CHAPTER 39 NEURONS AND NERVOUS SYSTEMS

Chapter Outline

39.1 Evolution of the Nervous System

- A. Invertebrate Nervous Organization
 - 1. Comparative study shows the evolutionary steps leading to the centralized nervous system of vertebrates.
 - 2. Even primitive sponges, with only a cellular level of organization, respond by closing the osculum.
 - 3. Hydra (cnidarians) possess two cell layers separated by mesoglea.
 - a. The hydra can contract, extend, and move tentacles to capture prey and even turn somersaults.
 - b. A simple nerve net extends throughout the hydra body within the mesoglea.
 - The hydra nerve net is composed of neurons in contact with one another and with contractile
 epitheliomuscular cells.
 - d. The more complex cnidaria (sea anemones and jellyfish) may have two nerve nets.
 - 1) A fast-acting nerve net enables major responses, particularly in times of danger.
 - 2) Another nerve net coordinates slower and more delicate movements.
 - 4. The planarian nervous system is **bilaterally symmetrical**.
 - a. It has two lateral nerve cords that allow rapid transfer of information from anterior to posterior.
 - b. The nervous system of planaria exhibits **cephalization**; at their anterior end, planaria have a simple brain composed of a cluster of neurons or ganglia.
 - c. Cerebral ganglia receive input from photoreceptors in eyespots and sensory cells in auricles.
 - d. The transverse nerve fibers between the sides of the ladderlike nerve cords keep the movement on both sides of a planarian body coordinated.
 - e. Bilateral symmetry plus cephalization are important trends in nervous system development.
 - f. The organization of the planarian nervous system foreshadows both the central and peripheral system of vertebrates.
 - 5. The annelids, arthropods, and molluses are complex animals with true nervous systems.
 - a. The nerve cord has a **ganglion** in each segment of body that controls muscles of that segment.
 - b. The brain still receives sensory information and controls the activity of the ganglia so the entire animal is coordinated.
 - c. The presence of a brain and other ganglia indicate an increased number of neurons among invertebrates.

B. Vertebrate Nervous Organization

- 1. Vertebrate nervous systems exhibit cephalization and bilateral symmetry.
 - a. The vertebrate nervous system is composed of both central and peripheral nervous systems.
 - 1) The central nervous system develops a brain and spinal cord from the embryonic dorsal nervous cord.
 - 2) The peripheral nervous system consists of paired cranial and spinal nerves.
 - b. Paired eyes, ears, and olfactory structures gather information from environment.
 - c. A vast increase in number of neurons accompanied evolution of the vertebrate nervous system; an insect may have one million neurons while vertebrates may contain a thousand to a billion times more.
- 2. The Vertebrate Brain
 - a. The vertebrate brain is at the anterior end of the dorsal tubular nerve cord.
 - b. The vertebrate brain is customarily divided into the hindbrain, midbrain, and forebrain.
 - 1) A well-developed hindbrain regulates organs below a level of consciousness; in humans it regulates lung and heart function even when we sleep, and coordinates motor activity.
 - 2) The optic lobes are part of a midbrain which was originally a center for coordinating reflex responses to visual input.
 - 3) The forebrain receives sensory input from the other two sections and regulates their output.
 - 4) The cerebrum is highly developed in mammals and is associated with conscious control; the outer layer, called the cerebral cortex, is large and complex.

C. The Human Nervous System

- 1. Three specific functions of the nervous system are to:
 - a. receive sensory input,
 - b. perform integration, and
 - c. generate motor output to muscles and glands.
- 2. The **central nervous system** (**CNS**) is located in the midline of the body and integrates sensory information and controls the body.
- 3. The peripheral nervous system (PNS) lies outside the CNS and contains the cranial and spinal nerves.
- 4. The peripheral nervous system is divided into the somatic and autonomic systems.
 - a. The somatic system controls the skeletal muscles.
 - b. The autonomic system controls the smooth muscles, cardiac muscles, and glands.
- 5. The CNS and PNS of the human nervous system are connected and work together to perform the functions of a nervous system.

39.2 Nervous Tissue

- A. Nervous tissue is made up of **neurons** and **neuroglia**, which supports and nourishes the neurons.
- B. Neurons
 - 1. **Neurons** vary in size and shape but they all have three parts.
 - a. A **cell body** contains the nucleus and other organelles.
 - b. **Dendrites** receive information and conduct impulses toward the cell body.
 - c. Single **axon** conducts impulses away from cell body to stimulate or inhibit a neuron, muscle, or gland.
 - 2. Myelination
 - a. A long axon is called a nerve fiber.
 - b. The long-axons are covered by a white myelin sheath.
 - c. The **myelin sheath** is formed by membranes of tightly spiraled neuroglial cells.
 - d. In the PNS, the neuroglial **neurolemmocyte** cell performs this function, leaving gaps called **neurofibril nodes**.

C. Types of Neurons

- 1. **Motor neurons** have many dendrites and a single axon; they conduct impulses from the CNS to muscle fibers or glands.
- 2. Sensory neurons are unipolar.
 - a. The process that extends from the cell body divides into two processes, one goes to the CNS and one to periphery.
 - b. It conducts impulses from the periphery toward the CNA.
- 3. **Interneurons** are multipolar
 - a. They have highly-branched dendrites within the CNS.
 - b. Interneurons convey messages between the various parts of the CNS.
 - c. They form complex brain pathways accounting for thinking, memory, language, etc.
- D. Transmission of the Nerve Impulses
 - 1. The Italian Luigi Galvani discovered in 1786 that a nerve is stimulated by an electric current.
 - 2. An impulse is too slow to be due to simply an electric current in an axon.
 - 3. Julius Bernstein proposed that the impulse is the movement of unequally distributed ions on either side of an axomembrane, the plasma membrane of the axon.
 - 4. The 1963 Nobel Prize went to the British researchers A. L. Hodgkin and A. F. Huxley who confirmed this theory.
 - a. They and other researchers inserted a tiny electrode into giant axon of a squid.
 - b. The electrode was attached to a voltmeter and oscilloscope to trace a change in voltage over time.
 - The voltage measured the difference in the electrical potential between the inside and outside of the membrane.
 - d. An oscilloscope indicated any changes in polarity.

E. Resting Potential

- 1. When an axon is not conducting an impulse, an oscilloscope records a membrane potential equal to -65 mV indicating that the inside of the neuron is more negative than the outside.
- 2. This is **resting membrane potential** because the axon is not conducting an impulse.
- 3. This polarity is due to the difference in electrical charge on either side of the axomembrane.
 - a. The inside of the plasma membrane is more negatively charged than the outside.
 - b. Although there is a higher concentration of K⁺ ions inside the axon, there is a much higher concentration of Na⁺ ions outside the axon.
 - c. The plasma membrane is more permeable to K⁺ ions so this gradient is less and the K⁺ ion potential is less.
 - d. The sodium-potassium pump maintains this unequal distribution of Na⁺ and K⁺ ions.
- 4. The **sodium-potassium** (Na⁺-K⁺) **pump** is an active transport system that moves Na⁺ ions out and K⁺ ions into axon.
- 5. The pump is always working because the membrane is permeable to these ions and they tend to diffuse toward the lesser concentration.
- 6. Since the plasma membrane is more permeable to potassium ions than to sodium ions, there are always more positive ions outside; this accounts for some polarity.
- 7. The large negatively charged proteins in the cytoplasm of the axon also contribute to the resting potential of 65 mV.

F. Action Potential

- 1. When an axon conducts a nerve impulse, the rapid change in the membrane potential is the **action potential**.
- 2. Protein-lined channels in axomembrane open to allow either sodium or potassium ions to pass; these are sodium and potassium **gates**.
- 3. The action potential is generated only after the occurrence of a threshold value.
- 4. The oscilloscope goes from -65 mV to +40 mV in a **depolarization phase** indicating the cytoplasm is now more positive than the tissue fluid.
- 5. The trace returns to -65 mV again in the **repolarization phase** indicating the inside of the axon is negative again.
- 6. At completion, there are more potassium ions outside and more sodium ions inside.

G. Propagation of Action Potentials

- 1. If an axon is unmyelinated, an action potential stimulates an adjacent axomembrane to produce an action potential.
- 2. In myelinated fibers, the action potential at one neurofibril node causes action potential at next node.
 - a. The myelinated sheath has **neurofibril nodes**, gaps where one neurolemmocyte ends and next begins.
 - b. The action potential "leaps" from one neurofibril node to another during saltatory conduction.
 - Saltatory conduction may reach rates of over 100 meters/second, compared to 1 meter/second without it.
- 3. As each impulse passes, the membrane undergoes a short refractory period before it can open the sodium gates again.
- 4. The conduction of a nerve impulse is an all-or-nothing event.
- 5. This ensures a one-way direction to the impulse.

H. Transmission Across a Synapse

- 1. The minute space between the axon bulb and the cell body of the next neuron is the **synapse**.
- 2. A synapse consists of a presynaptic membrane, a synaptic cleft, and the postsynaptic membrane.
 - a. Synaptic vesicles store neurotransmitters that diffuse across the synapse.
 - b. When the action potential arrives at the presynaptic axon bulb, synaptic vesicles merge with the presynaptic membrane.
 - When vesicles merge with the membrane, neurotransmitters are discharged into the synaptic cleft.
 - d. Neurotransmitter molecules diffuse across the synaptic cleft to the postsynaptic membrane where they bind with specific receptors.
 - e. The type of neurotransmitter and/or receptor determines if the response is excitation or inhibition.
 - f. Excitatory neurotransmitters use gated ion channels and are fast acting.
 - g. Other neurotransmitters affect the metabolism of the postsynaptic cells and are slower.

I. Neurotransmitter Molecules

- 1. At least 25 different neurotransmitters have been identified.
- 2. Acetylcholine (Ach) and norepinephrine (NE) are two well-known neurotransmitters.
- 3. Once a neurotransmitter is released into a synaptic cleft, it initiates a response and is then removed from the cleft.
- 4. In some synapses, the postsynaptic membrane contains enzymes that rapidly inactivate the neurotransmitter.
- 5. Acetylcholinesterase breaks down acetylcholine.
- 6. In other synapses, the presynaptic membrane reabsorbs neurotransmitter for repackaging in synaptic vesicles or for molecular breakdown.
- 7. The short existence of neurotransmitters in a synapse prevents continuous stimulation (or inhibition) of postsynaptic membranes.
- 8. Many drugs that affect the nervous system act by interfering with or potentiating the action of neurotransmitters.

J. Synaptic Integration

- 1. A neuron has many dendrites and may have one to ten thousand synapses with other neurons.
- 2. A neuron receives many excitatory and inhibitory signals.
- 3. Excitatory signals have a depolarizing effect; inhibitory signals have a hyperpolarizing effect.
- 4. Integration is the summing up of excitatory and inhibitory signals.
- 5. If a neuron receives many excitatory signals, or at a rapid rate from one synapse, the axon will probably transmit a nerve impulse.
- 6. If both positive and inhibitory signals are received, the summing may prohibit the axon from firing.

39.3 Central Nervous System: Brain and Spinal Cord

A. Introduction to the CNS

- 1. The central nervous system (**spinal cord** and **brain**) is where sensory impulses are received and motor control is initiated.
- 2. Both the brain and the spinal cord are protected by bone.
- 3. Both are wrapped in three connective tissue coverings called **meninges**.
- 4. The spaces between the meninges are filled with **cerebrospinal fluid** to cushion and protect the CNS.
- 5. The cerebrospinal fluid is contained in the central canal of the spinal cord and within the **ventricles** of the brain.
- 6. The ventricles are interconnecting spaces that produce and serve as reservoirs for the cerebrospinal fluid.

B. The Spinal Cord

- 1. The spinal cord has two main functions.
 - a. It is the center for many reflex actions.
 - b. It provides the means of communication between the brain and the spinal nerves.
- 2. The spinal cord is composed of white and gray matter.
 - a. Grav Matter
 - 1) The unmyelinated cell bodies and short fibers give **gray matter** its color.
 - 2) In a cross section, the gray area looks like a butterfly or the letter H.
 - 3) It contains portions of sensory neurons and motor neurons; short interneurons connect them.

b. White Matter

- Myelinated long fibers of interneurons run together in tracts and give the white matter its color.
- 2) Tracts conduct impulses between the brain and the spinal nerves; ascending tracts are dorsal and descending tracts from the brain are ventral.
- 3) Tracts cross over near the brain; therefore the left side of the brain controls the right side of the body.

C. The Brain

- 1. Brain has four ventricles: two lateral ventricles and a third and fourth ventricle.
- 2. The cerebrum is associated with the two lateral ventricles, the diencephalon with the third, and the brain stem and cerebellum with the fourth.

D. The Cerebrum

- 1. The **cerebrum**, also called the telencephalon, is the largest part of the brain in humans.
- 2. It is the last center receiving sensory input and carrying out integration to command motor responses.
- 3. The cerebrum carries out higher thought processes for learning and memory, language and speech.

E. The Cerebral Hemispheres

- The right and left cerebral hemispheres are connected by a bridge of nerve fibers, the corpus callosum.
- The outer portion is a highly convoluted cerebral cortex consisting of gray matter containing cell bodies and short unmyelinated fibers.
- 3. The cerebral cortex in each hemisphere contains four surface lobes: the frontal, parietal, occipital, and temporal lobes.
- 4. Different functions are associated with each lobe
- 5. The cerebral cortex contains motor, sensory, and association areas.
 - a. The human hand takes up a large proportion of the primary motor area.
 - b. Ventral to the primary motor area is a premotor area that organizes motor functions before the primary area sends signals to the cerebellum.
 - c. The left frontal lobe has Broca's area for our ability to speak.
 - d. Sensory information from the skin and skeletal muscles arrives at a primary somatosensory area.
 - e. The primary visual area in the occipital lobe receives information from the eyes; a visual association area associates new visual information with old information.
 - f. The primary auditory area in the temporal lobe receives information from our ears.
 - g. The primary taste area is in the parietal lobe.
 - Our somatosensory association area processes and analyzes sensory information from skin and muscles.
 - i. A general interpretation area receives information from all of the sensory association areas and allows us to quickly integrate signals and send them to the prefrontal area for immediate response.
 - j. The prefrontal area in the frontal lobe receives input from other association areas and reasons and plans.
 - k. White Matter
 - 1) White matter in the CNS consists of long myelinated axons organized into tracts.
 - 2) Descending tracts from the primary motor area communicate with lower brain centers.
 - 3) Ascending tracts from lower brain centers send sensory information up to the primary somatosensory area.
 - 4) These tracts cross over near the brain; therefore the left side of the brain controls the right side of the body.
 - 1. Basal Nuclei
 - 1) Aside from the tracts, there are masses of gray matter located deep within the white matter.
 - These basal nuclei integrate motor commands; malfunctions cause Huntingdon and Parkinson disease.

F. The Diencephalon

- 1. The **hypothalamus** and **thalamus** are in a portion of the brain known as the **diencephalon**, where the third ventricle is located.
- 2. The hypothalamus forms the floor of the third ventricle.
- 3. The hypothalamus maintains homeostasis.
 - a. It is an integrating centers that regulates hunger, sleep, thirst, body temperature, water balance, and blood pressure.
 - b. It controls the pituitary gland and thereby serves as a link between the nervous and endocrine systems.
- 4. The thalamus consists of two masses of gray matter in the sides and roof of the third ventricle.
 - a. It is the last portion of the brain for sensory input before the cerebrum.
 - b. It is a central relay station for sensory impulses traveling up from the body or from the brain to cerebrum.
 - c. Except for smell, it channels sensory impulses to specific regions of cerebrum for interpretation.
- 5. The pineal gland, which secretes melatonin hormone, is in the diencephalon.

F. The Cerebellum

- 1. The **cerebellum** is separated from the brain stem by the fourth ventricle.
- 2. The cerebellum is in two portions joined by a narrow median portion.
- 3. The cerebellum integrates impulses from higher centers to coordinate muscle actions, maintain equilibrium and muscle tone, and sustain normal posture.
- 4. It receives information from the eyes, inner ear, muscles, etc. indicating body position, integrates the information and sends impulses to muscles maintaining balance.
- 5. The cerebellum assists in the learning of new motor skills, as in sports or playing the piano.

G. The Brain Stem

- 1. The **medulla oblongata**, **pons**, and **midbrain** all form the brain stem.
- 2. Besides acting as a relay station for tracts passing between the cerebrum and spinal cord or cerebellum, the **midbrain** has reflex centers for visual, auditory, and tactile responses.
- 3. The **pons** contains bundles of axons traveling between the cerebellum and rest of CNS.
 - a. The pons functions with the medulla to regulate the breathing rate.
 - b. It has reflex centers concerned with head movements in response to visual or auditory stimuli.
- 4. The **medulla oblongata** lies between the spinal cord and the pons, anterior to the cerebellum.
 - a. It contains vital centers for regulating heartbeat, breathing, and vasoconstriction.
 - b. It contains reflex centers for vomiting, coughing, sneezing, hiccuping, and swallowing.
 - c. It contains nerve tracts that ascend or descend between the spinal cord and the brain's higher centers.

H. The Limbic System

- 1. The limbic system is a complex network of tracts and nuclei that incorporate medial portions of cerebral lobes, subcortical nuclei, and diencephalon.
- 2. It blends higher mental functions and primitive emotions.
- 3. Its two major structures are the **hippocampus** and **amygdala** for learning and memory.
 - a. The hippocampus makes prefrontal area aware of past experiences stored in association areas.
 - b. The amygdala causes experiences to have emotional overtones.
 - c. Inclusion of the frontal lobe in the limbic system allows reasoning to keep us from acting out strong feelings.
- 4. Learning and Memory
 - a. Memory is the ability to hold thoughts in the mind and to recall past events.
 - b. Learning takes place when we retain and utilize past memories.
 - c. The prefrontal area in the frontal lobe is active in short-term memory (e.g., telephone numbers).
 - d. Long-term memory is a mix of semantic memory (numbers, words) and episodic memory (persons, events).
 - e. Skill memory is the ability to perform motor activities.
 - f. The hippocampus serves as a go-between to bring memories to mind.
 - g. The amygdala is responsible for fear conditioning and associates danger with sensory stimuli.
 - h. Long-term potentiation (LTP) is an enhanced response at synapses within hippocampus.
 - LTP is essential to memory storage; excited postsynaptic cells may die due to a glutamate neurotransmitter.
 - j. Extinction of too many cells in the hippocampus is the underlying cause of Alzheimer disease.

39.4 Peripheral Nervous System

A. Introduction to the PNS

- 1. The peripheral nervous system lies outside the CNS.
 - a. Cranial nerves connect to the brain.
 - b. **Spinal nerves** lie on either side of the spinal cord.
- 2. Axons in nerves are called nerve fibers.
- 3. The cell bodies of neurons are found in the CNS or in ganglia.
- 4. Ganglia are collections of cell bodies in the PNS.
- 5. Humans have 12 pairs of **cranial nerves** attached to the brain.
 - a. Sensory nerves only contain sensory nerve fibers.
 - b. Motor nerves only contain motor nerve fibers.
 - c. Mixed nerves contain both sensory and motor nerve fibers.
 - d. Cranial nerves mostly connect to the head, neck, and facial regions.
 - e. The vagus nerve also branches to the pharynx, larynx, and some internal organs.

- 6. Humans have 31 pairs of spinal nerves emerging from the spinal cord.
 - a. The paired spinal nerves leave the spinal cord by two short branches (spinal roots).
 - b. The dorsal or sensory root contains fibers of sensory neurons conducting nerve impulses to the spinal cord.
 - The ventral root contains the axons of motor neurons that conduct nerve impulses away from the spinal cord.
 - d. All spinal nerves are mixed nerves that conduct impulses to and from the spinal cord.
 - e. Spinal nerves are mixed nerves with sensory and motor fibers; each serves its own region.

B. Somatic System

- 1. The **somatic system** has nerves to carry sensory information to the CNS and motor commands away from the CNS to **skeletal** muscles.
- 2. Any voluntary control of muscles involves the brain; reflexes involve the brain or spinal cord.
- 3. Outside stimuli can initiate reflex actions, some of which involve the brain.

C. The Reflex Arc

- 1. **Reflexes** are automatic, involuntary responses.
- 2. A reflex arc involves the following pathway.
 - Sensory receptors generate an impulse in a sensory neuron that moves along sensory axons toward the spinal cord.
 - b. Sensory neurons enter the cord dorsally and pass signals to interneurons.
 - c. Impulses travel along motor axons to an effector, which brings about a response to the stimulus.
 - d. The immediate response is that muscles contract to withdraw from source of pain.
- 3. Reflex response occurs because the sensory neuron stimulates several interneurons.
- 4. Some impulses extend to the cerebrum, which makes a person conscious of the stimulus and the reaction.

D. Autonomic System

- 1. The autonomic system is a part of the PNS and regulates cardiac and smooth muscle and glands.
- 2. There are two divisions: the sympathetic and parasympathetic systems.
 - a. Both function automatically and usually in an involuntary manner.
 - b. Both innervate all internal organs.
 - c. Both utilize two neurons and one ganglion for each impulse.
 - 1) The first neuron has a cell body within the CNS and a **preganglionic fiber**.
 - 2) The second neuron has a cell body within the ganglion and a **postganglionic fiber**.
 - Breathing rate and blood pressure are regulated by reflex actions to maintain homeostasis.

E. Sympathetic Division

- 1. Most preganglionic fibers of the **sympathetic system** arise from the middle (**thoracic-lumbar**) portion of the spinal cord and almost immediately terminate in ganglia that lie near the cord (thoracic-lumbar portion).
- 2. Therefore the preganglionic fiber is short, but the postganglionic fiber that contacts an organ is long.
- The sympathetic system is especially important during emergency situations (the "fight or flight" response).
- 4. To defend or flee, muscles need a supply of glucose and oxygen; the sympathetic system accelerates heartbeat, and dilates bronchi.
- 5. To divert energy from less necessary digestive functions, the sympathetic system inhibits digestion.
- 6. The neurotransmitter released by the postganglionic axon is mainly norepinephrine, similar to epinephrine (adrenaline) used as a heart stimulant.

F. Parasympathetic Division

- 1. The **parasympathetic system** consists of a few cranial nerves, including the vagus nerve, and fibers that arise from the bottom craniosacral portion of the spinal cord.
- 2. In this case, the preganglionic fibers are long and the postganglionic fibers are short.
- 3. This system is a "housekeeper system"; it promotes internal responses resulting in a relaxed state.
- 4. The parasympathetic system causes the eye pupil to constrict, promotes digestion, and retards heartbeat.
- 5. The neurotransmitter released is acetylcholine.