2/1/2005
Assignment 2 (Triggers)
Page 5

Assignment 2
Creating Triggers for the Expense Reporting Database

Due: 2/16/2005 (12.5%)

Assignment 2 provides experience with creating triggers for the Expense Reporting database. You need to write SQL and programming language statements (PL/SQL) to create and test the triggers.

1. Trigger Specifications

You should write SQL and procedural language statements (PL/SQL) to define the triggers as specified in the following subsections. In addition to the triggers, you need to write one procedure that is used by one of the triggers that you will write. The triggers implement business rules that cannot be specified as referential integrity constraints or CHECK CONSTRAINT clauses. Use a naming convention for your triggers that indicates when they fire and their target. When the specifications indicate that the transaction should be rolled back, you should raise an application error. The application error will cause the transaction to be rolled back. You cannot directly roll back a transaction in a trigger.

Expense Amount Exceeding Limit Trigger

This trigger fires after inserting a row in the ExpenseItem table or updating the expense amount (ExpAmt). The trigger body compares the expense amount to the category limit (ECLimit) in the related row of the ExpCat table. If the expense amount is greater than the category limit, insert a row into the exception log table (Log_Table). You should create the exception log table (Log_Table) with columns ExcNo (system-generated primary key value), ExcTrigger (trigger name in which the exception occurred), ExcTable (name of the table containing the exception), ExcKeyValue (primary key value of the row with the exception), ExcDate (timestamp when the exception occurred), and ExcText (message explaining the error).
Check Approving User Trigger

This trigger fires before updating the approving user number ApprUserNo in the ExpenseReport table. The trigger body compares the organization number of the approving user to the organization number of the submitted user. The organization number of the approving user must be the same as the organization number of the submitting user or the organization number of the parent organization of the submitting user. If the organization number of the approving user does not match either, raise an application error.
Change Case Trigger

This trigger fires before inserting an ExpenseReport row or updating the expense report status (ERStatus). The body of the trigger should change the case of the ERStatus column to upper case. You can use the Oracle UPPER function in the trigger body.
Update Items Expense Date Trigger

When the ExpenseDate column of the ExpenseItems table is updated, ensure that the value is less than or equal to the ERSubmitDate column in the related row of the ExpenseReports table. If this constraint is violated, raise an application error. This trigger needs to fire on INSERT and UPDATE statements that change the ExpenseDate column in the ExpenseItem table.

Rollup Expense Item Procedure (spRollupExpenseItem)

This procedure updates the related row in the BudgetItem table given an expense report number and expense category number. The procedure contains three input parameters, the ERNo value, the ECNo value, and the rollup amount, along with one Boolean output parameter. You will use this procedure in the Rollup Expense Item trigger (described next). You do not need to write this procedure as it will be provided on the class website. You should create the procedure using the code provided on the class website. Here is the logic of the procedure.
· If the status (ERStatus) of the related ExpenseReport row is not equal to APPROVED, the BudgetItem row is updated and the output parameter is set to False. An application error is not raised.
· If there are no errors, the related BudgetItem row is updated. The actual amount (BIActual) in the related BudgetItem row are incremented by the rollup amount input parameter. The related BudgetItem row has the expense category identifier (ECNo) of the ExpenseItem row, the four digit year of the submitted date (ERSubmitDate) of the related ExpenseReport row, and the organization number (OrgNo) of the organization employing the submitted user (SubmitUserNo). The to_char function retrieves the four digit year from a column with a date/time data type. The output parameter is set to True after performing the update operation.

Rollup Expense Item Trigger

This trigger fires after updating the expense approved amount (ExpApprAmt) or deleting a row of the ExpenseItem table. The following points explain the logic of this trigger:

· If updating the ExpApprAmt column, the rollup amount should be the difference of the New.ExpApprAmt minus the Old.ExpApprAmt.
· If deleting a row of the ExpenseItem table, the rollup amount should be the negative of the Old.ExpApprAmt.
· To perform the rollup, you should call the spRollupExpenseItem procedure described above that will be provided on the class website. In your trigger, you need to call spRollupExpenseItem with input parameters ERNo, ECNo, and rollup amount (calculated as described) as input parameters along with a Boolean output parameter.
· If the output parameter of the spRollupExpenseItem procedure is true, insert a row into the exception log table (Log_Table), the table used in the Expense Amount Exceeding Limit trigger. You provide values for the columns ExcNo (system-generated primary key value), ExcTrigger (trigger name in which the exception occurred), ExcTable (name of the table containing the exception), ExcKeyValue (primary key value of the row with the exception), ExcDate (timestamp when the exception occurred), and ExcText (message explaining the error). The value in ExcText should the operation (update or delete) and the rollup amount.
· If the output parameter of the spRollupExpenseItem procedure is false, do nothing.

2. Testing the Triggers

For each trigger, write statements to test the conditions of the trigger. You should have statements to test the major branches of each trigger. Make sure that you test single row as well as multiple row actions. Document each statement block to indicate the trigger in which it applies and the expected result of the trigger firing when the statement block is executed. You should also prepare tests to ensure that there is no harmful interaction among your triggers. If you design your triggers properly, you should not have interactions among triggers. For update triggers, you can avoid interaction by specifying the updated column that causes the trigger to fire.
Grading

If you follow the instructions, you should receive full credit. Here are my grading guidelines:

· To ensure proper testing, please load the original data in your expense report tables. The original data is contained in the text files distributed with assignment 1. If you do not have the original data loaded, you may lose points for failing test cases. I will restore your tables to the original state after my tests are complete.

· To test your triggers, please make sure that your triggers exist in your schema on the COBCU2 server. You can use the following SELECT statement to check your triggers where XY is replaced by the number in your assigned Oracle user name. Note that the string constants in the statement must be upper case. You will lose 20 points for each trigger that does not exist.
select object_name, timestamp, status

from all_objects

where object_type = 'TRIGGER'

and owner = 'ISMG6480STUDENTXY';

· A major error such as a trigger with syntax errors is a deduction of 15 points.

· A medium error such as not writing SQL statements to test a trigger or having a major logic error in a trigger is a deduction of 5 to 10 points depending on the error.

· A minor error such as missing an SQL statement to test a minor trigger condition or having minor logic errors in a trigger is a deduction of 2 to 5 points depending on the error.

· For the Expense Amount Exceeding Expense Limit and the Rollup Expense Item triggers, make sure that you create the Log_Table as specified. I will check the contents of your Log_Table as part of evaluating test cases that fire this trigger.
· To provide an opportunity to learn from your errors, you will be allowed to resubmit this assignment for regarding. On a regrade, you can earn back half of the points deducted up to 80 points maximum on the assignment. Because of this policy, it does not make sense to resubmit assignments with a grade above 80. The due date for the resubmitted assignment will be announced in class.

Completion

Upload a file containing your CREATE TABLE statements to the Digital Drop Box part of the Blackboard website. This file should contain both your trigger definition code as well as the code to test your triggers. Use the following naming scheme for your assignment file: LastNameFirstNameA2. To facilitate grading, please format your statements neatly. I will test your code using the triggers that you created on the COBCU2 server. Please indicate your name and Oracle user name in your document.

