Docking tab

4. Check next to Project Explorer

5. Check next to Properties Window

6. Click OK

tip: Use the Tools menu to dock windows when you cannot right-click on a window or
find a window in your VBA IDE

F I G U R E 1.13
VBA IDE with all three
main windows undocked

rea36164_ch01.qxd 6/23/04 10:23 PM Page 19

VBA 1.20 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

Other Customizations

You can choose many ways to customize your VBA IDE in the Options dialog box.
Look at the tabs in Figure 1.14. You can change code and window settings with the
Editor screen; we’ll look at this in Chapter 2. Some programmers use the Editor
Format screen to change how their VBA IDE displays information (we’ll keep the de-
faults here). Finally, with the General screen you can change how the VBA IDE han-
dles code errors and compiling. You’ll learn more about this later.

Take some time to experiment with the VBA IDE windows. Make sure you’re fa-
miliar with the interface to minimize confusion.

tip: You’re done with Microsoft Word for this session. Make sure that you save your file by
pressing Ctrl�S before you close Microsoft Word

Exploring the Excel VBA IDE

Now that you’ve become familiar with the Word VBA IDE, you can more easily use
other Office application IDEs. Since you and Maggie will develop VBA programs in
both Excel and Word, let’s take a look at the Excel VBA IDE.

F I G U R E 1.14
VBA IDE Options window

task reference

• Open Microsoft Excel

• Select the Visual Basic Editor in the Tools menu under Macros

rea36164_ch01.qxd 6/23/04 10:23 PM Page 20

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.21

VISUAL BASIC FOR APPLICATIONS

Opening the Excel VBA IDE:

1. Click the taskbar Start button to display the Start menu

2. Select All Programs to display the Programs menu

3. Point to Microsoft Excel on the Programs menu

4. Click Microsoft Excel

tip: Make sure you have a single new blank document open. The title bar should read
Microsoft Excel—Book1

5. Click Tools on the menu bar

6. Select Macro

7. Select Visual Basic Editor to start the VBA IDE

8. Check the title area. The title bar should read Microsoft Visual Basic—

Book1

9. Compare your screen to Figure 1.15

tip: Your screen might not look exactly the same. Make sure that you don’t have any other
Excel spreadsheets open except for Book1

Comparing VBA IDEs

You should notice that the Excel VBA IDE looks similar to the Word VBA IDE. The
menu bar and the toolbar are familiar, and you can see the Project Explorer,
Properties, and Code Windows. You can navigate and customize this IDE just like the
Word IDE. Ultimately, all the VBA IDEs in Office have these similar features; however,
because this VBA IDE is part of a different Office application, it also has some unique
features.

F I G U R E 1.15
Excel VBA IDE with
Project Explorer and
Properties Window

anotherway
. . . to Open the

VBA IDE

Press Alt�F11

rea36164_ch01.qxd 6/23/04 10:23 PM Page 21

VBA 1.22 CHAPTER 1 VBA 1.2 Using the VBA Integrated Development Environment (IDE)

You should see differences in Figure 1.15 such as the title in the title bar. Notice
the Excel button instead of the Word button on the toolbar. The content in
the Project Explorer and the Properties Window is significantly different.

Project Explorer

Instead of Word Objects, you now work with Excel Objects. ThisWorkbook has re-
placed ThisDocument, and you now see three Sheet objects (Sheet1, Sheet2, Sheet3).
Just like ThisDocument, ThisWorkbook is the object that represents the current Excel
Workbook. The Sheet objects represent the three sheets in the Excel Workbook. The
more sheets you add, the more sheet objects appear. Let’s insert and name a sheet and
see what happens.

Inserting a Sheet into the Excel VBA IDE:

1. Click on the Excel button

2. Click on Insert on the menu bar

3. Click on Worksheet

4. Double-click on the Sheet4 tab

5. Type MySheet

6. Press Enter

7. Press Alt�F11

8. Compare your screen with Figure 1.16

task reference

• Click on the Excel button

• Click on Insert in the menu bar and then Worksheet

F I G U R E 1.16
Excel VBA IDE with
Project Explorer,
Properties Window, and
MySheet added

rea36164_ch01.qxd 6/23/04 10:23 PM Page 22

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.23

VISUAL BASIC FOR APPLICATIONS

Notice that you now have a new Sheet object (Sheet4) named MySheet.

Properties Window

Although the properties in the Properties Window are different than those you’ve seen
in the Word VBA IDE, changing properties is exactly the same. You are familiar with
changing the (Name) property on a Word object. Try changing this property on an
Excel object.

You’ve spent a lot of time learning the VBA IDE in both Word and Excel. In the
next session you’ll harness the power of VBA by recording and customizing macros in
Word.

tip: You’re done with Microsoft Excel for this session. You don’t need to save your file be-
fore you close Microsoft Excel

SESSION 1.3 RECORDING AND
MANIPULATING MACROS

You learned in Session 1.2 that a macro is a scripting language that performs a task or
a series of tasks. You can use these tasks to perform a set of commands simultaneously
within an Office application. For example, you can change a font type, size, and color
with one macro. You also can assign this macro to a button or a keystroke combina-
tion so you can repeatedly perform it. After you record a macro, you can look at the
VBA code and see how VBA tells the application to perform the set of commands.
Once you know this, you can manipulate the macro code within the VBA IDE to cus-
tomize it even further. In this section we show you how.

Recording Macros

You’re already familiar with many functions and features in Office applications. For
example, you should know how to insert a date in Microsoft Word. You can also align
text by selecting it and then choosing how to align it in the formatting toolbar. And
you already know many other ways to format a document.

Remember the Daggitt Weekly Development Project Report that Cody showed
Maggie (see Figure 1.1 on page 1.3)? He created this using a macro. Every week de-
partment supervisors run this macro to create a Word document for the weekly devel-
opment project report. Cody asks Maggie to create a similar macro for a client, Bob’s
Baklava. Let’s create one, too.

S E S S I O N 1.2making the grade

1. is another name for the VBA IDE.

2. The is the most useful feature for learning VBA.

3. The window lists all objects associated with a VBA project.

4. The lists properties for each object in the VBA project.

5. A(n) is attached to the side of the VBA IDE.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 23

VBA 1.24 CHAPTER 1 VBA 1.3 Recording and Manipulating Macros

Using the Macro Recorder

Think of recording a macro as you would think of recording a speech or a song. To
record these you need an audio or video recorder. Some of the Office Applications
(Excel, Word, and PowerPoint) have a recorder. A macro recorder records a sequence
of actions in an Office application that you can then repeat.

Just like any recorder, if you make a mistake while you’re recording, you have two
options: (1) start over from the beginning or (2) edit the mistake and correct it. You’re
not ready to edit mistakes in VBA yet, so if you make a mistake at any point when
you’re recording, close the document without saving it and start over.

Using the VBA Macro Recorder:

tip: Before recording, make sure you have the following Microsoft Word active toolbars:
Standard, Formatting, and Visual Basic

1. Start Microsoft Word

2. Save your Word document as BaklavaWeekly

3. Click Tools on the menu bar

4. Select Macro

5. Click on Record New Macro

6. Type BaklavaMacro in the Macro name: field

tip: Make sure you don’t use spaces in your macro names

7. Select BaklavaWeekly in the Store Macro in: field

tip: Don’t select the All Documents (Normal.dot) option. This would place your macro in
all newly created Word documents. Of course, if you wanted to have this macro available for
all Word documents, you would select this option

8. In the Description field place <your name> at the end of the sentence

9. Compare your screen with Figure 1.17

10. Click OK

tip: Don’t do anything else at this point. The macro recorder is active. All keystrokes and
functions will be recorded. You’ll record your macro in the following “Recording the Macro”
steps

task reference

• Click Tools on the menu bar

• Select Macro

• Click on Record New Macro

rea36164_ch01.qxd 6/23/04 10:23 PM Page 24

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.25

VISUAL BASIC FOR APPLICATIONS

tip: If you don’t see the macro recorder buttons, check in the toolbar. Depending on your
Microsoft Word configuration, it might be in the toolbar. The buttons look the same

anotherway
. . . to Record a

Macro

Click the REC

button in the status

bar

F I G U R E 1.17
Word Record Macro
Screen

F I G U R E 1.18
Word Document with
macro recorder

Recording the Macro

After you clicked OK in the steps above, you turned on the macro recorder. You should
now see a blank Word document (BaklavaWeekly.doc) with the macro recorder show-
ing on the screen. Make sure your screen looks similar to Figure 1.18.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 25

VBA 1.26 CHAPTER 1 VBA 1.3 Recording and Manipulating Macros

Recording a VBA Macro:

1. Press Ctrl�N

2. Click Insert on the menu bar and then Date and Time

3. Select the month/day/year format

tip: The month/day/year format will show the current date. For example, if it’s February 13,
2006, your system will show 2/13/2006

4. Click on Update Automatically

5. Click OK

6. Press Enter

7. Press Enter

8. Type Bob’s Baklava Weekly Sales Report

9. Press and hold down the Shift key and use the left arrow key to high-
light Bob’s Baklava Weekly Sales Report

10. Click the Bold button on the formatting toolbar

11. Click the Center Align button on the formatting toolbar

12. Click on the Font Color button on the formatting toolbar and select
red (first column, third item)

13. Click the Stop Recording button on the macro recorder

14. Click anywhere on the Word document

15. Compare your screen with Figure 1.19

16. Close your new document without saving it

17. Press Ctrl�S to save your BaklavaWeekly file and then close it

Notice that your formatted document is a new document and not your
BaklavaWeekly.doc file. Because you opened a new document right after you started
macro recording, you can reuse the BaklavaWeekly.doc file to create a new report each
week. And once Bob enters his weekly sales he can save the file using any name except
BaklavaWeekly.doc.

task reference

• Choose Record New Macro under the Tools menu

• When finished, press the Macro Recorder stop button

After you’re sure the macro recorder is on, start recording your macro. Make sure
to follow the steps exactly. If you make a mistake, close the document without saving it
and start again.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 26

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.27

VISUAL BASIC FOR APPLICATIONS

Running a VBA Macro:

tip: When you open BaklavaWeekly.doc, Microsoft Word will issue a security warning be-
cause your file contains a macro. Make sure to click Enable Macros on the dialog box

1. Open BaklavaWeekly.doc

2. Click Enable Macros

3. Click Tools on the menu bar

4. Select Macro

5. Click Macros

6. Make sure BaklavaMacro is selected

7. Press Run

8. Compare your result with Figure 1.19

9. Close the new file without saving it

F I G U R E 1.19
Completed Word
document with macro

task reference

• Select Macros from the Tools menu bar

• Choose the macro

• Press the Run button

anotherway
. . . to Open the

Macros Dialog Box

Press Alt�F8

Running a VBA Macro

Now that you’ve recorded your macro, you’ll need to run it. There are a few ways to do
this. Let’s look at the easiest way first.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 27

VBA 1.28 CHAPTER 1 VBA 1.3 Recording and Manipulating Macros

You’ve now run your BaklavaMacro and created a new weekly sales report.
You can also assign macros to keystrokes and menus, as well as assign a button

to make them work. We’ll explore all of these methods as we delve deeper into VBA
programming.

Manipulating Macros

When you record a macro, it uses VBA to accomplish the tasks. However, a macro can
only record actions available within an application. A VBA program can help pro-
grammers add features and functions beyond what is available in any one application.
However, you can use a macro as a building block for more extensive macros or VBA
programs. We’ll add some features to the BaklavaMacro you just recorded, but before
we do, let’s take a look at the macro.

Reading a VBA Macro:

1. Select your BaklavaWeekly document

2. Press Alt�F11

3. Click on the Project Explorer button if your Project Explorer isn’t open

4. Click on the expand button next to the Modules folder

5. Double-click the NewMacros object

6. Compare your screen with Figure 1.20

task reference

• Open the VBA IDE

• Click on the object containing the macro

• Press F7 to open Code Window

F I G U R E 1.20
BaklavaMacro code in
VBA IDE

rea36164_ch01.qxd 6/23/04 10:23 PM Page 28

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.29

VISUAL BASIC FOR APPLICATIONS

tip: We added comments to the VBA macro to explain the code. Your recorded macro
won’t contain comments

When you look at your VBA IDE screen you should notice a new folder in the Project
Explorer called Modules. We haven’t seen this folder or the NewMacros object stored in it
yet, but the name gives it away. This macro module contains your BaklavaMacro macro.
The macro module contains all the macro code in a particular project.

Although at first the VBA code in this macro can be hard to read, think about the
steps you took to create the macro. Look at the code in Figure 1.20. We’ve added com-
ments to help explain the code. You’ll need to match each piece of code with an action
as you work in the VBA IDE design mode so you don’t always need to depend on
macros. The design mode is the VBA area where you’ll work with code and use VBA
programming tools. Let’s look at some code that isn’t included in the macro steps, but
is just as important.

The Sub BaklavaMacro() starts the macro code. If you look at the bottom of
the code, you’ll see an End Sub. These lines surround the procedure. A procedure is a
section of a program that performs a particular task. In this case, the procedure is your
macro. You’ll also notice the green text marked with an apostrophe beginning each
line. These are the program comments you learned about in Session 1.1. You can add
as many comments as you like, and we’ll discuss how best to do this in Chapter 2.

Changing the Code

Right now your BaklavaMacro opens a new document, inserts the current date, and
then places the words Bob’s Baklava Weekly Sales Report centered on the page in a
bold, red font. Let’s change it so the macro places the date aligned right and makes the
text bold, italicized, and green.

Before you begin, make sure you’ve turned on an important feature called
IntelliSense. IntelliSense is a Microsoft feature that completes pieces of programming
code with the correct syntax. If you have IntelliSense turned on, your VBA IDE will
suggest ways to complete your programming statements.

task reference

• Open the VBA IDE

• Turn on IntelliSense

Using IntelliSense:

1. Click on Tools on the menu bar

2. Click on Options

3. Select the Editor tab

4. Check the Auto List Members box

5. Click OK

Now that you’ve turned on IntelliSense, let’s manipulate some of the VBA code.

rea36164_ch01.qxd 6/23/04 10:23 PM Page 29

VBA 1.30 CHAPTER 1 VBA 1.3 Recording and Manipulating Macros

Revising a VBA Macro:

1. Find the line Selection.ParagraphFormat.Alignment �

wdAlignParagraphCenter

2. Find the first line Selection.TypeParagraph and place your cursor at
the beginning of the line

3. Press the Enter key to add a space

4. Place your cursor on the empty line and refer back to the line noted in
step 1

5. Slowly type the code from step 1

tip: Type slowly. Every time you enter a “ .” you will see the IntelliSense technology give
you a list of options. You can use the down arrow to move down the list. Or you can type
the word you want and the list will change the closer you get to the word. To select an item
use your Tab key

6. Instead of choosing the wdAlignParagraphCenter, choose the option
that will align text to the right (wdAlignParagraphRight)

7. Move to the line Selection.Font.Bold � wdToggle and insert a line
underneath it

8. Type the text Selection.Font.Italic � wdToggle

9. Place your cursor to the right of the line Selection.Font.Color �

wdColorRed

10. Delete �wdColorRed

11. Place your cursor to the right of Selection.Font.Color

12. Type �

13. Select wdColorDarkGreen from the IntelliSense box

14. Press the Enter key

15. Type Selection.Font.Size � 16

16. Press Ctrl�S

17. Compare your code to the code in Figure 1.21

After you’re sure your code matches, run your macro and see your changes.

task reference

• Open the VBA IDE

• Select the object

• Press F7 to open Code Window

rea36164_ch01.qxd 6/23/04 10:23 PM Page 30

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.31

VISUAL BASIC FOR APPLICATIONS

Running a VBA Macro:

1. Click anywhere between the Sub BaklavaMacro() and End Sub in the
VBA code

tip: If you don’t click within the macro’s code, the VBA IDE macro window will appear and
you’ll need to select a macro to run

2. Press the Run Sub/UserForm button

3. Press Alt�Q

4. Click on the new document screen

5. Compare your screen with Figure 1.22 on page 1.32

tip: You can view the results of your macro without closing the VBA IDE. Press Alt�Tab to
toggle between the VBA IDE and Microsoft Word document

Assigning Macros

Now that your macro is working as you’d like, you’ll want to make it easy for another
user to run. You could provide detailed steps on how to run a macro from the Tools
menu. However, part of a programmer’s job is to make sure end users can use the

F I G U R E 1.21
Revised BaklavaMacro
code in VBA IDE

task reference

• Select Macros from the Tools menu bar

• Choose the macro

• Press the Run button

rea36164_ch01.qxd 6/23/04 10:23 PM Page 31

VBA 1.32 CHAPTER 1 VBA 1.3 Recording and Manipulating Macros

application. Asking end users to navigate menu options to run your macro affects the
program’s usability. Usability refers to how easy or how difficult it is to use a program.

Instead of relying on the menu, you can create a button that will allow users to
run your macro by clicking it. You’ll learn how to customize these command buttons
later in the text. For now, let’s use a VBA macro button. The VBA macro button pro-
vides users with a one-click option to run a macro.

F I G U R E 1.22
Revised BaklavaMacro
results

task reference

• Click on Tools in the menu bar

• Select Customize . . .

• Assign a macro to a button

anotherway
. . . to Customize
your Application

1. Click on the
Toolbar Options

button on the
toolbar

2. Click on Add or

Remove Buttons

3. Click on
Customize . . .

Assigning a VBA Macro:

1. Toggle to your BaklavaWeekly Word document

2. Click on Tools on the menu bar

3. Click on Customize . . .

tip: If you’re having trouble finding the Toolbar Options button, look on the far right of the
screen. Figure 1.23 shows the options to look for

4. In the Customize dialog box click on the Commands tab

5. In the Customize dialog box, scroll down the Categories: on the left-
hand side and click on Macros

6. Under Commands, click on Project.NewMacros.BaklavaMacro

tip: If you see Normal.NewMacros.BaklavaMacro make sure to select the
BaklavaWeekly.doc in the Save In area at the bottom of the dialog

rea36164_ch01.qxd 6/23/04 10:23 PM Page 32

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.33

VISUAL BASIC FOR APPLICATIONS

7. Drag the macro button up next to the Help menu on the menu bar

tip: If you have trouble placing the macro button, make sure your icon looks like this . If
your icon looks like this , you cannot place the macro button

8. Release the macro button

9. In the Customize dialog box click on the Modify Selection button

10. Click Name in the list

11. Type BacklavaMacro

12. Click Image and Text in the list

13. Click Close on the Customize dialog

14. Press Ctrl�S

15. Compare your screen with Figure 1.24 on page 1.34

Printing Macros

Cody asks Maggie to print her macro so he can go over it with her. You should print
yours out for future use as well. Printing a macro code module is as easy as printing a
Word document.

F I G U R E 1.23
Customize toolbar options

task reference

• Open the VBA IDE

• Select File

• Click Print

rea36164_ch01.qxd 6/23/04 10:23 PM Page 33

VBA 1.34 CHAPTER 1 VBA 1.3 Recording and Manipulating Macros

Printing a VBA Macro:

1. Press Alt�F11 to return to the VBA IDE

2. Click anywhere in your BaklavaMacro code

3. Click File on the menu bar

4. Click Print

5. Select Current Module under Range

6. Select Code under Print What

7. Compare your print dialog box with Figure 1.25

8. Click OK

Now that you’re done with your first macro, close the BaklavaWeekly.doc. If you
didn’t save your file, make sure you do it now. Close Microsoft Word by pressing Alt�F4.

S E S S I O N 1.3 making the grade

1. A(n) records a sequence of actions in an Office application that
you can then repeat.

2. The contains all the macro code in a particular project.

3. is a Microsoft feature that completes pieces of programming
code with the correct syntax.

4. refers to how easy or how difficult it is to use a program.

5. The VBA provides users with a one-click option to run a macro.

F I G U R E 1.24
New Baklava document
with macro button

rea36164_ch01.qxd 6/23/04 10:23 PM Page 34

w w w . m h h e . c o m / p l u s s e r i e s VBA 1.35

VISUAL BASIC FOR APPLICATIONS

SESSION 1.4 SUMMARY

VBA, or Visual Basic for Applications, is a programming language that works within
certain software applications. A programming language contains specific rules and
words that explain the logical steps to solve a problem. You can use VBA to customize
Microsoft Office applications. It’s the programming language most often used for end
user development.

VBA is a descendant of BASIC and comes directly from Visual Basic. VBA pro-
grammers rely on the VBA integrated development environment to write their pro-
grams. With VBA, programmers are able to convert horizontal market software into
vertical market software.

Before programmers create programs they must first develop an algorithm.
Programmers usually use pseudocode or a program flowchart to explain their algo-
rithm. Once programmers are satisfied with their algorithm, they code the application
following a strict syntax. If there are errors in their program, they must debug it.

You’ve spent time using the VBA IDE, or VBA Editor. The Project Explorer,
Properties Window, and Code Window are useful VBA tools. You can customize the
VBA IDE using docked and undocked windows. You can also use the macro recorder
to save the steps needed to complete a task. You know how to save macros in a macro
module, as well as manipulate and print them.

You’re well on your way to becoming a VBA programmer. You’ll learn more about
harnessing the power of VBA in the coming chapters.

F I G U R E 1.25
BaklavaMacro print dialog
box

rea36164_ch01.qxd 6/23/04 10:23 PM Page 35

VBA 1.36

C
H

A
P

T
E

R

O

N
E

N
O

T
E

S
w

w
w

.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

rea36164_ch01.qxd 6/23/04 10:23 PM Page 36

VISUAL BASIC FOR APPLICATIONS

VBA 1.37

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

C
H

A
P

T
E

R

O

N
E

L
E

V
E

L
 O

N
E

task reference roundup
Task Page # Preferred Method

Setting the Macro VBA 1.9, VBA 1.9 Select Security in the Tools menu under Macro
Security Level

Word VBA IDE, open VBA 1.10 Press Alt�F11

VBA IDE Help, opening VBA 1.11 Press F1

Project Explorer, opening VBA 1.12 Press Ctrl�R

Objects, viewing VBA 1.13 Click on the expand button in the Project Explorer

Objects, saving VBA 1.13 Click on the Word button on the toolbar and press Ctrl�S

Object Properties, VBA 1.15, 1.16 Press F4 to open the Properties Window, click on the object in the
changing Project Explorer, and change object properties in the Properties

Window

Code Window, opening VBA 1.17 In the VBA IDE, press F7

VBA IDE Windows, VBA 1.19 Right-click on either the Property Window, Project Explorer, or Code
docking and undocking Window, and click on Dockable

Excel VBA IDE, open VBA 1.21 Press Alt�F11

Excel VBA IDE, VBA 1.22 Click on the Excel button and then
inserting sheet Click on Insert in the Menu bar and then Worksheet

Macro Recorder, using VBA 1.24 Click Tools on the Menu bar, select Macro, and click on Record New
Macro

Macro, recording VBA 1.26 Press the Macro Recorder record button; when finished press the
Macro Recorder stop button

Macro, running VBA 1.27, 1.31 Choose Macro, press the Run button

Macro, reading VBA 1.28 Select object in VBA IDE, press F7 to open the Code Window

IntelliSense, using VBA 1.29 Select options in the Tools menu, click on the Editor tab, and check the
Auto List Members box

Macro, revising VBA 1.30 Select object in VBA IDE, press F7 to open the Code Window

Macro, assigning VBA 1.32 Click Tools, then Customize, and assign the macro to a button

Macro, printing VBA 1.34 Open the VBA IDE, click File, and then Print

rea36164_ch01.qxd 6/23/04 10:23 PM Page 37

VBA 1.38

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

C
H

A
P

T
E

R

O

N
E

L
E

V
E

L

T

W
O

review of concepts

FILL-IN

1. A(n) contains specific rules and words that explain the logical steps to solve a problem.

2. When a computer language is it has the ability to work on a variety of computers.

3. A(n) programming language responds to a user clicking on an icon or typing.

4. When you create a graphical depiction of the detailed steps you’ll use to solve a problem, you’ve got a
.

5. A(n) is a characteristic of an object.

6. You can manipulate how windows are arranged in the VBA IDE. You can either or
them.

REVIEW QUESTIONS

1. VBA offers you many benefits and advantages to customizing Office applications. Explain three reasons why a
business might use VBA with Microsoft Office.

2. In this chapter we’ve discussed how to think like a programmer when you approach a problem. Explain how
you might approach a problem like a programmer.

3. You can customize the look of your VBA IDE in a variety of ways. Explain how you would dock and undock the
Project Explorer and Properties Window.

4. Compare and contrast the Word and Excel VBA IDEs. How are these two VBA IDEs similar? How are they
different?

CREATE THE QUESTION

Read the following statements. Then create a short question that each statement would answer.

ANSWER

1. A programming language that works within an-
other application

2. Using English statements to create an outline of the
necessary steps for a piece of software to operate

3. It’s another name for the VBA IDE

4. The VBA IDE window that contains the program
code

5. All of a project’s macros are contained here

6. Use this to create a one-click solution for running
macros

QUESTION

rea36164_ch01.qxd 6/23/04 10:23 PM Page 38

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

VISUAL BASIC FOR APPLICATIONS

VBA 1.39

C
H

A
P

T
E

R

O

N
E

L
E

V
E

L
 T

H
R

E
E

hands-on projects

practice
1. Creating Business Letterhead

June’s Bridal Shoppe, a store specializing in bridal
gowns and wedding planning, sends a Congratulations
letter to each customer when she gets married.
Previously, June had purchased letterhead from the
local store for writing her letters. However, she recently
bought a new computer equipped with Microsoft
Office and a new color printer. She asks you to create

some letterhead containing her business information
and the current date. She also wants to be able to click
a button and have a page ready to print on the day of
each wedding. You decide to create a macro that will
open a new Word document with the desired informa-
tion. You’ll also put a macro button in the document
for June.

1. Open Microsoft Word

tip: Press Ctrl�N to create a new Word document if one isn’t automatically created

2. Press Ctrl�S

3. Save the file as BridalLetterhead.doc

4. Press the Enter key

5. Turn on the macro recorder

6. Record a macro called Letterhead in the BridalLetterhead document

7. Press Ctrl�N

8. Insert the date in the format Thursday, June 19, 2006 and align it to the
right

9. Press the Enter key twice and click the Center button

10. Type Congratulations from June’s Bridal Shoppe

11. Highlight Congratulations from June’s Bridal Shoppe and click the Bold

button

12. Use the Font Color button to make the text blue

13. Click the Stop Recording button on the Macro Recorder

14. Click anywhere on the Word document

15. Press Alt�F11

16. Press Ctrl�S

17. Test the macro

18. Print the macro code

19. Quit Microsoft Word

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

rea36164_ch01.qxd 6/23/04 10:23 PM Page 39

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

VBA 1.40

C
H

A
P

T
E

R

O

N
E

L
E

V
E

L

T

H
R

E
E

2. Creating a Sales Report

You have a job at Albert’s Antique Emporium, an an-
tique and secondhand shop near the university. You
work on some evenings and weekends. Albert has run
the shop for more than 25 years and has always kept
track of sales in a handwritten ledger. Albert Jr. has re-
cently taken over the shop and wants to use Microsoft
Excel to track sales so he can calculate profits and cre-
ate reports in various formats.

Albert Jr. asks you to help him by making an
opening page in Microsoft Excel. You decide to use a
macro to create this new Excel workbook. You record a
macro and show Albert Jr. the results. He’s satisfied,
but would like you to make a few changes in the
macro. He wants Prepared by: and Prepared on: to be
bold and red, and the name and date to be bold.

1. Open the workbook vba01sales.xls

2. Click File

3. Click Save As

4. Save the workbook as AntiqueSales.xls

5. Press Alt�F11

6. Place the cursor at the end of the line ActiveCell.FormulaR1C1 = “Prepared by:”

7. Press the Enter key

8. Type ActiveCell.Font.Bold =True

9. Press the Enter key

10. Type ActiveCell.Font.ColorIndex = 3

11. Place the cursor at the end of the line ActiveCell.FormulaR1C1 = “Prepared on:”

12. Press the Enter key

13. Type ActiveCell.Font.Bold = True

14. Change the 4 in ActiveCell.Font.ColorIndex = 4 to a 3

15. Place the cursor at the end of the line ActiveCell.FormulaR11C1 = “=TODAY()”

16. Press the Enter key

17. Type ActiveCell.Font.Bold =True

18. Press Ctrl�S

19. Test the macro

20. Print the macro code

21. Quit Microsoft Excel

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

rea36164_ch01.qxd 6/23/04 10:23 PM Page 40

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

VISUAL BASIC FOR APPLICATIONS

VBA 1.41

C
H

A
P

T
E

R

O

N
E

L
E

V
E

L
 T

H
R

E
E

hands-on projects

challenge!
1. Solving Computer Problems

You are a Help Desk consultant at your university. You
answer faculty, staff, and student computing questions
over the phone or e-mail. You routinely answer ques-
tions about setting up e-mail accounts, connecting to
the Internet, and using Microsoft Office.

Stu, the help desk supervisor, has asked you to help
him keep track of the problems the Help Desk solves
on a daily basis. Since every Help Desk consultant has
Microsoft Word installed on his or her computer, Stu
decides to use a macro to generate a Trouble Ticket for
each problem the Help Desk solves. It’s important to
know who had the problem, what the problem was,
and which Help Desk consultant solved the problem.

Stu knows you are good at macros so he asks you
to create a macro that will produce a new document
with the information shown in Figure 1.26. Stu also
wants you to place a macro button in Microsoft Word
that will execute the macro when someone clicks it.

Open a new Word document and record a macro
that will generate a Word document like Figure 1.26.
Make sure that the macro creates a new document and
places the current date in each. Leave the Name,
Problem, and Issue Resolved by: areas blank so each
Help Desk consultant can fill these in.

Make sure to place your name and any other in-
formation your instructor requires in the VBA code
comment area. When you’re done, save the file as
TroubleTicket.doc and print the macro code module.
Be prepared to turn it in to your instructor.

2. Tracking Trees

Maynard’s Tree Farm (MTF) sells a variety of trees to
landscapers and individuals to plant in parks and
yards. MTF also sells fresh cut pine trees at Christmas.
Maynard recently bought a computer with Microsoft
Office. His wife, Millie, is learning how to track tree in-
ventory using Microsoft Excel. They’ve asked you to
help them create a macro to automate parts of the
spreadsheet.

Every time Maynard plants a new crop of trees,
Millie wants to create a new worksheet to track the type
of tree, how many Maynard planted, and where he
planted them. Millie will need a new sheet each time
Maynard plants a new crop. Over time Millie will accu-
mulate many worksheets in her tree inventory work-
book. Both Maynard and Millie know they will also
need to account for trees sold in the workbook, but
they’ll worry about this later. The trees they enter in this
workbook will be a few years old before they sell them.

Millie asks you to create a macro that will create
one sheet named WhitePine to start. Remember to in-
clude the following items in the worksheet: Number
Planted, Condition, and Area Planted. Before she
leaves, Millie asks you to use your best judgment to
format and make the worksheet look professional.
You’ve already created an opening page. Now it’s time
to record the macro, test it, and then show it to Millie.

Open the worksheet vba01trees.xls. Take a mo-
ment to look at the opening page you’ve created. Millie
didn’t want any new buttons added to the menu or the

F I G U R E 1.26
TroubleTicket document

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

rea36164_ch01.qxd 6/23/04 10:23 PM Page 41

VBA 1.42

C
H

A
P

T
E

R

O

N
E

L
E

V
E

L

T

H
R

E
E

hands-on projects

challenge!
w

w
w

.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

toolbar so you’ve placed instructions on the opening
spreadsheet. Notice the name of the macro. You’ll need
to name your recorded macro the same. Take a mo-
ment to place your name after the Created by: then
save this file as TreeTracker.xls.

When you record your macro, make sure to open
a new worksheet. Name the worksheet WhitePine as
you record the macro. As you format the various

items, make them bold so they will stand out from the
text Millie enters. Before you work on your macro,
look at Figure 1.27 so you have a good idea of the steps
you need to record. Your WhitePine worksheet should
look similar.

When you’re done testing your macro, save the file
and print the macro code module. Be prepared to turn
it in to your instructor.

F I G U R E 1.27
Tree Farm Inventory and
WhitePine worksheets

rea36164_ch01.qxd 6/23/04 10:23 PM Page 42

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

VISUAL BASIC FOR APPLICATIONS

VBA 1.43

C
H

A
P

T
E

R

O

N
E

L
E

V
E

L
 T

H
R

E
E

hands-on projects

running project
la llama cycle

La Llama Cycle (LLC) started as a small business

run in Jesus Rodriguez’s garage. For five years

during the evenings and on weekends Jesus con-

verted stock motorcycles into personalized ma-

chines. As more people drove his customized mo-

torcycles around town, more people wanted their

own customized motorcycles. Soon Jesus had

more business than he could handle working part

time. He quit his day job and began customizing

motorcycles full time. In the past month, LLC has

opened its third motorcycle shop and now em-

ploys 150 people at three locations. Customers

come from the tri-county area to have their motor-

cycles customized at LLC.

With the latest expansion, Jesus has also pur-

chased new computer systems running Microsoft

Windows with Office. Previously Jesus did much

of the inventory, purchasing, payroll, and other

business processes by hand. Jesus realizes that

with the latest expansion he needs to create com-

puterized solutions to his business processes.

Jesus knows how to customize motorcycles and

run his company well. He is not proficient in com-

puters, but he knows what he needs. So when he

ordered the computers he also hired you as the IT

support staff. You have been working for the past

month installing the new systems and familiariz-

ing yourself with the business processes. Now

you’ll customize Office applications to help LLC

operate more efficiently.

Your first assignment comes from Jennifer,

LLC’s general manager. She’d like you to create a

process that will allow all LLC employees to create

a Word document with LLC’s letterhead. You men-

tion that you could create a macro that will run on

all of the company’s computers. Users would just

need to click a button on the menu bar in Microsoft

Word to create the letterhead. She agrees that this

would be the best solution. She’ll stop by later in

the week to see what you’ve done.

It’s up to you to design the letterhead. You

might use Figure 1.28 to help you create it. Make

sure to plan out the steps to create the letterhead

before starting your macro recording. Remember,

you can make changes to your macro in the VBA

IDE as well.

When you finish with your macro, make sure

to save your file as LLCLetterhead.doc and print

out a copy of the macro code module. Be pre-

pared to turn it in to your instructor.

F I G U R E 1.28
La Llama letterhead

w
w

w
.
m

h
h

e
.
c

o
m

/
p

lu
s

s
e

r
ie

s

rea36164_ch01.qxd 6/23/04 10:23 PM Page 43

rea36164_ch01.qxd 6/23/04 10:23 PM Page 44

